• Nem Talált Eredményt

OUTLOOK FOR CELLULASE RESEARCH

In document Industrial Enzymes (Pldal 57-62)

CELLULASES FOR BIOMASS CONVERSION

7. OUTLOOK FOR CELLULASE RESEARCH

chitin, -1,3-glucans and -(1,3)-(1,4) mixed linkage glucans, xylan, mannan, galactan, and starch. Some CBMs display “lectin-like” specificity and bind to a variety of cell-surface glycans (Borastonet al., 2004; Sorimachiet al., 1996, 1997;

Williamsonet al., 1997; Sigurskjoldet al., 1994). Based on structural and functional similarities, CBMs are been grouped into three types:

6.3.1. Type A Surface

Binding CBMs This class of CBMs binds to insoluble, highly crystalline cellulose and/or chitin. The aromatic amino acid residues play key role in the binding sites.

The planar architecture of the binding sites is thought to be complementary to the flat surfaces presented by cellulose or chitin crystals (Bayer et al., 1999).

The substrate binding site comprises the “hydrophobic” face of cellulose (Bayer et al., 1999). Upon binding to the substrate, the cellulosome is thought to undergo a supramolecular rearrangement so that the components redistribute to interact with the different target substrate. For this purpose, the various cellulosomal enzymes include different types of CBMs from different families that exhibit appropriate specificities that complement the action of the parent enzyme (Bayeret al., 2004).

6.3.2. Type B Polysaccharide-Chain-Binding CBMs

This class of CBMs binds to individual glycan chains. As with type A CBMs, aromatic residues play a pivotal role in ligand binding, and the orientation of these amino acids are key determinants of specificity. The binding sites often described as grooves or clefts, and comprise several sub-sites able to accommodate the individual sugar units of the polymeric ligand (Simpsonet al., 2000). In sharp contrast with the Type A CBMs, direct hydrogen bonds also play a key role in the defining the affinity and ligand specificity of Type B glycan chain binders (Notenboom et al., 2001; Xieet al., 2001).

6.3.3. Type C Small-Sugar-Binding CBMs

This class of CBMs has the lectin-like property of binding optimally to mono-, di-, or tri-saccharides and thus lacks the extended binding-site grooves of type B CBMs. The distinction between Type B CBMs and Type C CBMs can be subtle (Borastonet al., 2003).

6.3.4. Type D CBMs

This class of CBMs is always found in close spatial proximity with the catalytic domains of their respective proteins. Examples include the cellulase family 9 enzymes fromT. fusca(Sakonet al., 1997).

Technologies yields cellulase costs to the bioethanol process of $0.32 and $0.18 per gallon ethanol produced, respectively. These costs must be reduced to less than $0.05 per gallon ethanol by 2020 and this requires further increases in specific activity or production efficiency or some combination thereof (Wooley and Ruth, 1999).

It is most likely that the needed further improvements in cellulase performance will come via continued research aimed at understanding the basic principles by which these enzymes function on microcrystalline cellulose surfaces. Specifically, the mode of action of the “processive” enzymes, such as T. reesei CBH I and CBH II, must be more deeply understood before further improvement in activity via enzyme engineering tools can be realized.

ACKNOWLEDGEMENT

This work was funded by the U.S. Department of Energy’s Office of the Biomass Program.

REFERENCES

Abuja, P.M., Schmuck, M., Pilz, I., Tomme, P., Claeyssens, M. (1988a) Structural and functional domains of cellobiohydrolase I fromT. reesei- a Small-Angle X-Ray-Scattering Study of the Intact Enzyme and Its Core. Eur. Biophys. J.15, 339–342.

Abuja, P.M., Pilz, I., Claeyssens, M. and Tomme, P. (1988b) Domain structure of cellobiohydrolase II as studied by small angle X-ray scattering: close resemblance to cellobiohydrolase I. Biochem.

Biophys. Res. Commun.156, 180–185.

