• Nem Talált Eredményt

Model of the Beer Fermentation Process

A.2 Model of the Beer Fermentation Process

The differential equations:

dxlag

dt = −µlagxlag

dxactive

dt = −µxxactive−kmxactive+µlagxlag

dxbottom

dt = kmxactive−µDxbottom ds

dt = −musxactive de

dt = −muaf xactive d(acet)

dt = −mueasµsxactive d(diac)

dt = kdcsxactive−kdm(diac)e (A.2)

The reaction rates:

µx = µx0s 0.5si+e µD = 0.5siµD0 0.5si+e µs = µs0s

ks+s µa = µa0s

ks+s f = 1 e

0.5si

(A.3) The parameters:

µx0 =e108.31−T31934.09+273.15 µs0 =e−41.92−T11654.64+273.15 µD0 =e33.82−T10033.28+273.15

µa0 =e3.27−T1267.24+273.15 µeas =e89.92−T+273.1526589

µlag =e30.72−T9501.54+273.15 km =e130.16−T+273.1538313

ks =e−119.63−T34203.95+273.15 kdc = 0.000127672

kdm = 0.00113864 (A.4)

The initial values:

xlag,i = 0.192 xact,i = 0.08 xbottom,i = 2

si = 130 ei = 0

(acet)i = 0 (A.5)

Table A.3. Notations (Beer Fermentation Model) Notation Description

T Temperature

xlag Suspended latent biomass xactive Suspended active biomass xbottom Suspended dead biomass

s Sugar conc.

e Ethanol conc.

(acet) Ethyl acetate conc.

(diac) Diacetyl conc.

µx Yeast growth rate µD Yeast settling down rate

µs Substrate (sugar) consumption rate µa Ethanol production rate

f Fermentation inhibition factor µeas Ethyl acetate formation rate µlag Specific rate of latent formation km Yeast growth inhibition parameter ks Sugar inhibition parameter

kdc Diacetyl appearance rate

kdm Diacetyl disappearance of reduction rate

B

Appendix: Notations

B Appendix: Notations 103 Table B.1. Notations of Chapter 2 (sorted as they appear)

Notation Description

n search dimensions, number of object variables x vector of object variables (ES)

vector of strategy variables (ES)

aj vector representation ofj-th individual (ES) τ first global learning rate (ES)

τ second global learning rate (ES)

λ number of individuals (size of population) (ES) µ number of parents (ES)

vj velocity vector in the search space ofj-th particle (PSO) xj vector representation ofj-th particle (PSO)

xpbest particle best solution (PSO) xgbest global best solution (PSO) w inertia weight parameter (PSO) c1 local learning factor (PSO) c2 global learning factor (PSO) e control error (input of controller)

u manipulated input (output of controller) T0 sample time of controller

Km gain of master PID controller

Tim time constant of master PID controller Tdm time constant of master PID controller Tds gain of slave P controller

β weighting parameter of cost function u vector of manipulated inputs (MPC)

y vector of corrected predicted outputs (MPC) w vector of setpoints (MPC)

Hp prediction horizon of MPC Hc control horizon of MPC

Q1,Q2 control error weighting parameters of MPC R1,R2 input manipulation weighting parameters of MPC y˜ vector of predicted outputs from the model (MPC)

˜" calculated model error (MPC)

" predicted model error (MPC)

α IMC discrete filter time constant (MPC)

Ceth ethanol concentration in beer fermentation process Cacet ethyl-acetate concentration in beer fermentation process Cdiacet diacetyl concentration in beer fermentation process tend operation time of fermentation process

Table B.2. Notations of Chapter 3 (sorted as they appear) Notation Description

yˆ model output

pi parameters of linear in parameter model

Fi nonlinear functions of linear in parameter model

x vector of regression variables for linear in parameter model

u measured input

y measure output

e model error

y0 constant bias

N number of data points, length of y M number of regressors

y vector of measured outputs p vector of model parameters e vector of model errors

F regression matrix for linear least squares

W upper triangular matrix from orthogonal decomposition A orthogonal matrix from orthogonal decomposition g auxiliary parameter vector

