• Nem Talált Eredményt

NaA10 2 + NaOH with HCl

In document Conductometric Analysis BY (Pldal 49-54)

sodium hydroxide, t h e conductometric graph obtained will be the form given in Fig. 26. T h e titer between t h e first a n d second " b r e a k s "

gives the correct a m o u n t of alkali required t o precipitate h y d r a t e d zinc oxide.

Aluminium is exceptional in t h a t its h y d r o u s oxide is t h e only one which can be proved b y conductometric titration t o be amphoteric.

Graph A in Fig. 27 illustrates t h e action of N a O H on a solution of

100 Η. Τ. S. BRITTON

aluminium sulfate. T h e first " b r e a k " corresponds t o t h e precipitation of basic aluminium sulfate, containing AI2O3, O.6SO3, while the second and more clearly defined " b r e a k " refers t o t h e formation of t h e soluble sodium a l u m m a t e , N a A 1 02, when 4 equivalents of sodium hydroxide h a v e been added. T h e back-titration graph B, with hydrochloric acid of the solution, t o which a n excess of sodium hydroxide h a d been added, again shows t h e N a A 1 02 " b r e a k " a n d an additional " b r e a k " indicating the complete formation of aluminium chloride a n d t h e appearance of free hydrochloric acid in t h e solution (64).

Britton and Young (12) h a v e shown t h a t hydrochloric acid in excess of t h a t required t o form u r a n y l chloride, U 02C 12, can be estimated con­

ductometrically b y titration with alkali. T h e " b r e a k " corresponding with the complete precipitation of u r a n i u m hydroxide is slightly delayed owing t o some alkali being chemisorbed b y t h e u r a n i u m hydroxide.

(h) Barium hydroxide. H a r n e d (29) in t i t r a t i n g metallic sulphate solutions with barium hydroxide, found t h a t not only is the base precipi­

tated b u t also an equivalent a m o u n t of BaSC>4, e.g., MgS04 + B a ( O H )2- > BaS04 + M g ( O H )2j

and in so doing, a very much greater angle was obtained a t the equivalence point. T h e method was satisfactory when calcium sulfate was present in t h e solution and it could therefore be applied to t h e analysis of dolomite.

T o estimate magnesia in dolomite slightly more sulfuric acid is added to the mineral t h a n is necessary t o convert it into sulfates, a n d the carbon dioxide is expelled b y boiling u n d e r reduced pressure. On cooling, it is neutralized to phenolphthalein with b a r y t a a n d again boiled to decompose a n y b a r i u m bicarbonate. T h e m o t h e r liquor is titrated conductometrically without removing t h e insoluble m a t t e r .

Conductometric titration with b a r y t a has been successfully performed with solutions of cobalt a n d nickel sulfates, though owing to the greater stability of basic zinc, cadmium, a n d copper sulfates, it is inaccurate in t h e case of these metals. B y carrying out the titration of copper sulfate just below 100° the basic sulfate is decomposed and accurate results can be obtained.

1. C O N D U C T O M E T R I C T I T R A T I O N S W I T H M E R C U R I C P E R C H L O R A T E

Only in very few instances are precipitates formed when mercuric perchlorate reacts with metallic salts, yet mercuric perchlorate is a n i m p o r t a n t conductometric t i t r a n t . I n the case of a titration involving the separation of a precipitate small changes in conductance occur because one salt in being precipitated leaves the sphere of action. N o w

CONDUCTOMETRIC ANALYSIS 101 certain mercuric salts, e.g., H g C l2, H g B r2, H g ( C N )2, H g ( C N S )2, i m p a r t to their aqueous solutions almost no electrical conductance a n d t h e little conductance t h e y do supply can be almost entirely accounted for b y their slight hydrolysis. I n general, t h e hydrolysis is less t h a n 1 % (11).

Some idea of lack of ionization of mercuric chloride in solution can be gained from the fact t h a t the specific conductance of its solutions ranging

Ν Ν

in concentration from t o — varies from 2.47 X 10~5 to 6.81 Χ 1 0- 5 m h o a t 25°C. (49). These values are extremely small a n d are of the same order as those of aqueous solutions in equilibrium with " insoluble salts."

On t h e contrary, mercuric nitrate, sulfate a n d perchlorate in solution are b o t h strongly ionized a n d hydrolyzed. Their specific conductances compare with those of solutions of ordinary metallic salts. A difficulty, however, m a y arise, through their appreciable hydrolysis, which, unless suppressed b y t h e presence of free acid, will cause basic salts to separate.

Mercuric perchlorate solutions however, despite more t h a n 10 % hydrol­

ysis, can be so prepared t h a t they will remain quite clear without t h e addition of perchloric acid.

Mercuric perchlorate can be prepared b y t h e m e t h o d described b y Chikashige* (17), b y grinding a slight excess of red mercuric oxide with 2 Ν perchloric acid filtering t h r o u g h asbestos, a n d concentrating a t 40-50° under reduced pressure until crystals separate. Recrystallization from aqueous solutions u n d e r similar conditions is advisable. F o r conductometric work, it is merely necessary t o s a t u r a t e a solution of perchloric acid with pure mercuric oxide. T o ascertain whether a n y free acid exists in t h e solution, a d d an excess of sodium chloride and t i t r a t e the free acid with alkali t o m e t h y l orange.