Baker, J.O., Ehrman, C.I., Adney, W.S., Thomas, S.R., Himmel, M.E. (1998) Hydrolysis of cellulose using ternary mixtures of purified cellulases. Appl. Biochem. Biotechnol.70/72, 395–403.

de Bary, A. (1886) Ueber einige sclerotinien und sclerotienkrankheiten. Bot. Zeit. XLIV: 377.

Bayer, E.A., Morag, E. and Lamed, R. (1994) The cellulosome — a treasure-trove for biotechnology.

Trends in Biotechnology12, 378–386.

Bayer, E.A., Ding, S.-Y., Mechaly, A., Shoham, Y. and Lamed, R. (1999) Emerging phylogenetics of cellulosome structure, In Recent Advances In Carbohydrate Bioengineering, Gilbert, H.J., Davies, G, Henrissat, B., Svensson, B. (Eds), The Royal Society of Chemistry, Cambridge, p. 189–201.

Bayer, E.A., Belaich, J.P., Shoham, Y. and Lamed, R. (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annual Review of Microbiology58, 521–554.

Boraston, A.B., Notenboom, V., Warren, R.A., Kilburn, D.G., Rose, D. R. and Davies, G. (2003) Structure and ligand binding of carbohydrate-binding module csCBM6-3 reveals similarities with fucose-specific lectins and “galactose-binding” domains. J. Mol. Biol. 327(3):659–669.

Boraston, A.B., Bolam, D.N., Gilbert, H.J. and Davies, G.J. (2004) Carbohydrate-binding modules:

fine-tuning polysaccharide recognition. Biochem. J.382, 769–781.

Brandt, D., Hontz, L. and Mandels, M. (1973) Engineering aspects of the enzymatic conversion of waste cellulose to glucose. AIChE Symposium Series69, 127.

Brown, H.T., and Morris, G.H. (1890). Researches on the germination of some of the Graminae. J. Chem.

Soc. Lond.57, 458–528.

Claeyssens, M., Tilbeurgh, H.V., Tomme, P., Wood, T.M. and McCrae, S. I. (1989) Fungal Cellulase Systems: Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilumandTrichoderma reesei. Biochem. J.261, 819–826.

Claeyssens, M. and Tomme, P. (1990) In Kubicek, C. P., Eveleigh, D. E., Esterbauer, H., Steiner, W.

and Kubicek-Pranz, E.M. (Eds.),Trichoderma reeseiCellulases: Biochemistry, Genetics, Physiology and Application, London, the Royal Society of Chemistry, pp. 1–11.

Coughlan, M.P., Moloney, A.P., McCrae, S.I. and Wood, T.M. (1987) Cross-synergistic interactions between components of the cellulase systems ofTalaromyces emersonii,Fusarium solani,Penicillium funiculosum, andTrichoderma koningii. Biochem. Soc. Transactions15, 263–264.

Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach.

In Recent Advances in Carbohydrate Bioengineering, Gilbert, H.J., Davies, G., Henrissat, B. and B.

Svensson (eds.), The Royal Society of Chemistry, Cambridge, pp. 3–12.

Ding, S.-Y., Rincon, M.T., Lamed, R., Martin, J.C., McCrae, S.I., Aurilia, V., Shoham, Y., Bayer, E.A.

and Flint, H.J. (2001) Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J.

Bacteriol.183, 1945–1953.

Efimov, A.V. (1994) Favoured structural motifs in globular proteins. Structure2, 999–1002.

Eriksson, K.E. (1975) Enzyme mechanisms involved in the degradation of wood components. In Bailey, M., Enari T.M. and Linko, M. (Eds.), Symposium on Enzymatic Hydrolysis of Cellulose.

Helsinki, SITRA, p. 263.

Eveleigh, D.E. (1987) Cellulases: A perspective. Phil. Trans. Roy. Soc. Lond., A321:435–447.

Fägerstam, L. G. and Pettersson, L. G. (1980) The 1,4--glucan cellobiohydrolases ofT. reeseiQM 9414. A new type of cellulolytic synergism. FEBS Lett.119, 97.

