• Nem Talált Eredményt

Mapsheet of GÖK 168 EBERAU

GIS-based preliminary map

Palynological results

Material and methods

The investigated samples at the Austrian side origi­

nate from three boreholes (1, 2, 4) in the middle Upper Pannonian lignite sequence from Höll—Deutsch- Schützen— Bildein at the Austrian side and from two boreholes (nr. 71 and 76) in the same sequence near Torony (Hungary). The microflora occurred fairly fre­

quently and was well preserved in some layers. So the investigation in LM and SEM provided more information about its position in the botanical system.

After examiniation of pollen grains under the light microscope selected specimens were transferred to a SEM stub according the method of Zetter(1989).

Spore and pollen taxa from the middle Upper Pannonian lignite deposit

Huperzia selago (Selagosporis selagoides Krutzsch1963)

Tsuga sp. (5 formspecies in Torony) Taxodiaceae, Cupressaceae

Valerianaceae Patrinia sp.

Valeriana sp.

Dipsacaceae Succisa sp.

Scabiosa sp.

Tiliaceae

Tilia sp. [Intratriporopollenites cordataeformis (Wolff 1934) Mai 1961]

Craigia sp. [Intratriporopollenites instructus (Potonié 1931) Thomson & Pflug 1953]

Sterculiaceae Reevesia sp.

Buxaceae

Buxus sp.

Oleaceae

Fraxinus sp.

Ligustrum sp.

?Asclepidiaceae, Periplocoideae Convolvulaceae

Calystegia sp.

Lamiaceae

Phlomis sp.

Asteraceae

Asteroideae (6 genera) Cichorioideae

Artemisia sp.

Ericaceae Erica sp.

Rhododendron sp.

Caryophyllaceae

Caryophyllaceae (3 genera) Chenopodiaceae

Chenopodiaceae (4 genera) Iteaceae

Itea sp.

Sapotaceae

Sapotaceae Ebenaceae

Diospyros sp.

Polygonaceae

Polygonum sp.

H öll-D eu tsch -S ch ü tzen 2

Fig. 4. Pollen diagram of borehole 50

Urticaceae

Urticaceae Ulmaceae

Celtis sp.

Ulmus sp.

Zelkova sp.

Betulaceae Alnus sp.

Betula sp.

Caroinus sp.

CoryIus sp.

Fagaceae

Trigonobalanopsis sp. [Castaneoiideaepopllis pusillus (Potonié 1934) Grabowska 1994]

Castanea sp.

Fagus sp.

Quercus sp. (6 species) Juglandaceae

Ca/ya sp.

Engelhardia sp.

Jug!ans sp.

Pterocarya sp.

Myricaceae Myrica sp.

Salicaceae Salix sp.

Alismataceae Alisma sp.

Hydrocharitaceae Stratiotes sp.

Potamogetonaceae Potamogeton sp.

Cyperaceae

Cyperaceae Poaceae

Poaceae (5 genera) Sparganiaceae

Sparganium sp.

Typhaceae Typha sp.

Palmae

Saba/ sp.

51

F ig . 5 . P o lle n d i a g r a m o f b o r e h o le

Discussion

Palaeovegetation represented by the pollen and spore assemblage

The following plant communities could be recon­

structed.

There are planctonic organisms which originate from freshwater: Spirogyra, Mougeotia, Cooksonella, Bottyo- coccus. Dinoflagellates are extremely rare. They are not present in the Austrian part but a few specimens occur in the Hungarian part of the investigated area.

The floral elements could be grouped in the follow­

ing categories of vegetation:

1. Open freshwater with freshwater plankton (Mo- nogemmites, Spirogyra, Zygnemataceae, Botryococcus) and fresh water plants like Myriophyllum (two species), Trapa sp., Potamogeton, Nymphea, Nuphar, Nelumbo, Alisma, Stratiotes.

2. Lakeshore vegetation with Typha, Sparganium, perhaps Phragmites, Cyperaceaeae.

3. Sandbanks and salty soil with Chenopodiaceae and Ephedra.

4. Tree-dominated bog environment:

A swamp-forest is documented by Taxodiaceae, Nyssa, Decodon, Vitaceae, Fraxinus and probably with Rhododendron, Palmae and Osmunda species in the undergrowth.

