• Nem Talált Eredményt

T h e only c o m p o u n d recorded is t h e b u t o x y d e r i v a t i v e , UCl2Br(OBu)2, o b t a i n e d b y t r e a t i n g UCl2(OBu)2 w i t h b r o m i n e in t e t r a h y d r o f u r a n ; it r e a c t s w i t h sodium c y c l o p e n t a d i e n i d e in t e t r a h y d r o f u r a n t o form t h e b u t o x y t r i s c y c l o p e n t a d i e n i d e , U(C5H5)3(OBu)2 ( E t h y l Corporation, 1963, R e p o r t T I D - 1 9 3 6 7 ) .

H. Halo complexes

P r o t a c t i n i u m ( V ) is v e r y stable t o hydrolysis in a q u e o u s hydrofiuoric acid, in c o n t r a s t t o its b e h a v i o u r in t h e o t h e r halogen acids, a n d u r a n -ium(V) is likewise stable in c o n c e n t r a t e d (or a n h y d r o u s ) hydrofiuoric acid, one of t h e few solvents in w h i c h it does n o t d i s p r o p o r t i o n a t e . E v a p o r a t i o n of t h e p r o t a c t i n i u m solution yields t h e pentafluoride di-h y d r a t e , as a l r e a d y m e n t i o n e d , w di-h e r e a s cooling t di-h e b l u e u r a n i u m ( V ) solution in c o n c e n t r a t e d hydrofluoric acid t o —10° yields blue crystals of t h e hexafluorouranic(V) acid, HUF6,2-5H20 (Asprey a n d P e n n e m a n ,

1964a).

F l u o r o complexes of t h e t y p e s A^MFg, A2MF7 a n d AgMFg are n o w k n o w n for b o t h p r o t a c t i n i u m , u r a n i u m a n d n e p t u n i u m , b u t only t h e hexa- a n d heptafluoro complexes of p l u t o n i u m h a v e b e e n m a d e so

344 κ. w. B A G N A L L

far. A m m o n i u m , p o t a s s i u m a n d r u b i d i u m hexailuoroprotactinates(V) (Asprey a n d P e n n e m a n , 1964b) h a v e been o b t a i n e d b y e v a p o r a t i n g equimolar q u a n t i t i e s of p r o t a c t i n i u m ( V ) a n d t h e alkali fluoride in h y d r o ­ fluoric acid t o dryness. H o w e v e r , t h e salts m a d e in t h i s w a y always contain some heptafluoroprotactinate(V) a n d it is advisable t o e v a p o r a t e t o small volume, discarding t h e first crop of crystals (the heptafluoro complex) a n d t h e n t o a d d a further q u a n t i t y of 20M hydrofluoric acid, finally e v a p o r a t i n g t h e solution u n t i l crystallization occurs (Keller a n d C h e t h a m - S t r o d e , 1965). A b e t t e r m e t h o d of p r e p a r i n g these salts is b y fluorine oxidation of equimolar q u a n t i t i e s of p r o t a c t i n i u m tetrafluoride a n d t h e alkali m e t a l fluoride (Asprey et aL, 1965b,c). T h e p r o t a c t i n i u m c o m p o u n d s (Brown a n d E a s e y , 1966) are isostructural w i t h t h e u r a n i u m ( V ) analogues, possessing o r t h o r h o m b i c s y m m e t r y (Charpin, 1965).

P o t a s s i u m heptafluoroprotactinate(V), K2PaF7, first p r e p a r e d b y Grosse (1934b, 1935) b y t r e a t i n g t h e h y d r a t e d pentafluoride w i t h a q u e o u s p o t a s s i u m fluoride, is r e m a r k a b l y stable t o hydrolysis a n d can b e recrystallized from w a t e r ; t h e caesium salt, however, c a n n o t be o b t a i n e d from a q u e o u s solution b y e v a p o r a t i o n because of its suscepti­

bility t o hydrolysis a n d is v e r y soluble in w a t e r or a q u e o u s hydrofluoric acid. H o w e v e r , this, a n d t h e a m m o n i u m , p o t a s s i u m a n d r u b i d i u m salts, are easily o b t a i n e d b y p r e c i p i t a t i n g t h e m from 17M hydrofluoric acid solution w i t h a large v o l u m e of acetone (Brown a n d E a s e y , 1966), a procedure which is unsuccessful in t h e case of t h e smaller l i t h i u m cation a n d which yields only t h e octafluoroprotactinate(V), NagPaFg, in t h e case of sodium (Brown a n d E a s e y , 1965, 1966), t h e last being also o b t a i n e d even w h e n a hydrofluoric acid solution containing 2 moles of sodium fluoride per mole of p r o t a c t i n i u m ( V ) is e v a p o r a t e d t o dryness.