[err]i error reduction ratio of Fi

fi fitness value of i-th individual (GP)

ri correlation coefficient of i-th individual (GP) Li size of i-th tree (GP)

a1, a2 tree-size penalty parameters in fitness function

B Appendix: Notations 105 Table B.3. Notations of Chapter 4 (sorted as they appear)

Notation Description

t time variable

τ time variable in integration x vector of measured data

t vector of measurement time instants for x N size of xandt vectors

ki time value of ith knot

n number of knots

S cubic spline function

si,si parameters of spline (spline value and derivative at ki) vector of parameters of spline

Ψ matrix for identification of spline parameters l number of splines

Sj jth spline function

xj vector of measured data for jth spline tj vector of measurement time instants for xj Nj size of xj andtj vectors

x˜ vector of xj vectors

˜t vector of tj vectors

j vector of parameters of jth spline ˜ vector of j vectors

ˆti time instant used for evaluation of soft constraints ˆt vector of ˆti time instants (for soft constraints) Nˆ size of ˆtvector

λi, regularization parameters, weights of soft constraints Ψ˜i matrices for identification of parameters of splines Ci concentration of ith component

wi,j stoichiometric coefficient for component i in reaction j krj reaction rate constant of j reaction

Rj function of concentrations for j reaction rate R¯j integrated Rj

ˆkrj estimated reaction rate constant ofj reaction Cˆi estimated concentration ofi component P1, P2 performance indexes (example-1) CX concentration of X component

krj assumed kinetic constant for j by-reaction

C0 sum of initial concentrations (=CA0+CB0+CC0) Sj jth spline function (for A,B,. . .,C components) ˆti ith time instant for evaluation of soft constraints Nˆ number of ˆti time instants

xj,i measured concentration of ith components (A,B,C) at jth measurement

tj,i measurement time instant for xj,i

Nj number of measurements for j components (= size ofti) λ weight of soft constraint

j vector of parameters of jth spline ˜ vector of j vectors

Table B.4. Notations of Chapter 5 (sorted as they appear) Notation Description

f(),g(), h() functions of state-space model

x vector of state-variables of state-space model u manipulated input of process

y controlled output of process n number of state-variables

v input of input-output linearized object r relative degree of process

ysp set-point

βi parameters of feed-back control law fF P() first principle model

fSM() semi-mechanistic model

fN N function represents neural network z vector of neural network inputs

set of weight and bias parameters of neural network Wi weights of NN i-th layer

bi biases of NN i-th layer

N number of training data-points

e model error

yˆN N output of neural network (training)

yN N desired output of neural network (training) J Jacobian matrix (training)

T0 sample time

yˆ output of semi-mechanistic model (training)

y desired output of semi-mechanistic model (training) x˜ estimated state variables from training data

˜z estimated inputs of NN from training data xn noisy state variables of CSTR

yn noisy output of CSTR

xˆ vector of estimated state-variables by Observer x1 concentration in reactor (CSTR)

x2 reactor temperature (CSTR) x3 jacket temperature (CSTR) Kc gain of PID controller

Ti time constant of PID controller Td time constant of PID controller

Tc time constant of desired close-loop transfer

References

1. H. Takagi. Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. IEEE, 89(9):1275–1296, 2001.

2. J. McCormack. Interactive evolution of L-system grammars for computer graph-ics modelling. In D.G. Green and T. Bossomaier, editors,Complex Systems: from Biology to Computation, pages 118–130. IOS Press, Amsterdam, Netherlands, 1993.

3. K. Aoki, H. Takagi, and N. Fujimura. Interactive GA-based design support sys-tem for lighting design in computer graphics. In Int’l Conf. on Soft Computing (IIZUKA’96), Iizuka, Fukuoka, Japan, pages 533–536. World Scientic, 1996.

4. J.R. Smith. Designing biomorphs with an interactive genetic algorithm. In 4th Int’l Conf. on Genetic Algorithms (ICGA’91), San Diego, CA, USA, pages 535–538. Morgan Kaufmann Publisher, 1991.