A riparian forest could be distinguished by Alnus, Carya, Betula, Salix, Ilex, Quercus, Liquidambar.

5. Swampy meadows with Succisa, Polygonum, Apiaceae, Valerianaceae, Caryophyllaceae, Poaceae.

6. “Mixed mesophytic forest" behind the peat form­

ing vegetation with Pine species, Ginkgo, Picea, Abies, Sciadopitys, Quercus, Fagus, Tilia, Craigia, Reveesia, Lonicera, Viburnum, Eucommia, Engelhardtia, Acer, Fa- gaceae, Elaeagnus, Rutaceae, Buxus, Carpinus, Erica.

7. Hillside-piedmont forest with conifers, Pinus, Abies, Picea, Tsuga, Larix, Cédrus, Keteleeria.

5 2

T o r o n y 71 ( m o r e im p o r t a n t ta x a )

Palaeoclimatic character of the flora

From the flora it could be concluded that the climatic conditions were warmer than today.

Subtropical elements like Reevesia (Sterculiaceae), Sabal and Engelhardia perhaps could survive locally in the undergrowth of the swamp forest. These elements are present in the middle Upper Pannonian sequence but are much more dominating in the warm periods of the earlier older Miocene periods. Engelhardia is very rare and also the other palaeotropical floral elements like Mastixioi- deae, Sapotaceae and Reevesia are retreating in the middle Upper Pannonian from zone D/E to F remarkably.

It should be mentioned that the characteristic element Tricolporopollenites sibiricum (Lubomirov 1972) Nagy

1992 (Tricolporopollenites wackersdorfensis Thiele -Pfeiffer1980) Fabaceae are therefore not present in this lignite sequence. This element disappeared in this region in the Zone E of the Pannonian.

Reevesia and Engelhardia live today in the zone with high humidity only in the Himalaya and other regions of southeast Asia.

A climatic cooling within the middle Late Pannonian

could be proved by the increase of coniferes {Abies, Picea, Pine species, Tsuga species) in the pollen spectra of the lignite sequence in the Hungarian and Austrian part (Fig. 4, 5).

Gramineae, Compositae, Chenopodiaceae, Acer, Ainus, Betula, Carya, Pterocarya, Ulmus, Pinus, Abies, Picea, Sciadopitys and Tsuga became important or even dominant.

Sciadopitys and Cathaya are extremely endemic to­

day and therefore it is not relevant to transfer the present day climatic conditions directly to the fossil occurrence.

There are also warm temperate plant elements like Liquidambar, Carya, Pterocarya, Buxus, Rhus, Ostrya, Ilex present.

The most numerous are temperate plants (e.g.

Fagus, Ulmus, Quercus, Tilia). Alnus is a typical azonal element.

The expansion of the decidous hardwood forest, typical for Late Pannonian is clearly visible by the high number of Quercus species in the upper part of the lignite sequence, which were distinguished by SEM (obviously deciduous)

In the pollen spectra of the Upper Pannonian lignite

5 3

sequence there is also a remarkable tendency of in­

creasing number of non-arboretic pollen-types from herbs like Chenopodiaceae Asteraceae, Succisa, Scabiosa, Valeriana, Patrinia, Apiaceae, Caryophyllaceae,

Ru-biaceae, Lamiaceae etc. This seems to be an indication of larger non-forested areas probably locally caused by the retreat of the sea and (or an effect by the cooling) the development of non forested peat and reed meadows.

Acknowledgements drawing the diagrams (all of them Geol. Survey, Vienna).

REFERENCES Draxler, I. et al. 1994: Erster Nachweis von “Alginit"

(sensu Jámbor & Solti, 1975) im Südoststeirischen Tertiärbecken (Österreich). — Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich- Ungarn.Tei! 2,: 19-54, Wien.

Draxler, I. & R. Zetter 1991: Palynologische Unter­

suchungen in den mittelmiozänen Hochriegel­

schichten (Süßwasserschichten) von Weingraben (Gemeinde Kaisersdorf, Burgenland, Österreich). — Jubiläumsschrift 20 Jahre Geologische Zusammen­

arbeit Österreich-Ungarn, Teil 1, 71-92, Wien.