T h e preferential crystallization of NagPaFg h a s also been n o t e d b y B u k h s h et aL (1966). P o t a s s i u m , r u b i d i u m a n d caesium octafluoro-p r o t a c t i n a t e s ( V ) , which c a n n o t b e octafluoro-p r e octafluoro-p a r e d from hydrofluoric acid solution, are m a d e b y h e a t i n g t o g e t h e r t h e stoicheiometric q u a n t i t i e s of t h e heptafluoro complex salt a n d t h e a p p r o p r i a t e alkali fluoride a t 450° in d r y a r g o n or e v e n in air, a n d t h e l i t h i u m salt h a s been m a d e b y e v a p o r a t i n g t o dryness t h e stoicheiometric q u a n t i t i e s of lithium fluoride a n d p r o t a c t i n i u m ( V ) in hydrofluoric acid solution a n d d e h y d r a t i n g t h e p r o d u c t a t 450° in air (Brown a n d E a s e y , 1966). T h e P a —F v i b r a t i o n s in t h e infrared s p e c t r u m a p p e a r a t 523, 454 cm-^ in K P a F g , 430, 356 cm-^ in K2PaF7 a n d a t 401 cm~^ in KgPaFg, increasing coordination leading t o a n increase in t h e w a v e l e n g t h of t h e P a —F stretching vibra­

tion as would be e x p e c t e d (Brown a n d E a s e y , 1966); some crystallo­

graphic d a t a h a v e been r e p o r t e d for these c o m p o u n d s b y t h e a u t h o r s

T H E H A L O G E N C H E M I S T R Y O F T H E A C T I N I D E S 345

q u o t e d a b o v e , as well as a full s t r u c t u r e analysis of KgPaFy (Brown a n d S m i t h 1965; B r o w n et al, 1967), a n d t h e R a m a n s p e c t r a of R b P a F g a n d Rb2PaF7 h a v e b e e n recorded (Keller a n d C h e t h a m - S t r o d e , 1965).

T h e corresponding u r a n i u m ( V ) fluoro complexes h a v e also b e e n investigated in some detail; greenish-white n i t r o s o n i u m hexafluoroura-nate(V), NOUFg, which is of pseudo-cubic s y m m e t r y , h a s b e e n p r e ­ p a r e d b y reaction of nitric oxide w i t h u r a n i u m hexafluoride, a n analogous reaction occurring w i t h m o l y b d e n u m hexafluoride, b u t n o t w i t h t u n g ­ s t e n hexafluoride, which r e m a i n s u n c h a n g e d ; n o reaction occurs w i t h n i t r o u s oxide (Ogle et al, 1959; G e i c h m a n et al, 1962c). T h e n i t r o ­ sonium salt is also m a d e b y t h e r e a c t i o n of u r a n i u m hexafluoride w i t h nitrosyl chloride (Geichman et al, 1963), a r e a c t i o n w h i c h leads t o t h e analogous p r o d u c t w i t h m o l y b d e n u m hexafluoride, a n d b y reaction of t h e pentafluoride w i t h nitrosyl fluoride (Geichman et al, 1962c). T h e n i t r o s o n i u m salt is decomposed b y acetone, m e t h a n o l a n d trichloro-e t h y l trichloro-e n trichloro-e a n d is insolubltrichloro-e in carbon t trichloro-e t r a c h l o r i d trichloro-e , F r trichloro-e o n - 1 1 3 , chloro­

benzene a n d n i t r o g e n dioxide (Ogle et al, 1959). N i t r o s o n i u m h e x a -fluorouranate(V) r e a c t s w i t h fluorine, chlorine trifluoride or v a n a d i u m pentafluoride in a n h y d r o u s hydrofluoric acid, u r a n i u m hexafluoride being evolved; t h e solid is reduced t o u r a n i u m tetrafluoride b y h y d r o g e n a t 300-350° or b y carbon m o n o x i d e a t 300° (Geichman et al, 1962a).