5. H. Furuta, K. Maeda, and E. Watanabe. Application of genetic algorithm to aesthetic design of bridge structures. Microcomputers in Civil Engineering, 10(6):415–421, 1995.

6. M. Ohsaki and H. Takagi. Application of interactive evolutionary computation to optimal tuning of digital hearing aids. In Int’l Conf. on Soft Computing (IIZUKA’98), Iizuka, Fukuoka, Japan. World Scientic, 1998.

7. H.H. Lund, O. Miglino, L. Pagliarini, A. Billard, and A. Ijspeert. Evolutionary robotics a children’s game. In IEEE Int. Conf. on Evolutionary Computation (ICEC98), pages 154–158. May. 1998.

8. G. Dozier. Evolving robot behavior via interactive evolutionary computation:

From real-world to simulation. In 16th ACM Symposium on Applied Computing (SAC2001), (Las Vegas), pages 340–344. 2001.

9. G. Stephanopoulos. Chemical Process Control. An Introduction to Theory and Practice. Prentice-Hall, Englewood Cliffs NJ, 1984.

10. K.M. Hangos and I.T. Cameron. Process Modeling and Model Analysis. Aca-demic Press, 2001.

11. J. Sjoberg, Q. Zhang, L. Ljung, A. Benvebiste, B. Delyon, P.Y. Glornnec, H. Hjalmarsson, and A. Judutsky. Nonlinear black-box modelling in system identification: a unified overview. Automatica, 31(12):1691–1724, 1995.

12. L.A. Aguirre and S.A. Billings. Improved structure selection for nonlinear mod-els based on term clustering. International Journal of Control, 62(3):569–587, 1995.

13. L.A. Aguirre and E.M.A.M. Mendes. Global nonlinear polynomial models:

Structure, term clusters and fixed points. International Journal of Bifurcation and Chaos, 6(2):279–294, 1996.

14. E.M.A.M. Mendes and S.A. Billings. An alternative solution to the model struc-ture selection problem. IEEE Transactions on Systems Man and Cybernetics part A-Systems and Humans, 31(6):597–608, 2001.

15. M. Korenberg, S.A. Billings, Y.P. Liu, and P.J. McIlroy. Orthogonal parameter-estimation algorithm for nonlinear stochastic-systems. International Journal of Control, 48(1):193–210, 1988.

16. J. Abonyi. Fuzzy Model Identification for Control. Birkhauser: Boston, 2003.

17. H. Cao, J. Yu., L. Kang, and Y. Chen. The kinetic evolutionary modeling of complex systems of chemical reactions.Computers and Chem. Eng., 23:143–151, 1999.

18. B. McKay, M. Willis, and G. Barton. Steady-state modelling of chemical process systems using genetic programming.Computers and Chem. Eng., 21(9):981–996, 1997.

19. E. Sakamoto and H. Iba. Inferring a system of differential equations for a gene regulatory network by using genetic programming. In Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, pages 720–726, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, 2001.

IEEE Press.

20. B. Grosman and D.R. Lewin. Automated nonlinear model predictive control using genetic programming. Computers and Chemical Engineering, 26:631–640, 2002.

21. T.A. Johansen. Constrained and regularized system identification. Modeling, Identification and Control, 19(2):109–116, 1998.

22. H.J.A.F. Tulleken. Grey-box modelling and identification using physical knowl-edge and bayesian techniques. Automatica, 29:285–308, 1993.

23. K. Murakami and D.E. Seborg. Constrained parameter estimation with appli-cation to blending opeartions. Journal of Process Control, 10:195–202, 2000.

24. S.K. Milani, N. Hvala, S. Strmnik, and R. Karba. Improving neural network models of a hydrolisis process by integration of a priori knowledge. In Eurpoean Symposium on Intelligent Techniques (ESIT’99), http://www.erudit.de/ erudit/

events/ esit99, 1999.

25. J. Horiuchi, M. Kishimoto, M. Kamasawa, and H. Miyakawa. Data base simula-tion of batch and fed-batch cultures for amylase producsimula-tion using a culture data base and a statistical procedure. Journal of Fermentation and Bioengineering, 76(4):326–332, 1993.