Grabenda, L. 1929: A Vashegy-csoport geológiája (Die Geologie der Eisenberg-Gruppe). — Acta. Sab. 17.

Gratzer, R. 1985: Vergleichende Untersuchungen an Metabasiten im Raum Hannersdorf, Burgenland. — Sitz. Bér. Österr. Akad. Wiss., mathem.-naturwiss.

Kl., Abt. I, 194, Wien.

Herrmann P.(1992): Bericht 1991 über geologische Aufnahmen im Tertiär und Quartär auf Blatt 168 Eberau. — Geol. B.-A., Wien.

Jaskó, S. 1964: A nyugat-Vasmegyei barnakőszén terü­

let. (The brown coal area in western Vas county.) — Földtani Kutatás, 2-3, 24-28, Budapest.

Jaskó, S. 1975: Stratigraphie, Tektonik und Lithologie der pliozänen Lignitlagerstätten von Ungarn. — Braun­

kohle, Jg. 1975, H. 10, 307-314, Düsseldorf. Untersuchungen auf den Blättern 136 Hartberg, 137 Oberwart, 138 Rechnitz, 167 Güssing, 168 Eberau, 192 Feldbach und 193 Jennersdorf. — Jb. Geol. B.- A., 126, (2), S. 340, Wien.

Kollmann, W. 1987: Geologische Untersuchungen zur Beurteilung der Wasserhöffigkeit im südlichen Burgenland; Abschlußbericht 1978-1984. — Wiss.

Arb. Burgenland, 76, 67 S., zahlr. Tab. und Abb., barnakőszén palynologiai vizsgálata. — Palynolo­

gische Untersuchungen der am Fusse des Matra-

Palaeontologica, Fase. 53, 1-379, Budapest.

Nebert, K. 1977: Die Ergebnisse der kohlengeologischen Untersuchungen im Neogengebiet zwischen der Schieferinsel von Rechnitz und jener von Eisenberg.

— Unveröff. Ber., (FFWF 2975), (Lagerstättenarchiv der Geol. B.-A.), Graz.

Nebert, K. 1979: Die Lignitvorkommen des Südostburgen­

landes. — Jb. Geol. B.-A., 122, 143-180, Wien.

Nebert, K. et. al. 1980: Zur Geologie der neogenen Lignitvorkommen entlang des Nordostspornes der Zentralalpen (Mittelburgenland). — Jb. Geol. B.-A., 123, Wien. Bau und tektonische Stellung des österreichischen Anteiles der Eisenberggruppe im südlichen Burgenland. — Unveröff. Diss. Phil. Fak. Univ.

Sauerzopf, F. 1952: Beitragzur Entwicklungsgeschichte des südburgenländischen Pannons. — Burgenländ.

Heimatblätter, 16, 1-16, Eisenstadt.

Skawinska, K. 1985: Some new and rare pollen grains from Neogene deposits at Ostrzeszow (South-West Poland). — Acta Palaeobot. 25, 1, 2, 107-118, Warszawa.

Steininger, F. F., Rögl, F., Hochuli P., Müller C.:

Lignite deposition and marine cycles. The Austrian Tertiary lignite deposits — A case history. — Sitzber.

Österr. Akad. Wiss., mathem.-naturw. Kl., Abt. I, 197, 5-10, 309-332, Wien.

Sue, J-P. 1978: Analyse pollinique de depots plio—

pleistocenes du sud du massif basaltique de c I'Escardorgue (site de Bernasso, Lunas, Hérault, France). — Pollen et Spores, 20, 4, 497-512, Paris.

Van Geel, B.(1979): Preliminary report on the history of Zygnemataceae and the use of their spores as ecological markers. — IV Int. Palynol. Conf., Lucknow (1976-77) 1: 467-469.

Walther H. & Zetter, R. 1993: Zur Entwicklung der paläogenen Fagaceae Mitteleuropas. — Palaeonto- graphica, Pal B, 230, 1-6, 183-194, Stuttgart.

