• Nem Talált Eredményt

USE OF ACETYL XYLAN ESTERASES AND FERULIC ACID ESTERASES AS BIOSYNTHETIC TOOLS

In document Industrial Enzymes (Pldal 101-108)

MICROBIAL XYLANOLYTIC CARBOHYDRATE ESTERASES

4. USE OF ACETYL XYLAN ESTERASES AND FERULIC ACID ESTERASES AS BIOSYNTHETIC TOOLS

an inactive mutant of AnFaeA (S133A) in complex with O-{5-O-[(E)-feruloyl]--L-arabinofuranosyl}-(1→3)-O--D-xylopyranosyl-(1→4)-D-xylopyranose (FAX2) and observed that the ferulic acid moiety of the substrate was visible in the electron density map showing interactions through its OH and OCH3 groups with the hydroxyl groups of Tyr80. However, the remaining groups of the substrate (i.e.the arabinose and the two xylose units) were not visible. Accordingly, in the structure of the XynZ FAE in complex with FAX2determined by Schubotet al.(2001), the ferulic moiety was clearly visible in the active site while the carbohydrate parts of the substrate were not, suggesting that tight binding of the carbohydrate is not required for catalysis. These results are in agreement with the synthetic ability of StFaeC in non-conventional media where the esterase seems to be able to esterify a broad spectrum of sugars showing specificity only to the ferulic moiety (Vafiadi et al., 2005). In contrast to FAEs, determination of the crystal structure of a family 10 xylanase fromThermoascus aurantiacuscomplexed with xylobiose containing an arabinofuranosyl-ferulate side-chain, revealed that the distal glycone subsite of the enzyme makes extensive direct and indirect interactions with the arabinose side-chain, while the ferulate moiety is solvent-exposed (Vardakouet al., 2005).

4. USE OF ACETYL XYLAN ESTERASES AND FERULIC ACID

Transesterification of phenolic acids was catalysed by using a type A FAE fromF. oxysporum(FoFaeA) trapped in an-hexane/1-propanol/water surfactantless microemulsion (Topakaset al., 2003a). Greater synthetic activity was observed in ternary water-organic mixtures having a lower water content. The synthetic activity of esterases follows a pattern similar to their hydrolytic activity against various methyl esters of cinnamic acids. FoFaeA shows a preference for the hydrolysis of methoxylated substrates (Topakaset al., 2005b) while conversion to butyl esters was greater with ferulic and sinapinic acids. Type B esterases from F. oxysporum (FoFaeB) (Topakaset al., 2003b) andS. thermophile(StFaeB) showed preference for the hydrolysis of hydroxylated substrates (Topakas et al., 2005b) and the conversion to butyl esters was enhanced withp-coumaric and caffeic acids (Topakas et al., 2003b, 2004). The type-C FAE StFaeC fromS. thermophile demonstrated maximum hydrolytic activity against methyl ferulate (Topakas et al., 2005b).

Optimal yields were achieved producing butyl esters with ferulic acid (Topakas et al., 2005a). Furthermore, it was reported that the same enzyme catalysed the transfer of the feruloyl group to L-arabinose (Fig. 2) in a ternary water-organic mixture consisting ofn-hexane,t-butanol and water system, achieving a conversion of about 40% of L-arabinose to a feruloylated derivative (Topakaset al., 2005a).

This work was the first example of sugar esterification with unsaturated arylaliphatic acids, like methoxylated or hydroxylated derivatives of cinnamic acids (such as ferulic acid). Lipases are not able to catalyse such a reaction due to electronic and/or steric effects (Ottoet al., 2000).

Phenolic acid sugar esters have demonstrable antitumoural activity and the potential to be used to formulate antimicrobial, antiviral and/or anti-inflammatory agents. As esters based on unsaturated arylaliphatic acids such as cinnamic acid and its derivatives are known to display anticancer activity, specific FAEs could be employed in the tailored synthesis of such pharmaceuticals.

The potential use of FAEs for the synthesis of feruloylated oligomers or polymers using feruloyl esterases opens the door for the design of modified biopolymers with new properties and bioactivities.

Figure 2.Transesterification of methyl ferulate with L-arabinose by StFaeC

REFERENCES

Aliwan, F.O., Kroon, P.A., Faulds, C.B., Pickersgill, R. and Williamson, G. (1999) Ferulic acid esterase-III fromAspergillus nigerdoes not exhibit lipase activity. J. Sci. Food Agric.79, 457–459.