T h e ionic mobility of t h e perchlorate ion 25° is ca. 72, so t h a t in t i t r a t ­ ing a solution of potassium chloride with mercuric perchlorate:

2KC1 + Hg(C104) -> 2KC104 + HgCl2

the conductance during t h e replacement represented b y the above equa­

tion will depend on 7C K — ZCioy, i.e., 76.6 — 72, so t h a t there will be a slight diminution. An excess of t h e t i t r a n t will cause an increase in conductance. I n a similar m a n n e r soluble bromides, thiocyanates, a n d cyanides m a y be accurately t i t r a t e d (43). I n t i t r a t i n g a solution of potassium bromide with mercuric perchlorate, a poorly-defined " b r e a k "

occurs before the final " b r e a k . " T h e first " b r e a k " shows t h e formation of K2H g B r4, viz.,

4KBr + H g ( C 1 04)2^ K2HgBr4 + 2KC104,

102 Η . Τ . S. B R I T T O N

and the second " b r e a k " refers t o t h e decomposition of K2H g B r4, t h u s K2HgBr4 + H g ( C 1 04)2- » 2HgBr2 + 2KC104

Soluble iodides m a y equally well be t i t r a t e d with mercuric perchlorate, b u t in such titrations the final " b r e a k s " will coincide with the complete precipitation of mercuric iodide. Before these are reached there will appear smaller " b r e a k s " t h a t indicate t h e formation of K2H g I4 a n d immediately afterwards mercuric iodide will begin t o separate.

Another class of mercuric salts exists which in solution h a v e low conductances. T h e y consist of t h e salts of t h e weaker monobasic acids, viz., nitrous, acetic, butyric, valeric, lactic acids. Although t h e y are very poor electrolytes, they ionize slightly in an u n k n o w n m a n n e r a n d hydrolysis plays an i m p o r t a n t role.

Conductometric titration of their respective alkali salts with mercuric perchlorate gives satisfactory end points a n d accurate titers. F o r t h e titration of alkali formates a n d lactates, t h e solutions m u s t be more con­

centrated t h a n 0.01 Ν in order t o obtain good " b r e a k s " a t t h e end points.

Alkali benzoate and salicylate produce white precipitates with mercuric perchlorate. If adequate time be allowed for t h e a t t a i n m e n t of steady conductances, particularly in t h e vicinity of the end points, correct results m a y be obtained.

REFERENCES

1. Airs, R. S., and Balfe, M. P., Trans. Faraday Soc. 39, 102 (1943).

2. Bencowitz, I., and Hotckiss, Η. T., Phys. Chem. 29, 705 (1925).

3. Bengough, G. D., Stuart, J. M., and Lee, A. R., J. Chem. Soc. 2156 (1927).

4. Bousfield, W. R., / . Chem. Soc. 87, 740 (1905); 101, 1443 (1912).

5. Britton, Η. T. S., Conductometric Analysis. Chapman and Hall, London 1934.

6. Britton, Η. T. S., Hydrogen Ions. 3rd ed., Vol. I, Chapman and Hall, London 1942.

7. Britton, Η. T. S., and Dodd, Ε. N., J. Chem. Soc. 1543 (1933).

8. Britton, Η. T. S., and Dodd, Ε. N., / . Chem. Soc. 1950 (1932).

9. Britton, Η. T. S., and German, W. L., Chem. Soc. 1250 (1930).

10. Britton, Η. T. S., and Robinson, R. Α., / . Chem. Soc. 2228 (1930).

11. Britton, Η. T. S., and Wilson, Β. M., J. Chem. Soc. 2553 (1932).

12. Britton, Η. T. S., and Young, A. E., Chem. Soc. 2467 (1932).

13. Bruni and coworkers, Z. Elektrochem. 14, 701 (1908); 16, 223 (1910).

14. Burton, E. F., and Pitt, Α., Phil. Mag. 5, 939 (1928).

15. Callan, T., and Horrobin, S., J. Soc. Chem. Ind. 47, 329 (1928).

16. Cheshire, Α., Brown, W. B., and Holmes, N. L., J. Intern. Soc. Leather Trades Chemists 26, 254 (1941).

17. Chickashige, M., Chem. Soc. 67, 1013 (1895).

18. Duboux, M., and Caciro, Arch. sci. phys. et nat. ]5] 1, 79 (1919).

19. Dutoit, P.; Dutoit P., and Levy, M., Bull. Soc. chim. 7, 1 (1910);./. chirn. phys.

14, 353 (1916).

CONDUCTOMETRIC ANALYSIS 103 20. Dutoit, P., and Reeb, H., Chem. Ztg. 37, 469.