Weber, L. & Weiss, A. 1983: Bergbaugeschichte und Geologie der österreichischen Braunkohlenvor­

kommen. — Archiv für Lagerst, forsch. Geol. B.-A., 4, 1-17, Wien.

WesselyG. 1949: Vorgeschlagenes Bohrprogramm nach

Kohle der burgenländischen Landesregierung (Auszug). — Unveröff. Ber., Geol. B.-A., Wien.

Winkler-Hermaden, A. & Rittler, W. 1949: Erhebungen über artesische Wasserbohrungen im steirischen Becken unter Berücksichtigung ihrer Bedeutung für die Tertiärgeologie. — Geol. u. Bauw., 17, (1), 33- 96, Wien.

Zetter, R. 1988: Bemerkungen zur Mikroflora der Kohleschichten im Bereich der südburgen­

ländischen Schwelle. — BFB-Bericht 68, 159-166, lllmitz.

Zetter, R. 1989: Methodik und Bedeutung einer routinemäßig kombinierten lichtmikroskopischen und rasterelektronenmikroskopischen Untersuchung fossiler Mikrofloren. — Cour. Forsch.-Inst.

Senckenberg, 109, 41-50. Frankfurt.

Zetter, R. & Chr. Keri: 1989: Untersuchungen an Pollenkörnern der Gattung Nelumbo aus einer ober- miozänen Fundstelle des Burgenlandes (Österreich). — Ann. Naturhist. Mus. Wien, 90, A, 111-118, Wien.

Ziembinska-Tworzydlo, M. et al. 1994: Taxonomical revision of selected pollen and spore taxa from Neogene deposits. — Acta Palaeobotanica Suppl.

1:5-30, Krakow.

55

PLATE 1

Fig. 1-3: Fig. 1 Lycopodium sp.; 850 x LM.

Fig. 2 Lycopodium sp.; 1500 x SEM.

Fig. 3 Lycopodium sp.; Detail of the exine surface; 8500 x SEM.

Fig. 4-6: Fig. 4 Huperzia sp.; 850 x LM.

Fig. 5 Huperzia sp.; 1200 x SEM.

Fig. 6 Huperzia sp.; Detail of the exine surface; 9500 x SEM.

Fig. 7-9: Fig. 7 Sciadopitys sp.; 850 x LM.

Fig. 8 Sciadopitys sp.; 1400 x SEM.

Fig. 9 Sciadopitys sp.; Detail of the exine surface; 6000 x SEM.

Fig. 10-13: Fig. 10 Tsuga sp.; 600 x LM.

Fig. 11 Tsuga sp.; 700 x SEM.

Fig. 12 Tsuga sp.; Detail of the exine surface of the corpus; 7000 x SEM.

Fig. 13 Tsuga sp.; Detail of the exine surface of the saccus; 8000 x SEM.

Fig. 14-16: Fig. 14 Cathaya sp.; 800 x LM.

Fig. 15 Cathaya sp.; 900 x SEM.

Fig. 16 Cathaya sp.; Detail of the exine surface; 7000 x SEM.

56

57

PLATE 2

Fig. 1-3: Fig. 1 Arecaceae; 850 x LM.

Fig. 2 Arecaceae; 1600 x SEM.

Fig. 3 Arecaceae; Detail of the exine surface; 8000 x SEM.

Fig. 4-6: Fig. 4 Typha sp.; 850 x LM.

Fig. 5 Typha sp.; 1800 x SEM.

Fig. 6 Typha sp.; Detail of the exine surface; 8000 x SEM.

Fig. 7-9: Fig. 7 Patrinia sp.; 850 x LM.

Fig. 8 Patrinia sp.; 1500 x SEM.

Fig. 9 Patrinia sp.; Detail of the exine surface; 6000 x SEM.

Fig. 10-12: Fig. 10 Phlomis sp.; 850 x LM.

Fig. 11 Phlomis sp.; 2000 x SEM.

Fig. 12 Phlomis sp.; Detail of the exine surface; 14000 x SEM.

Fig. 13-15: Fig. 13 Poaceae; 850 x LM.

Fig. 14 Poaceae; 2200 x SEM.

Fig. 15 Poaceae; Detail of the exine surface; 13000 x SEM.