Barbe, C. and Dubourdieu, D. (1998) Characterization and purification of a cinnamate esterase from Aspergillus nigerindustrial pectinase preparation. J. Sci. Food Agric.78, 471–478.

Biely, P. (1985) Microbial xylanolytic system. Trends Biotechnol.3, 286–290.

Biely, P., MacKenzie, C.R., Puls, J. and Schneider, H. (1986) Cooperativity of esterases and xylanases in the enzymatic degradation of acetyl xylan. Bio Technol.4, 731–733.

Biely, P., MacKenzie, C.R. and Schneider, H. (1988) Production of acetyl xylan esterase byTrichoderma reeseiandSchizophyllum commune. Can. J. Microbiol.34, 767–772.

Biely, P., Mastihubova, M., van Zyl, W.H. and Prior, B.A. (2002) Differentiation of feruloyl esterases on synthetic substrates in alpha-arabinofuranosidase-coupled and UV-spectrophotometric assays. Anal.

Biochem.311, 68–75.

Biely, P., Wong, K.K.Y., Suckling, I.D. and Spanikova, S. (2003) Transacetylations to carbohydrates catalyzed by acetyl xylan esterase in the presence of organic solvent. Biochem. Biophys. Acta1623, 62–71.

Blum, D.L., Kataeva, I.A., Li, X.L. and Ljungdahl, L.G. (2000) Feruloyl esterase activity of the Clostridium thermocellumcellulosome can be attributed to previously unknown domains of XynY and XynZ. J. Bacteriol.182, 1346–1351.

Borneman, W.S., Ljungdahl, L.G., Hartley, R.D. and Akin, D.E. (1991) Isolation and characterization of p-coumaroyl esterase from the anaerobic fungus Neocallimastixstrain MC-2. Appl. Environ.

Microbiol.57, 2337–2344.

Borneman, W.S., Ljungdahl, L.G., Hartley, R.D. and Akin, D.E. (1992) Purification and partial charac-terisation of two feruloyl esterases from the anaerobic fungusNeocallimastixstrain MC-2. Appl.

Environ. Microbiol.58, 3762–3766.

Castanares, A., McCrae, S.I. and Wood, T.M. (1992) Purification and properties of a feruloyl/p-coumaroyl esterase from the fungusPenicillium pinophilum. Enzyme Microb. Technol.14, 875–884.

Chung, H.-J., Park, S.-M., Kim, H.R., Yang, M.S. and Kim, D.H. (2002) Cloning the gene encoding acetyl xylan esterase fromAspergillus ficuumand its expression inPichia pastoris. Enzyme Microb.

Technol.31, 384–391.

Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes, http:// afmb.cnrs-mrs.fr/CAZY/, server at URL.

Crepin, V.F., Faulds, C.B. and Connerton, I.F. (2003a) A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition. Biochem. J. 370, 417–427.

Crepin, V.F., Faulds, C.B. and Connerton, I.F. (2003b) Production and characterization of the Talaromyces stipitatusferuloyl esterase FAEC inPichia pastoris: identification of the nucleophilic serine. Protein Expres. Purif.29, 176–184.

Crepin, V.F., Faulds, C.B. and Connerton, I.F. (2004a) Functional classification of the microbial feruloyl esterases. Appl. Microbiol Biotechnol.63, 647–652.

Crepin, V.F., Faulds, C.B. and Connerton, I.F. (2004b) Identification of a type-D feruloyl esterase from Neurospora crassa. Appl. Microbiol. Biotechnol.63, 567–570.

Dalrymple, B.P., Swadling, Y., Cybinski, D.H. and Xue, G.-P.(1996) Cloning of a gene encoding cinnamoyl ester hydrolase from the ruminal bacteriumButyrivibrio fibrisolvens E14 by a novel method. FEMS Microbiol. Lett.143, 115–120.

Dalrymple, B.P. and Swadling, Y. (1997) Expression of aButyrivibrio fibrisolvensE14 gene(cinB) encoding an enzyme with cinnamoyl esterase activity is negatively regulated by the product of an adjacent gene(cinR).Microbiology143, 1203–1210.

Dalrymple, B.P., Cybinski, D.H., Layton, I., McSweeney, C.S., Xue, G.-P, Swadling, Y.J. and Lowry J.B. (1997) ThreeNeocallimastix patriciarumesterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology143, 2605–2614.