26. G. Maria and O. Muntean. Model reduction and kinetic parameters identifi-cation for the methanol conversion to olefins. Chemical Engineering Science, 42(6):1451–1460, 1987.

27. K.J. Astr¨om and B. Wittenmark. Computer Controlled Systems: Theory and Design. Prentice-Hall, Englewood Cliffs NJ, 1990.

28. D.E. Seborg, T.F. Edgar, and D.A. Mellichamp. Process Dynamics and Control.

John Wiley, NY, 1989.

29. P.L. Lee and G.R. Sullvian. Generic model control (gmc). Comp. Chem. Eng., 12(6):573–580, 1987.

30. C. Kravaris and J.C. Kantor. Geometric methods for nonlinear process control.

1. backgorund. Industrial Engineering Chemistry Research, 29:2295–2310, 1990.

References 109 31. P. B. Sistu and B. W. Bequette. Nonlinear predictive control of uncertain

processes: Application to a CSTR. AIChE Journal, 37(11):1711–1723, 1991.

32. J. Abonyi, A. Bodizs, L. Nagy, and F. Szeifert. Hybrid fuzzy convolution model and its application in predictive control. Trans IChemE, 87 (A):597–604, 2000.

33. M.L. Thompson and M.A. Kramer. Modeling chemical processes using prior knowledge and neural networks. AIChE J., 40:1328–1340, 1994.

34. D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, 1989.

35. K.S. Tang, K.F. Man, S. Kwong, and Q. He. Genetic algorihms and their applications. IEEE Signal Processing Magazine, pages 22–37, november 1996.

36. W. Banzhaf, P. Nordin, R.E. Keller, and F.D. Francone. Genetic Programming:

An Introduction: On the Automatic Evolution of Computer Programs and Its Applications. Morgan-Kaufmann, 1997.

37. D. Dasgupta and Z. Michalewicz. Evolutionary Algorithms in Engineering Ap-plications. Springer-Verlag, London, 1997.

38. I. Rechenberg. Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der biologischen evolution. Stuttgart: Frommann-Holzboog, 1973.

39. H.P. Schwefel. Kybernetische evolution als strategie der experimentellen forschung in der stromungstechnik. 1965.

40. H.P. Schwefel. Numerical Optimization of Computer Models. Wiley, Chichester, 1995.

41. R.C. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings of the 6th International Symposium on Micromachine and Human Science, pages 39–43, Nagoya, Japan, 1995.

42. S. Skogestad. Dynamics and control of distillation columns. Chem. Eng. Res.

Des. (Trans IChemE), 75:539–562, 1997.

43. J. Abonyi. Fuzzy Model Identification for Control. Birkhauser: Boston, 2003.

44. J.A. Roubos, C.D. de Gooijer, G. van Straten, and A.J.B. van Boxtel. Compra-sion of optimization methods for fed-batch cultures of hybridoma cells. Biopro-cess engineering, 17:99–102, 1997.

45. G.E. Carrillo-Uerta, P.D. Roberts, and V.M. Becerra. Genetic algorithms for optimal control of beer fermentation. In Proc. IEEE International Symposium on Intelligent Control, pages 391–396. Mexico City, Mexico, 2001.

46. B. Andres-Toro, J.M. Giron-Sierra, and P. Fernandez blanco J.A. Lopez-Orozco.

Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithm. J Zhejaing Univ SCI, 5(4):378–

389, 2004.

47. I.C. Trelea, M. Titica, and G. Corrieu. Dynamic optimization of the aroma production in brewing fermentation. Journal of Process Control, 14:1–16, 2004.

48. R.K. Pearson and B.A. Ogunnaike. Nonlinear process identification. In M.A.

Henson and D.E. Seborg, editors, Nonlinear Process Control, pages 11–109.

Prentice–Hall, Englewood Cliffs, NJ, 1997.

49. E. Hernandez and Y. Arkun. Control of nonlinear systems using polynomial ARMA models. AICHE Journal, 39(3):446–460, 1993.