Fierobe, H.P., Mechaly, A., Tardif, C., Belaich, A., Lamed, R., Shoham, Y., Belaich, J.P. and Bayer, E.A.

(2001) Design and production of active cellulosome chimeras: selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem.276, 21257–21261.

Fujino, T., Karita, S. and Ohmiya, K. (1993) Nucleotide-sequences of the celB gene encoding endo-1,4-beta-glucanase-2, Orf1 and Orf2 forming a putative cellulase gene-cluster ofClostridium josui. J.

Ferment. and Bioeng. 76(4):243–250.

Gerngross, U.T., Romaniec, M.P. M., Kobayashi, T., Huskisson, N.S. and Demain, A.L. (1993) Sequencing of aClostridium thermocellumgene (cipA) encoding the cellulosomal S(L)-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8(2):325–334.

Gilligan, W. and Reese, E.T. (1954) Evidence for multiple components in microbial cellulases. Can. J.

Microbiol.1, 90.

Grohmann, K., Wyman, C.E. and Himmel, M.E. (1991) Potential for fuels from biomass and wastes.

In Rowell, R., Narayan, R. and Schultz, T. (eds), Emerging Materials and Chemicals from Biomass.

ACS Series476, 354–392.

Halliwell, G. and Riaz, M. (1970) The formation of short fibres from native cellulose by components of Trichoderma koningii cellulase. Biochem. J.116, 35–42.

Harris, N.L., Presnell, S.R. and Cohen, F.E. (1994) Four helix bundle diversity in globular proteins. J.

Mol. Biol.236, 1356–1368.

Irwin, D.C., Spezio, M., Walker, L.P. and Wilson, D.B. (1993) Activity studies of eight purified cellulases: specificity, synergism, and binding domain effects. Biotech. Bioeng.42, 1002–1013.

King, K.W. and Vessal M.I. (1969) Enzymes of the cellulase complex. In Hajny, G. J. And Reese E. T.

(eds), Cellulases And Their Applications. Advances in Chemistry Series95, 7–25.

Kosugi, A., Murashima, K., Tamaru, Y. and Doi R.H. (2002) Cell-surface-anchoring role of N-terminal surface layer homology domains ofClostridium cellulovoransenge. J. Bacteriol. 184(4): 884–888.

Kraulis, J., Clore, G.M., Nilges, M., Jones, T.A., Pettersson, G., Knowles, J. and Gronenborn, A.M.

(1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobio-hydrolase I fromTrichoderma reesei.A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry28, 7241–7257.

Lamed, R., Setter, E. and Bayer, E.A. (1983) Characterization of a cellulose-binding, cellulase-containing complex inClostridium thermocellum. J. Bacteriol.156, 828–836.

Lamed, R. and Bayer, E.A. (1988) The cellulosome ofClostridium thermocellum. Adv. Appl. Microbiol.

33, 1–46.

Levitt, M. and Chothia, C. (1976) Structural patterns in globular proteins. Nature261, 552–557.

Li, H., Flora, R.M. and King, K.W. (1965) Individual roles of cellulase components derived from Trichoderma viride. Arch. Biochem. Biophys.111, 439–447.

Mandels, M. and Reese E.T. (1964) Fungal cellulases and the microbial decomposition of cellulosic fabric. Develop. Indust. Microbiol.5, 5–20.

Mandels, M., Weber, J. and Parizek, R. (1971) Enhanced cellulase production by a mutant ofTrichoderma viride. Appl. Microbiol.21, 152.

McHale, A. and Coughlan, M.P. (1980) Synergistic hydrolysis of cellulose by components of the extracellular cellulase system ofTalaromyces emersonii. FEBS Lett.117, 319.

Mechaly, A., Fierobe, H.P., Belaich, A., Belaich, J.P., Lamed, R., Shoham, Y. and Bayer, E.A.

(2001) Cohesin-dockerin interaction in cellulosome assembly. A single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J. Biol. Chem.