T h e n i t r o n i u m c o m p o u n d is likewise o b t a i n e d b y t h e action of n i t r o g e n dioxide on u r a n i u m hexafluoride (Geichman et al, 1962b). T h e kinetics of hydrolysis of t h e n i t r o s o n i u m salt over t h e r a n g e 68-231° h a v e also been s t u d i e d (Massoth et al, 1960).

T h e w h i t e a m m o n i u m salt, NH4UF6, w a s originally m a d e b y r e a c t i o n of a n excess of u r a n i u m hexafluoride w i t h a m m o n i a ( R a m p y , 1959b), a l t h o u g h it h a s been r e p o r t e d t h a t t h e p r o d u c t of t h i s reaction a t 25° is a m i x t u r e of u r a n i u m pentafluoride a n d a m m o n i u m pentafluoroura-n a t e ( I V ) (Galkipentafluoroura-n et al, 1960). H o w e v e r , R a m p y (1959b) foupentafluoroura-nd t h a t t h e p r o d u c t of t h e r e a c t i o n w a s soluble in 4 8 % hydrofluoric acid, forming a blue solution from which pale green KUFg was p r e c i p i t a t e d on a d d i t i o n of p o t a s s i u m fluoride; he also o b t a i n e d some indications of t h e formation of K2UF7. T h e a m m o n i u m salt is b e s t p r e p a r e d b y h e a t i n g u r a n i u m pentafluoride w i t h a m m o n i u m fluoride in a sealed t u b e a t 80-85°

( P e n n e m a n et al, 1962), or b y prolonged h e a t i n g of t h e hexafluoride w i t h a m m o n i u m fluoride a t 120°. I t decomposes, w i t h t h e evolution of fluorine, a t 150° in a v a c u u m or in argon (Nguyen-Nghi et al, 1965a,b).

G e i c h m a n et al (1962a) t h e n o b t a i n e d l i t h i u m , sodium, silver a n d calcium hexafluorouranates(V) b y h e a t i n g t h e n i t r o s o n i u m salt w i t h t h e a p p r o p r i a t e n i t r a t e s until no further evolution of dinitrogen t e t r a o x i d e occurred. T h e w h i t e calcium c o m p o u n d w a s also m a d e b y h e a t i n g a

346 κ . w . BAGNALL

mixture of uranium tetrafluoride and calcium fluoride in fluorine at 210° and the sodium, potassium and silver salts were obtained from 4 8 % (Na,K) or anhydrous (K,Ag) hydrofluoric acid. The alkaH metal salts are best prepared from solutions of the pentafluoride in concen­

trated aqueous (10-27M) hydrofluoric acid and the appropriate alkali fluoride (Asprey and Penneman, 1964a), or b y treating a mixture of the pentafluoride and alkali fluoride with anhydrous hydrofluoric acid (Sturgeon et al., 1965), a procedure successfully used for the preparation of the blue sodium salt, which is dimorphic, and the pale yellow-green ammonium, potassium, rubidium and caesium salts, for which X-ray crystallographic data are available. Analysis of the optical absorption spectrum of CsUFg shows that the U F g - ion has a shghtly distorted octahedral configuration (Reisfeld and Crosby, 1965).

The magenta caesium hexa- and rubidium heptafiuoroneptunates(V) (Asprey et al., 1966), the analogous green fluoroplutonates(V) (Penne­

man et al., 1965), and rubidium octafluoroneptunate(V) (Bagnall et al., 1967b) have been made b y heating the appropriate quadrivalent actinide fluoride compounds in fluorine at 250-300° (Np) or 300-400°

(Pu). Caesium hexafluoroneptunate(V) can also be prepared b y the action of fluorine on a 1:1 mixture of caesium fluoride and neptunium tetrafluoride in anhydrous hydrofluoric acid (Asprey and Penneman,

1967).