50. S.A. Billings, M. Korenberg, and S. Chen. Identification of nonlinear output-affine systems using an orthogonal least-squares algorithm. International Jour-nal of Systems Science, 19(8):1559–1568, 1988.

51. S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system identification. International Journal of Control, 50(5):1873–1896, 1989.

52. J.R. Koza. Genetic Programming: On the programming of Computers by Means of Natural Evolution. MIT Press, Cambridge, 1992.

53. C. Ferreira. Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst, 13(2):87–129, 2001.

54. S. Sette and L. Boullart. Genetic programming: principles and application.

Engineering Application of Artificial Intelligence, 14:727–2736, 2001.

55. J.R. Koza. Genetic programming II: automatic discovery of reusable programs.

MIT Press, 1994.

56. M.C. South. The application of genetic algorithms to rule finding in data anal-ysis. PhD. thesis, Dept. of Chemical and Process Eng., The Univeristy of New-castle upon Tyne, UK, 1994.

57. MATLAB Optimization Toolbox. MathWorks Inc.: Natick, MA, 2002.

58. C. Rhodes and M. Morari. Determining the model order of nonlinear in-put/output systems. AIChE Journal, 44:151–163, 1998.

59. F.J. Doyle, B.A. Ogunnaike, and R. K. Pearson. Nonlinear model-based control using second-order volterra models. Automatica, 31:697, 1995.

60. C. Letellier and L.A. Aguirre. Investigating nonlinear dynamics from time series:

The influence of symmetries and the choice of observables. Chaos, 12(3):549–

558, 2002.

61. H.A.B. te Braake, J.A. Roubos, and R. Babuska. Semi-mechanistic model-ing and its application to biochemical processes. In H.B. Verbruggen and R. Babuska, editors, Fuzzy Control: Advances in Applications, pages 205–226.

World Scientific, Singapore, 1999.

62. J.H. Ahlberg, N.E. Nilson, and J.L. Walsh. The Theory of Splines and Their Application. Academic Press: New York, 1967.

63. E.V. Shikin and E.V. Plis. Handbook on Splines for the User. CRC Press: Boca Raton, FL, 1995.

64. K. Kollar-Hunek, M. Lang-Lazi, N. Herrmann, D. Miklos, and I. Kovcs. Ap-plication of special numerical approximation in thermodynamics. Hungarian Journal of Industrial Chemistry, 26:269–274, 1998.

65. D. Schaich, R. Becker, and R. King. Qualitative modeling for automatic iden-tification of mathematical models of chemical reaction systems. Control Engi-neering Practice, 9:1373–1381, 2001.

66. D. M. Himmelblau, C. R. Jones, and K. B. Sichoff. Determination of rate constants for kinetics models. I&EC Fundamentals, 6(4):539–543, 1967.

67. Y.P. Tang. On the estimation of rate constants for complex kinetics models.

Ind. Eng. Chem. Funadam., 10(2):321–322, 1971.

68. C. Chatfield. The Analysis of Time Series: An Introduction. Chapman and Hall, 1996.

69. J. Abonyi, R. Babuska, M.A. Botto, F. Szeifert, and L. Nagy. Identification and control of nonlinear systems using fuzzy hammerstein models. Industrial and Engineering Chemistry Research, 39:4302–4314, 2000.

70. B.W. Bequette. Nonlinear control of chemical processes: A review. Industrial Engineering Chemistry Research, 30:1391–1413, 1991.

71. A. Isidori. Nonlinear Control Systems. Springer-Verlag, London, 1995.

72. H. Nijmeijer and A.J. van der Schaft. Nonlinear Dynamical Control Systems.

Springer-Verlag, London, 1990.

73. B. Fernandez and J.K. Hedrick. Control of multivariable nonlinear systems by the sliding mode method. Int. J. Control, 46:1019–1040, 1987.

References 111 74. C. Kravaris and M. Soroush. Synthesis of multivariable nonlinear controllers by input/output linearization. American Institute of Chemical Engineers Journal, 36(2):249–264, 1990.

75. M.J. Kurtz and M.A. Henson. Feedback linearizing control of discrete-time non-linear systems with input constraints. International Journal of Control Volume, 70:603–616, 1998.