Derewenda, Z.S., Derewenda, U. and Dodson, G. (1992) The crystal and molecular structure of the Rhizomucor mieheitriacylglyceride lipase at 1.9 Å resolution. J. Mol. Biol.227, 818–839.

Donaghy, J. and McKay, A.M. (1997) Purification and characterization of a feruloyl esterase from the fungusPenicillium expansum. J. Appl. Microbiol.83, 718–726.

Donaghy, J.A., Bronnenmeier, K., Soto-Kelly, P.F. and McKay, A.M. (2000) Purification and character-ization of an extracellular feruloyl esterase from the thermophilic anaerobeClostridium stercorarium.

J. Appl. Microbiol.88, 458–466.

Dupont, C., Daigneault, N., Shareck, F., Morosoli, R. and Kluepfel, D. (1996) Purification and characterization of an acetyl xylan esterase produced byStreptomyces lividans. Biochem. J. 319, 881–886.

Egaña, L., Gutiérrez, R., Caputo, V., Peirano, A., Steiner, J. and Eyzaguirre, J. (1996) Purification and characterization of two acetyl xylan esterases fromPenicillium pupurogenum. Biotechnol. Appl.

Biochem.24, 33–39.

Faulds, C.B. and Williamson, G. (1991) The purification and characterisation of 4-hydroxy-3methoxycinnamic (ferulic) acid esterase fromStreptomyces olivochromogenes.J. Gen. Microbiol.

137, 2339–2345.

Faulds, C.B. and Williamson, G.(1993) Ferulic acid esterase fromAspergillus niger:purification and partial characterization of two forms from a commercial source of pectinase. Biotech. Appl. Biochem.

17, 349–359.

Faulds, C.B. and Williamson, G. (1994) Purification and characterization of a ferulic acid esterase (FAE-III) fromAspergillus niger: specificity for the phenolic moiety and binding to microcrystalline cellulose. Microbiology140, 779–787.

Faulds, C.B., Molina, R., Gonzalez, R., Husband, F., Juge, N., Sanz-Aparicio, J. and Hermoso, J.M. (2005) Probing the determinants of substrate specificity of a feruloyl esterase, AnFaeA, from Aspergillus niger. FEBS J.272, 4362–4371.

Ferreira, L.M.A., Wood, T.M., Williamson, G., Faulds, C.B., Hazlewood, G.P. and Gilbert, H.J. (1993) A modular esterase fromPseudomonas fluorescenssubsp.cellulosacontains a non-catalytic binding domain. Biochem. J.294, 349–355.

Figueroa-Espinoza, M.-C. and Villeneuve, P. (2005) Phenolic acids enzymatic lipophilization. J. Agric.

Food Chem.53, 2779–2787.

Fillingham, I.J., Kroon, P.A., Williamson, G., Gilbert, H.J. and Hazlewood, G.P. (1999) A modular cinnamoyl ester hydrolase from the anaerobic fungusPiromyces equiacts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulose-hemicellulase complex. Biochem. J.343, 215–224.

Fontes, C.M., Hazlewood, G.P., Morag, E., Hall, J., Hirst, B.H. and Gilbert., H.J. (1995) Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria.

Biochem. J.307, 151–158.

Garcia-Conesa, M.T., Valerie, F.C., Goldson, A.J., Williamson, G., Cummings, N.J., Connerton, I.F., Faulds, C.B. and Kroon, P.A. (2004) The feruloyl esterase system ofTalaromyces stipitatus:

production of three discrete feruloyl esterases, including a novel enzyme, TsFaeC, with a broad substrate specificity. J. Biotechnol.108, 227–241.

Ghosh, D., Sawichi, M., Lala, P., Erman, M., Pangborn, W., Eyzaguirre, J., Gutiérrez, R., Jörnvall, H.

and Thiel, D.J. (2001) Multiple conformation of catalytic serine and histidine in acetyl xylan esterase at 0.90 Å. J. Biol. Chem.276, 11159–11166.

de Graaff, L.H., Visser, J., van den Broeck, H.C., Strozyk, F., Kormelink, F.J.M. and Boonman, J.C.P.