The lithium, sodium, potassium, rubidium and caesium hexafluo-rouranates(V) can also be made b y heating together the stoicheiometric quantities of uranium pentafluoride and the alkali fluoride at 300°;

when a 2:1 mixture of alkali fluoride and uranium pentafluoride is treated in this way, all, except lithium, which forms only LiUFg, yield a mixture of the hexa- and octafluoro complexes. Apart from the sodium salts, these, when heated at 350°, react to give the heptafluo-rouranates(V), identified as new phases b y X-ray powder photography;

they are not isostructural with the heptafluoroprotactinates(V). The octafluorouranates(V) of all except lithium are prepared in a similar manner, using the appropriate quantity of alkali fluoride. The corre­

sponding ammonium salts are made in the same way, but at a lower temperature; these salts and the alkali metal compounds are almost white (Penneman et al., 1964b).

Sodium octafluorouranate(V) has also been made b y heating sodium heptafluorouranate(IV) in fluorine at 390° and its magnetic behaviour has been recorded, together with X-ray crystallographic data (Riidorfif and Leutner, 1960). B o t h silver hexafluorouranate(V) and the octa­

fluorocomplex have been made from j8-uranium pentafluoride and silver fluoride at 350-400°; crystallographic data for these compounds, and

T H E H A L O G E N C H E M I S T R Y O F T H E A C T I N I D E S 347

t h e i r infrared spectra, h a v e been recorded (Bougon a n d Plurien, 1965).

L i t h i u m a n d silver hexafluorouranates(V) a r e said t o decompose w i t h t h e evolution of fluorine, a t 400° a n d 230° respectively (Nguyen-Nghi et al, 1965b).

T h e pale-yellow caesium, t e t r a m e t h y l a m m o n i u m a n d t e t r a p h e n y l ­ a r s o n i u m h e x a c h l o r o p r o t a c t i n a t e s ( V ) (Bagnall a n d B r o w n , 1964) a n d t h e corresponding deep-yellow t o orange h e x a c h l o r o u r a n a t e s ( V ) , a n d t h e d i m e t h y l a m m o n i u m salt of t h e l a t t e r (Bagnall et al, 1964c) h a v e been p r e p a r e d from solutions of t h e c o m p o n e n t s in t h i o n y l chloride ( a l k y l a m m o n i u m a n d a r y l a r s o n i u m salts) or in a m i x t u r e of iodine monochloride a n d t h i o n y l chloride (caesium salts). B r i g h t yellow t e t r a ­ m e t h y l a m m o n i u m octachloroprotactinate(V) a n d t h e pale yellow o c t a -chlorouranate(V) h a v e also been isolated from t h i o n y l chloride solution.

T h e infrared s p e c t r a of these c o m p o u n d s h a v e b e e n recorded; t h e Pa—CI v i b r a t i o n a p p e a r s a t 308 cm-^ in NMe4PaCl6 a n d a t 290 cm"^ i n (NMe4)3PaCl8, consistent w i t h t h e increased coordination n u m b e r of t h e m e t a l ion, a n d a t 310 cm-^ in b o t h h e x a - a n d o c t a c h l o r o u r a n a t e s ( V ) , p r o b a b l y because of decomposition of t h e l a t t e r in t h e Nujol mull. T h e m a g n e t i c properties of t h e u r a n i u m ( V ) chloro complexes h a v e also b e e n recorded. Conductio-metric t i t r a t i o n of u r a n i u m pentachloride (UCI5.

SOCI2) a g a i n s t p y r i d i n e in t h i o n y l chloride h a s given some evidence for t h e existence of t h e h e p t a c h l o r o u r a n a t e ( V ) ion, b u t n o salts of t h i s i o n h a v e been isolated (Bagnall et al, 1964c). X - r a y diffraction d a t a for some of t h e hexachloro c o m p o u n d s are available (Bagnall a n d B r o w n , 1964).

A l t h o u g h analogous n e p t u n i u m ( V ) c o m p o u n d s h a v e n o t b e e n isolated, t e t r a p h e n y l a r s o n i u m o x y p e n t a c h l o r o n e p t u n a t e ( V ) , (Ph4As)2NpOCl5, dissolves in t h i o n y l chloride t o give a d a r k - r e d solution which p r o b a b l y contains t h e h e x a c h l o r o n e p t u n a t e ( V ) anion; t h e a b s o r p t i o n s p e c t r u m of t h e solution h a s been recorded, b u t t h e n e p t u n i u m species d e c o m ­ poses r a p i d l y ; on a d d i t i o n of c a r b o n disulphide a m i x t u r e of t h e h e x a -c h l o r o n e p t u n a t e ( I V ) a n d a n unidentified n e p t u n i u m ( V ) -chloro -complex precipitates from t h e solution (Bagnall a n d Laidler, 1966).