76. M.A. Botto. A nonlinear control approach for input constrained feedback lin-earized system. PhD thesis, Instituto Superior Technico, Technical University of Lisbon, 1999.

77. C. Kravaris and S. Palanki. Robust nonlinear state feedback under structured uncertainty. AIChE Journal, 34:1119–1127, 1988.

78. Y. Arkun and J.P. Calvet. Robust stabilization of input/output linearizable systems under uncertainty and disturbances. AIChE Journal, 38(8):1145–1156, 1992.

79. N.H. El-Farra and P.D. Christofides. Integrating robustness optimiality and constraints in control of nonlinear processes. Chemical Engineering Science, 56:1841–1868, 2001.

80. J. Hahn, M. Monnigmann, and W. Marquardt. A method for robustness analysis of controlled nonlinear systems. Chemical Engineering Science, 59:4325–4338, 2004.

81. P.J. McLellan, T.J. Harris, and D.W. Bacon. Error trajectory descriptions of nonlinear controller designs. Chemical Engineering Science, 45(10):3017–3034, 1990.

82. R. Babuska, H.B. Verbruggen, and H.J.L. van Can. Fuzzy modeling of enzymatic penicillin-G conversion.Engineering Application of Artificial Intelligence, 12:79–

92, 1999.

83. K.C. Tan and Y. Li. Grey-box model identification vie evolutionary computing.

Control Engineering Practice, 10:673–684, 2002.

84. R. Oliveira. Combining first principles modelling and artifical neural networks:

a general framework. Computers and Chemical Engineering, 28:755–766, 2004.

85. D.C. Psichogios and L.H. Ungar. Hybrid neural network-first principles ap-proach to process modeling. AIChE Journal, 38(10):1499–1511, 1992.

86. R. Simutis and A. Lubbert. Exploratory analysis of bioprocesses using artificial neural network-based methods. Biotechnology Progress, 13:479–487, 1997.

87. W.H. McCulloch and W.S. Pitts. A logical calculus of the ideas immanent in neural nets. Bulletin of Mathematical Biophysics, 5:115–133, 1943.

88. G. Cybenko. Approximation by superposition of a sigmoidal function. Mathe-matics of Control, Signals, and Systems, 2:303–314, 1989.

89. J. Schubert, R. Simutis, M. Dors, I. Havlik, and A. Lubbert. Bioprocess opti-mization and control: Application of hybrid modelling.Journal of Biotechnology, 35:51–68, 1994.

90. W. Cho, J. Lee, and T.F. Edgar. Control system design based on a nonlinear first-order plus time delay model. J. Proc. Vont., 7(1):65–73, 1997.

91. M. Tham. A gentle introduction to noise filtering. Internet.

TÉZISEK

1. Tézis. Folyamatoptimalizálás esetén fellépő egymásnak ellentmondó, nehezen formalizálható célok kezelése a felhasználó értékelésbe történő bevonásával.

A folyamatoptimalizálásban gyakori nehézség, hogy egymásnak ellentmondó, nehezen formalizálható vagy számszerűsíthető célokat kell egy időben figyelembe venni. Ilyen esetekben a klasszikus megközelítés, vagyis egy kvantitatív célfüggvény felállítása, nehézkes, sőt értelmetlen is lehet. Ezért egy olyan interaktív optimalizáló algoritmust dolgoztam ki, amely úgy kezeli az ilyen optimalizációs feladatokat, hogy bevonja a folyamatmérnököt az értékelés folyamatába, tehát a mérnöki, szakértői ismereteket közvetlenül alkalmazza az optimalizálási feladatban. Ez a módszer számítógépes grafikában és számítógépes tervezésben már sikeresen volt alkalmazva, de a folyamatmérnöki területen még nem alkalmazták. Az algoritmus kidolgozása során ezt a technikát adaptáltam a jellemző folyamatmérnöki problémákhoz, és olyan megoldást fejlesztettem ki, amely hatékonyan és egyszerűen használható a folyamatmérnökségben. A kifejlesztett eszköz gyakorlati hasznossága abban rejlik, hogy segítségével sok esetben gyorsabban és könnyebben érthető/átlátható módon lehet az ellentmondó célok és feltételek között megfelelő kompromisszumot kötni, mint a hagyományos módszerekkel.