(1992) Cloning, expression and use of acetyl xylan esterases from fungal origin. EP 0507369-A 7 07-OCT-1992

Hakulinen, N., Tenkanen, M. and Rouvinen, J. (2000) Three-dimensional structure of the catalytic core of acetyl xylan esterase fromTrichoderma reesei: insights into the deacetylation mechanism. J. Struct.

Biol.132, 180–190.

Halgašová, N., Kutejová, E. and Timko, J. (1994) Purification and some characteristics of the acetyl xylan esterase fromSchizophyllum commune. Biochem. J.298, 751–755.

Hall, J., Hazlewood, G.P., Baker, P.J. and Gilbert, H.J. (1988) Conserved reiterated domains in Clostridium thermocellumendoglucanases are not essential for catalytic activity. Gene69, 29–38.

Hermoso, J.A., Sanz-Aparicio, J., Molina, R., Juge, N., Gonzalez, R. and Faulds, C.B. (2004) The crystal structure of feruloyl esterase A fromAspergillus nigersuggests evolutive functional convergence in feruloyl esterase family. J. Mol. Biol.338, 495–506.

Juge, N., Williamson, G., Puigserver, A., Cummings, N.J., Connerton, I.F. and Faulds, C.B. (2001) High-level production of recombinantAspergillus nigercinnamoyl esterase (FAEA) in the methylotrophic yeastPichia pastoris. FEMS Yeast Res.1, 127–132.

Koseki, T., Furuse, S., Iwano, K., Sakai, H. and Matsuzawa, H. (1997) An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem. J.326, 485–490.

Koseki, T., Furuse, S., Iwano, K. and Matsuzawa, H. (1998) Purification and characterization of a feruloylesterase fromAspergillus awamori. Biosci. Biotech. Biochem.62, 2032–2034.

Koseki, T., Miwa, Y., Akao, T., Akita, O. and Hashizume, K. (2005a) AnAspergillus oryzaeacetyl xylan esterase: Molecular cloning and characteristics of recombinant enzyme expressed inPichia pastorisJ. Biotechnol. in press

Koseki, T., Miwa, Y., Fushinobu, S. and Hashizume, K. (2005b) Biochemical characterization of recombinant acetyl xylan esterase fromAspergillus awamoriexpressed inPichia pastoris: Mutational analysis of catalytic residues. Biochim. Biophy. Acta1749, 7–13.

Koseki, T., Takahashi, K., Fushinobu, S., Iefuji, H., Iwano, K., Hashizume, K. and Matzuzawa, H.

(2005c) Mutational analysis of a feruloyl esterase fromAspergillus awamoriinvolved in substrate discrimination and pH dependence. Biochem. Biophys. Acta1722, 200–208.

Kosugi, A., Murashima, K. and Doi, R.H. (2002) Xylanase and acetyl xylan esterase activities of XynA, a key subunit of theClostridium cellulovoranscellulosome for xylan degradation. Appl. Environ.

Microbiol.68, 6399–6402.

Krastanova, I., Guarnaccia, C., Zahariev, S., Degrassi, G. and Lamba, D. (2005) Heterologous expression, purification, crystallization, X-ray analysis and phasing of the acetyl xylan esterase fromBacillus pumilus.Biochem. Biophys. Acta1748, 222–230.

Kroon, P.A., Faulds, C.B. and Williamson, G. (1996) Purification and characterisation of a novel esterase induced by growth ofAspergillus nigeron sugar-beet pulp. Biotechnol. Appl. Biochem.23, 255–262.

Kroon, P.A., Faulds, C.B., Brezillon, C. and Williamson, G. (1997) Methyl phenylalkanoates as substrates to probe the active sites of esterases. Eur. J. Biochem.248, 245–251.

Kroon, P.A., Williamson, G., Fish, N.M., Archer, D.B. and Belshaw, N.J. (2000) A modular esterase fromPenicillium funiculosumwhich releases ferulic acid from plan cell walls and binds crystalline cellulose contains a carbohydrate binding module. Eur. J. Biochem.267, 6740–6752.

Laurie, J.I., Clarke, J.H., Ciruela, A., Faulds, C.B., Williamson, G., Gilbert, H.J., Rixon, J.E., Millward-Sadler, J. and Hazlewood, G.P. (1997) The NodB domain of a multifunctional xylanase from Cellu-lomonas fimideacetylates acetyl xylan. FEMS Microbiol. Lett.148, 261–264.