21. Ehrhardt, U., Chem. Fabrik 2, 443, 455 (1929).

22. Fehn, H., Jander, G., and Pfundt, Ο., Z. angew. Chem. 42, 158 (1929).

23. Freak, G. Α., / . Chem. Soc. 115, 55 (1919).

24. Gehman, S. D., and Weatherby, Β. B., Phil. Mag. 7, 567 (1929).

25. Gotte, E., and Schramek, W., Z. Elektrochem. 37, 820 (1931).

26. Gollnow, G., Chem. Ztg. 65, 827 (1931).

27. Griffin, C. B., M.Se. Dissertation, London, 1933.

28. Hall, R. E., and Adams, L. H., J. Am. Chem. Soc. 41, 1515 (1919).

29. Harned, H. S., Am. Chem. Soc. 39, 254 (1917).

30. Jander, G., and Jahr, K. F., Z. angew. Chem. 44, 977 (1931).

31. Jander, G., and Manegold, Ε., Z. anorg. Chem. 134, 283 (1924).

32. Jander, G., and Pfundt, O., Leitfahigkeitstitrationen und Leitfahigkeitsmessungen, Stuttgart, 1934. Also Die Leitfahigkeitstitration, in Physikalische Methoden der analytischen Chemie, Edited by W. Bottger, Teil 2, Akademische Verlagegesell-schaft, Leipzig 1936.

33. Jander, G., and Schorstein, Η., Z. angew. Chem. 48, 698 (1932).

34. Jones, G., and Bollinger, G. M., / . Am. Chem. Soc. 61, 2407 (1929).

35. Jones, G., and Bradshaw, B. C., J. Am. Chem. Soc. 65, 1780 (1933).

36. Jones, G., and Josephs, R. C., J. Am. Chem. Soc. 50, 1049 (1928).

37. Kano, N., / . Chem. Soc. Japan 43, 556 (1922).

38. Kendall, J., / . Am. Chem. Soc. 38, 1460 (1916).

39. Kohlrausch, F., and Holborn, L., Das Leitvermogen der Elektrolyte, Leipzig, 1916.

40. Kolthoff, I. M., Konduktometrische Titrationen, Steinkopff, Dresden 1923.

41. Kolthoff, I. Μ., Z. anorg. Chem. I l l , 9 (1920).

50. Mojoiu, P., Dosage et Separation par conductibilite* electrique des Halogenes et des Metaux Alcalino-Terrenx. Dissertation, Lausanne, 1902.

51. Parker, H. C., Am. Chem. Soc. 46, 1370 (1923).

52. Parker, H., and Parker, E., J. Am. Chem. Soc. 46, 33 (1924).

53. Pfundt, O., Dissertation, Gottingen, 1925; Z. angew. Chem. 46, 218 (1933).

54. Pfundt, O., and Junge, C., Ber. 69, 515 (1929).

55. Poetke, W., Z. anal. Chem. 86, 45 (1931).

56. Potts, Τ. T., Paper Trade Rev. 95, 1037 (1931).

57. Preston, J. M., J. Chem. Soc. 1827 (1931).

58. Pritzker, J., and Jungkunz, R., Mitt. Lebensm. Hyg. 16, 54 (1928).

59. Randall, M., and Scott, G. M., / . Am. Chem. Soc. 49, 636 (1927).

60. Randall, M., and Vanselow, A. P., Am. Chem. Soc. 46, 2424 (1924).

61. Richardson, G. M., Proc. Roy. Soc. London B115, 170 (1934).

62. Righellato, E. C., and Davies, C. W., Trans. Faraday Soc. 29, 431 (1933).

63. Robbins, Η. E., / . Am. Chem. Soc. 39, 646 (1917).

64. Robinson, R. Α., and Britton, Η. T. S., / . Chem. Soc. 2817 (1931).

104 Η. Τ. S. BRITTON

65. Rother, Ε., and Jander, G., Ζ. angew. Chem. 43, 930 (1930).

66. Stuart, J. M., and Wormell, F., J. Chem. Soc. 86 (1930).

67. Suchtelen, F. S. H. van, and Itano, Α., J. Am. Chem. Soc. 36, 1800 (1914).

68. Treadwell, W. D., and Jannett, S., Helv. Chim. Acta 6, 734 (1923).

69. Treadwell, W. D., and Paoloni, C., Helv. Chim. Acta 8, 89 (1925).

70. Ulich, Η., Z. phys. Chem. 115, 377 (1925).

71. Vogel, A. I., J. Chem. Soc. 1202 (1931).

72. Walker, J., and Cormack, W., J. Chem. Soc. 77, 5 (1900).

73. Washburn, E. W., J. Am. Chem. Soc. 40, 109 (1918).

74. Weibel, E., Bur. Standards Sci. Paper 297, 23 (1917).

75. Weiland, H. J., J. Am. Chem. Soc. 40, 131 (1918); 44, 2468 (1922).

76. Whetham, W. C. D., Phil. Trans. Roy. Soc. London 194, 321 (1900).

77. Woodcock, J. W., and Murray-Rust, D. M., Phil. Mag. 6, 1130 (1928).

In document Conductometric Analysis BY (Pldal 49-54)