276(22):19678–19678.

Mitchinson, C. (2005) Genencor’s (Genencor International, Inc., Palo Alto, CA) Perspective on the Key Barriers to Commercializing Biofuels at the 27th Symposium on Biotechnology for Fuels and Chemicals, Denver, May 2.

Montenecourt, B.S. and Eveleigh, D. E. (1979) Selective screening methods for the isolation of high yielding cellulase mutants ofTrichoderma reesei. In: Hydrolysis of cellulose: Mechanism of Enzymatic and Acid Catalysis, Advances in Chemistry Series181, 289–301.

Morris, B. (1890) The germination of some of the gramineae. J. Chem. Soc. Lond.57, 497.

Newcombe, F.C. (1899) Cellulose-Enzymes. Annal. Bot. XIII, No. XLIX:49–81.

Notenboom, V., Boraston, A.B., Kilburn, D.G. and Rose, D.R. (2001) Crystal structures of the family 9 carbohydrate-binding module fromThermotoga maritimaxylanase 10A in native and ligand-bound forms. Biochemistry 40(21):6248–6256.

Orengo, C.A. and Thornton, J.M. (1993) Alpha plus beta folds revisited: some favoured motifs. Structure 1, 105–120.

Orengo, C.A., Jones, D.T. and Thornton, J.M. (1994) Protein superfamilles and domain superfolds.

Nature372, 631–634.

Petterson, L. G. (1975) The mechanism of enzymatic hydrolysis of cellulose. In Bailey, M., Enari, T.M.

and Linko, M. (eds), Symposium on Enzymatic Hydrolysis of Cellulose. Helsinki, Finland, SITRA, pp. 255.

Pringsheim, H. (1912) Uber den fermentativen abbau der cellulose. Zeitschrift fuer physiologische Chemie78, 266–291.

Reese, E.T., Siu, R.G.H. and Levinson, H.S. (1950) The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol.59, 485.

Reinitzer, F. (1897) Ueber das zellwandlosende enzym der gerste. Hoppe-Seyler’s Zeitschrift fur Physi-ologische Chemie23, 175–208.

Rincon, M. T., McCrae, S.I., Kirby, J., Scott, K.P. and Flint, H.J. (2001) Endb, A multidomain family 44 cellulase fromRuminococcus flavefaciens17, binds to cellulose via a novel cellulose-binding module and to another R-flavefaciens protein via a dockerin domain. Appl. Environ. Microbiol. 67(10):

4426–4431.

Rouvinen, J., Bergfors, T., Teeri, T, Knowles, J. K. and Jones, T. A. (1990) Three-dimensional structure of cellobiohydrolase II fromTrichoderma reesei. Science249, 380–386.

Sakon, J., Irwin, D., Wilson, D.B. and Karplus, A. (1997) Structure and mechanism of endo/exocellulase E4 fromThermomonospora fusca. Nature Struct. Biol. 4(10):810–818.

Salamitou, S., Tokatlidis, K., Beguin, P. and Aubert J.P. (1992) Involvement of separate domains of the cellulosomal protein-S1 ofClostridium thermocellumin binding to cellulose and in anchoring of catalytic subunits to the cellulosome. Febs Letters 304(1):89–92.

Selby, K. (1969) The purification and properties of the C1-component of the cellulase complex. In Hajny, G. J. and Reese, E. T. (eds), Cellulases and Their Applications. Advances in Chemistry Series 95, 34–50.

Sigurskjold, B.W., Svensson, G.B. and Driguez, H (1994) Thermodynamics of ligand binding to the starch-binding domain of glucoamylase fromAspergillus niger. Eur. J. Biochem. 225(1):133–41.

Simpson, P.J., Xie, H.-F., Bolam, D.N., Gilbert, H.J. and Williamson, M.P. (2000) The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 275(52):41137–42.