Lawson, D.M., Brzozowski, A.M., Dodson, G.G., Hubbard, R.E., Huge-Jensen, B., Boel, E. and Derewenda, Z.S. (1994) The three-dimensional structures of two lipases from filamentous fungi. In Lipases: Their Biochemistry, Structure and Application (Woolley P and Petersen S, eds), pp. 77–94.

Cambridge University Press, Cambridge, UK.

Levasseur, A., Pages, S., Fierobe, H.-P., Navarro, D., Punt, P., Belaich, J.-P., Asther, M. and Record, E.

(2004) Design and production inAspergillus nigerof a chimeric protein associating a fungal feruloyl esterase and a clostridial dockerin domain. Appl. Environ. Microbiol.70, 6984–6991.

McAuley, K., Svendsen, A., Patkar, S.A. and Wilson, K.S. (2004) Structure of a feruloyl esterase from Aspergillus niger. Acta Cryst. D.60, 878–887.

McCrae, S.I., Leith, K.M., Gordon, A.H. and Wood, T.M. (1994) Xylan degrading enzyme system produced by the fungusAspergillus awamori: isolation and characterization of a feruloyl esterase and a p-coumaroyl esterase. Enzyme Microb. Technol.16, 826–834.

Millward-Sadler, S.J., Davidson, K., Hazlewood, G.P., Black, G.W., Gilbert, H.J. and Clarke, J.H. (1995) Novel cellulose-binding domains, NodB homologous and conserved modular architecture in xylanases from the aerobic soil bacteria Pseudomonas fluorescens subsp. cellulosa and Cellvibrio mixtus.

Biochem. J.312, 39–48.

Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H.et al.(1999) Evidence for lateral gene transfer between archaea and bacteria from genome sequence ofThermatoga maritima.

Nature399, 323–329.

Otto, R.T., Scheib, H., Bornscheuer, U.T., Pleiss, J., Syldatk, C. and Schmid, R.D. (2000) Substrate specificity of lipase B fromCandida antarcticain the synthesis of arylaliphatic glycolipids. J. Mol.

Catal. B: Enzymatic.8, 201–211.

Page, R., Crzechnik, S.K., Canaves, J.M., Spraggon, G., Kreusch, A., Kuhn, P., Stevens, R.C. and Lesley, S.A. (2003) Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against theThermotoga maritimaproteome. Acta Crystallogr. Sect. D Biol.

Crystallogr.59, 1028–1037.

Prates, J.A.M., Tarbouriech, N., Charnock, S.J., Fontes, C.M.G.A., Ferreira, L.M.A. and Davies, G.J. (2001) The structure of the feruloyl esterase module of xylanase 10B fromClostridium thermo-cellumprovides insights into substrate recognition. Structure9, 1183–1190.

Record, E., Asther, M., Sigoillot, C., Pages, S., Punt, P.J., Delattre, M., Haon, M., van del Hondel, C.A.M.J.J., Sigoillot, J.-C., Lesage-Meessen, L. and Asther, M. (2003) Overproduction of the Aspergillus nigerferuloyl esterase for pulp bleaching application. Appl. Microbiol. Biotechnol.62, 349–355.

Rumbold, K., Biely, P., Mastihubova, M., Gudelj, M., Gubitz, G., Robra, K.-H. and Prior, B.A. (2003) Purification and properties of a feruloyl esterase involved in lignocellulose degradation by Aureoba-sidium pullulans. Appl. Environ. Microbiol.69, 5622–5626.

Schubot, F.D., Kataeva, I.A., Blum, D.L., Shah, A.K., Ljungdahl, L.G., Rose, J.P. and Wang, B.C.

(2001) Structural basis for the substrate specificity of the feruloyl esterase domain of the cellulosomal xylanase Z fromClostridium thermocellum.Biochemistry40, 12524–12532.

Shao, W. and Wiegel, J. (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacteriumsp. strain JW/SL YS485. Appl. Environ. Microbiol. 61, 729–733.

Shin, H-D. and Chen, R.R. (2006) Production and characterization of a type B feruloyl esterase from Fusarium proliferatumNRRL 26517. Enzyme Microb. Technol.38, 478–485.

Tarbouriech, N., Prates, J.A.M., Fontes, C.M.G.A. and Davies, G.J. (2005) Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B fromClostridium thermocellum.

Acta Cryst. D.61, 194–197.