Ezt egy szabályozó hangolás és egy biokémiai reaktor optimalizálás problémájával demonstráltam szimulációs keretek között.

2. Tézis. A mérési adatokból történő modell struktúra és modell rendűség identifikáció javítása az ortogonális legkisebb négyzetek módszerével.

A mérési adatokból történő modellalkotás egy kevéssé elterjedt, de a tudományos irodalomban egyre népszerűbb megközelítése, a mérési adatokon alapuló nemlineáris modell struktúra identifikáció genetikus programozással. Felismertem, hogy a genetikus programozás hajlamos túlzottan összetett struktúrákat identifikálni, különösen ha a mérési adatok zajjal terheltek, de a szakirodalomban található munkák alig szentelnek figyelmet ennek a problémának. Ezért egy olyan új módszert dolgoztam ki, amely struktúra identifikáció során az ortogonális legkisebb négyzetek módszerét használva kiszűri a felesleges tagokat a paramétereiben lineáris modellekből, ami egyszerűbb, áttekinthetőbb modelleket eredményez. Ez az új technika nemcsak dinamikus nemlineáris modell struktúrák identifikációjára, de modellrendűség meghatározására is használható. A kidolgozott módszer hatékonyságát kémiai reaktorok modellrendűségének vizsgálatával mutatattam be.

3. Tézis. Mérési adatokon alapuló kinetikai paraméter becslés javítása a priori ismeretek segítségével.

A kémiai reaktorok vizsgálata során gyakran előfordul, hogy a mérési adatok száma kicsi, a mérési pontok időben egyenlőtlenül oszlanak el. Ilyen esetekben a mérési adatok felhasználása előtt valamilyen interpolációs módszert kell alkalmazni, hogy a mért tulajdonságokat meg tudjuk becsülni a mérési pontok között, és hogy a mérési zaj hatását csökkentsük. Az elterjedt interpolációs módszerek egy jelentős hiányossága az, hogy nem hasznosítják az a priori ismerteket. Ez igaz a jól ismert és a gyakorlatban elterjedt köbös spline interpolációra is. Ezért egy olyan új módszert fejlesztettem ki, amelyben a mérési adatokra vonatkozó a priori ismereteket

tudja venni, ami által a mérési adatok hatékonyabban hasznosíthatóak. Egy szimulált reaktor és egy ipari reaktor kinetikai paraméterinek becslésével demonstráltam, hogy a kifejlesztett módszer alkalmas a kémiai reaktorok mérési adataiból történő kinetikai paraméterbecslés pontosabbá tételére.

4. Tézis. A modell alapú szabályozók paraméterérzékenységének csökkentése szemi-mechanisztikus modellezéssel.

A nemlineáris modell alapú szabályozótervezés kritikus pontja a szabályozott rendszer a priori modelljének megalkotása. A gyakorlatban az a priori modell alapú szabályozó teljesítményét jelentősen korlátozza a modell paraméterek (például a kémia kinetikai paraméterek) és a modell struktúra bizonytalansága. Ezért egy olyan hibrid modellt fejlesztettem ki, amely kombinálja az a priori modellezést és az a posteriori modellezést olyan módon, hogy egy mesterséges neurális hálózat helyettesíti a fehér doboz modell bizonytalan részét. Ennek a hibrid modellezési technikának az előnye az a priori modellezés technikával szemben az, hogy kevésbé érzékeny a modell bizonytalanságával szemben, amit egy kevert üstreaktor szabályozási példáján demonstráltam.

THESES

1. Solving of multi- and conflicting-objective process optimization problems by interactive optimization procedure

Process optimization problems often lead to multi-objective problems where optimization goals are non-commensurable and they are in conflict with each other. In such cases, the common approach, namely the

Process optimization problems often lead to multi-objective problems where optimization goals are non-commensurable and they are in conflict with each other. In such cases, the common approach, namely the