Shoseyov, O., Takagi, M., Goldstein, M.A. and Doi, R.H. (1992) Primary sequence-analysis of Clostridium cellulovoranscellulose binding protein-A. Proc. Nat. Acad. Sci. USA 89(8):3483–3487.

Sorimachi, K., Jacks, A.J., Le Gal-Coeffect, M.-F., Williamson, G., Archer, D.B. and Willamson, M.P.

(1996) Solution structure of the granular starch binding domain of glucoamylase fromAspergillus nigerby nuclear magnetic resonance spectroscopy. J. Mol. Biol. 259(5):970–87.

Sorimachi, K., Le Gal-Coeffect, M. F., Williamson, G., Archer, D.B. and Williamson M.P. (1997) Solution structure of the granular starch binding domain ofAspergillus nigerglucoamylase bound to beta-cyclodextrin. Structure 5(5):647–61.

Teeri, T.T. (1994) Hydrolysis of crystalline cellulose by native and engineered Trichoderma reesei cellulases. In Proceedings: The Symposium on Enzymic Degradation of Insoluble Polysaccharides, the 1994 Annual American Chemical Society Meeting, San Diego, CA.

Williamson, M.P., Le Gal-Coeffect, M.F., Sorimachi, K., Furniss, C.S.M., Archer, D.B. and Williamson, G. (1997) Function of conserved tryptophans in theAspergillus nigerglucoamylase 1 starch binding domain. Biochemistry 36(24):7535–9.

Wood, T.M. (1969) The cellulase ofFusarium solani, resolution of the enzyme complex. Biochem. J.

115, 457.

Wood, T.M. (1988) Cellulase ofTrichoderma koningii. Methods Enzymol.160, 221–234.

Wood, T.M. and McCrae, S.I. (1977) Cellulase fromFusarium solanipurification and properties of the C-1 component. Carbohydr. Res.57, 117–133.

Wood, T.M. and McCrae, S.I. (1979) Synergism between enzymes involved in the solubilization of native cellulose. Brown, R.D. and Jurasek, L. (eds), Hydrolysis Of Cellulose: Mechanism Of Enzymatic And Acid Catalysis, Advances in Chemistry Series181, 181–209.

Woodward, J., Affholter, K.A., Kandy K., Noles, K.K., Troy, N.T. and Gaslightwala, S.F. (1992) Does cellobiohydrolase II core protein fromTrichoderma reeseidisperse cellulose macrofibrils? Enzyme and Microbial Technology14, 625–630.

Wooley R. and Ruth M. (1999) Conversion Of Hardwood Biomass To Ethanol Via Dilute Acid Cocurrent Prehydrolysis And Enzymatic SSCF – Process Design And Economics: Proceedings for the 21st Symposium on Biotechnology for Fuels and Chemicals, 6–04, Fort Collins, CO, May 2–6.

Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J. and Erbach, D.C.

(2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasi-bility of a billion-ton annual supply”, DOE Office of Energy Efficiency and Renewable Energy, Office of Biomass Program and the USDA Agriculture Research Service.

http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf

Xie, H.-F., Gilbert, H.J., Charnock, S.J., Davies, G.J., Willamson, M.P., Simpson, P.J., Raghotthama, S., Fontes, C.M. G.A., Dias, F.M.V., Ferreira, L.M.A. and Bolam, D.N. (2001)Clostridium thermocellum Xyn10B carbohydrate-binding module 22–2: the role of conserved amino acids in ligand binding.

Biochemistry40(31), 9167–9176.

Xu, Q., Bayer, E.A., Goldman, M., Kenig, R., Shoham, Y. and Lamed, R. (2004a) Architecture of theBacteroides cellulosolvenscellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J. Bacteriol.186, 968–977.

Xu, Q., Barak, Y., Kenig, R., Shoham, Y., Bayer, E.A. and Lamed, R. (2004b) A novelAcetivibrio cellulolyticusanchoring scaffoldin that bears divergent cohesins. J. Bacteriol.186, 5782–5789.

In document Industrial Enzymes (Pldal 57-62)