Tenkanen, M., Schuseil, J., Puls, J. and Poutanen, K. (1991) Production, purification and characterisation of an esterase liberating phenolic acids from lignocellulose. J. Biotechnol.18, 69–84.

Topakas, E., Stamatis, H., Mastihubova, M., Biely, P., Kekos, D., Macris, B.J, and Christakopoulos, P. (2003a) Purification and characterization of a Fusarium oxysporum feruloyl esterase (FoFAE-I) catalysing transesterification of phenolic acid esters. Enzyme Microb. Technol.

33, 729–737.

Topakas, E., Stamatis, H., Biely, P., Kekos, D., Macris, B.J. and Christakopoulos, P. (2003b) Purification and characterization of a feruloyl esterase fromFusarium oxysporumcatalyzing esterification of phenolic acids in ternary water-organic solvent mixtures. J. Biotech.102, 33–44.

Topakas, E., Stamatis, H., Biely, P. and Christakopoulos, P. (2004) Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungusSporotrichum thermophile. Appl.

Microbiol. Biotechnol.63, 686–690.

Topakas, E., Vafiadi, C., Stamatis, H. and Christakopoulos, P. (2005a)Sporotrichum thermophiletype C feruloyl esterase (StFaeC): Purification characterization, and its use for phenolic acid (sugar) ester synthesis. Enzyme Microb. Technol.36, 729–736.

Topakas, E., Christakopoulos, P. and Faulds, C.B. (2005b) Comparison of mesophilic and thermophilic feruloyl esterases: characterization of their substrate specificity for methyl phenylalkanoates.

J. Biotechnol.115, 355–366.

Tsujibo, H., Ohtsuki, T., Ito, T., Yamazaki, I., Miyamoto, K., Sugiyama, M. and Inamori, Y. (1997) Cloning and sequence analysis of genes encoding xylanases and acetyl xylan esterase fromStretomyces thermoviolaceusOPC-520. Appl. Environ. Microb.63, 661–664.

Vardakou, M., Flint, J., Christakopoulos, P., Lewis, R.J., Gilbert, H.J. and Murray, J.W. (2005) A family 10Thermoascus aurantiacusxylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J. Mol. Biol.352, 1060–1067.

Vafiadi, C., Topakas, E., Wong, K.K.Y., Suckling, I.D. and Christakopoulos, P. (2005) Mapping the hydrolytic and synthetic selectivity of a type C feruloyl esterase (StFaeC) fromSporotrichum thermophileusing alkyl ferulates. Tetrahedron Asymmetry16, 373–379.

Vincent, F., Charnock, S.J., Verschueren, K.H.G., Turkenburg, J.P., Scott, D.J., Offen, W.A., Roberts, S., Pell, G., Gilbert, H.J., Davies, G.J. and Brannigam, J.A. (2003) Multifunctional xylooligosac-charide/cephalosporin C deacetylase revealed by the hexameric structure of theBacilus subtilisenzyme at 1.9 Å resolution. J. Mol. Biol.330, 593–606.

de Vries, R.P., Michelsen, B., Poulsen, C.H., Kroon, P.A., Heuvel van den, R.H.H., Faulds, C.B., Williamson, G., Hombergh van den, J.P.T.W. and Visser, J. (1997) The faeA genes fromAspergillus nigerandAspergillus tubingensisencode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl. Environ. Microbiol.63, 4638–4644.

de Vries, R.P., vanKuyk, P.A., Kester, H.C.M. and Visser, J. (2002) TheAspergillus niger faeBgene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem. J.363, 377–386.

Wang, X., Geng, X., Egashira, Y. and Sanada, H. (2004) Purification and characterization of a feruloyl esterase from the intestinal bacterium Lactobacillus acidophilus. Appl. Environ. Microbiol. 70, 2367–2372.

Williamson, G., Faulds, C.B. and Kroon, P.A. (1998) Specificity of ferulic acid (feruloyl) esterases.

Biochem. Soc. Trans.26, 205–209.

Zhang, J.-X., Martin, J. and Flint, H.J. (1994) Identification of non-catalytic conserved regions in xylanases encoded by the xynB and xynD genes of the cellulolytic rumen anaerobeRuminococcus flavefaciens. Mol. Gen. Genet.254, 260–264.

STRUCTURAL AND BIOCHEMICAL PROPERTIES

In document Industrial Enzymes (Pldal 101-108)