T h e orange t e t r a e t h y l a m m o n i u m h e x a b r o m o p r o t a c t i n a t e ( V), N E t 4 P a B r 6 (Brown, 1965) a n d t h e b r o w n t r i p h e n y l m e t h y l a r s o n i u m h e x a i o d o p r o t a c t i n a t e ( V ) h a v e been p r e p a r e d from a m e t h y l c y a n i d e solution of t h e c o m p o n e n t s (Brown et al, 1967).

I. Oxyhalides

P r o t a c t i n i u m oxyfiuoride, PagOFg, a w h i t e , hygroscopic solid iso-s t r u c t u r a l w i t h U2F9 (body-centred cubic), iiso-s iso-slightly volatile in v a c u u m a b o v e 500° ; it is m a d e b y t h e r m a l decomposition of t h e pentafluoride

348 κ. w. B A G N A L L

dihydrate at 160° and b y reaction of the pentoxide with fluorine at 550°

or with an equimolar mixture of hydrogen fluoride and o x y g e n at 500°.

I t decomposes above 800°, yielding the pentafluoride among other, unidentified, products (Stein, 1964). The uranium analogue, UgOFg, a white solid, is obtained b y heating uranium tetrafluoride at 850° in an intermittent oxygen flow; it is unstable in air and is very hygroscopic.

I t decomposes in a vacuum at 300° (Kirslis et al., 1950):

2U2OF8 ^ U F e + UO2F2 + 2UF4

The corresponding protactinium oxychloride, PagOClg, is obtained as a by-product of the reaction of a mixture of chlorine and carbon tetra­

chloride with protactinium pentoxide mixed with carbon and a second crystal modification of this compound is obtained b y heating the penta­

chloride with the stoicheiometric amount of oxygen in a sealed tube at 350-400°. Thermal decomposition of PagOClg at 270° in a vacuum, or treatment of the pentachloride with the appropriate amounts of oxygen at 350-400°, yields the oxychloride P a 2 0 3 C l 4 and there is some evidence for the formation of PaOCla. Thermal decomposition of P a 2 0 3 C l 4 at 520° in a vacuum yields the dioxochloride PaOgCl. All of these com­

pounds are oxygen bridged polymers (Brown and Jones, 1966a).

Compounds of the general form MOX3 are also known; UOF3 is thought t o be formed as an intermediate in the reaction between uranium dioxide and hexafluoride at 500°, the final products of which are uranium tetrafiuoride and uranyl fiuoride (Rampy, 1959a). The green hydrated neptunium analogue has been prepared b y the action of hydrogen fluoride on neptunium pentoxide at 40° (Bagnall et al., 1966c).

Reddish-brown UOCI3 is usually prepared b y heating an equimolar mix­

ture of uranium tetrachloride and uranyl chloride at 370° (Shchukarev et al., 1958b; M. D . Adams et al., 1963); it is formed as an intermediate in the reaction of uranium dioxide, triuranium octaoxide or uranium(IV) oxychloride with carbon tetrachloride, and in the reaction of uranium dioxide with hexachloropropene; a brown compound of composition U2O3CI3 is also formed in these reactions. Uranium oxytrichloride is insoluble in benzene or carbon tetrachloride, but is soluble, with de­

composition, in methanol, ethanol and in water (Budaev and Vol'skii, 1958). I t s heat of formation has been reported as —283-4 (Shchukarev et al., 1958b) and —281-4 kcal mole-^ (Kao-P'in K'uo, 1959), in reason­

able agreement. A dark-brown ethanol adduct, UOCl3.EtOH, is obtained b y the action of ethanol on the thionyl chloride complex, UCI5.SOCI2 (Bradley et al., 1957). The oxochloro complex, CSUOCI4, has been made b y reaction of the hexachloro complex, CsUClg, with antimony(III) oxide (Bagnall et al., 1967a).

T H E H A L O G E N C H E M I S T R Y O F T H E A C T I N I D E S 349

Yellowish-green protactinium oxytribromide,

PaOBrg,

is formed as a