58

59

PLATE 3

Fig. 1-3: Fig. 1 Trapa sp.; 850 x LM.

Fig. 2 Trapa sp.; 850 x SEM.

Fig. 3 Trapa sp.; Detail of the exine surface; 6000 x SEM.

Fig. 4-6: Fig. 4 Polygonum sp.; 850 x LM.

Fig. 5 Polygonum sp.; 1000 x SEM.

Fig. 6 Polygonum sp.; Detail of the exine surface; 6000 x SEM.

Fig. 7-9: Fig. 7 Myriophyllum sp.; 850 x LM.

Fig. 8 Myriophyllum sp.; 1900 x SEM.

Fig. 9 Myriophyllum sp.; Detail of the exine surface; 11000 x SEM.

Fig. 10-12: Fig. 10 Apiaceae - Gen. 1; 850 x LM.

Fig. 11 Apiaceae - Gen. 1; 4000 x SEM.

Fig. 12 Apiaceae - Gen. 1; Detail of the exine surface; 8000 x SEM.

Fig. 13-15: Fig. 13 Apiaceae - Gen. 2; 850 x LM.

Fig. 14 Apiaceae - Gen. 2; 4000 x SEM.

Fig. 15 Apiaceae - Gen. 2; Detail of the exine surface; 12000 x SEM.

60

61

PLATE 4

Fig. 1-3: Fig. 1 Acer sp.; 850 x LM.

Fig. 2 Acer sp.; 3000 x SEM.

Fig. 3 Acer sp.; Detail of the exine surface; 10000 x SEM.

Fig. 4-6: Fig. 4 Rosaceae - Gen. 1; 850 x LM.

Fig. 5 Rosaceae - Gen. 1; 2700 x SEM.

Fig. 6 Rosaceae - Gen. 1; Detail of the exine surface; 7000 x SEM.

Fig. 7-9: Fig. 7 Rosaceae - Gen. 2; 850 x LM.

Fig. 8 Rosaceae - Gen. 2; 4000 x SEM.

Fig. 9 Rosaceae - Gen. 2; Detail of the exine surface; 11000 x SEM

Fig. 10-12: Fig. 10 Cichorioideae; 850 x LM.

Fig. 11 Cichorioideae; 1200 x SEM.

Fig. 12 Cichorioideae; Detail of the exine surface; 6000 x SEM.

Fig. 13-15: Fig. 13 Dipsaceae; 850 x LM.

Fig. 14 Dipsaceae; 900 x SEM.

Fig. 15 Dipsaceae; Detail of the exine surface; 8000 x SEM.

62

6 3

PLATE 5

Fig. 1-3: Fig. 1 Quercus sp. 1; 850 x LM.

Fig. 2 Quercus sp. 1; 2000 x SEM.

Fig. 3 Quercus sp. 1; Detail of the exine surface; 11000 x SEM

Fig. 4-6: Fig. 4 Quercus sp. 2; 850 x LM.

Fig. 5 Quercus sp. 2; 2000 x SEM.

Fig. 6 Quercus sp. 2; Detail of the exine surface; 11000 x SEM.

Fig. 7-9: Fig. 7 Quercus sp. 3; 850 x LM.

Fig. 8 Quercus sp. 3; 2500 x SEM.

Fig. 9 Quercus sp. 3; Detail of the exine surface; 11000 x SEM.

Fig. 10-12: Fig. 10 Quercus sp. 4; 850 x LM.

Fig. 11 Quercus sp. 4; 1200 x SEM.

Fig. 12 Quercus sp. 4; Detail of the exine surface; 11000 x SEM.

Fig. 13-15: Fig. 13 Quercus sp. 5; 850 x LM.

Fig. 14 Quercus sp. 5; 2200 x SEM.

Fig. 15 Quercus sp. 5; Detail of the exine surface; 11000 x SEM.

6 4

6 5

PLATE 6

Fig. 1-3: Fig. 1 Tilia sp.; 850 x LM.

Fig. 2 Tilia sp.; 1000 x SEM.

Fig. 3 Tilia sp.; Detail of the exine surface; 10000 x SEM.

Fig. 4-6: Fig. 4 Juglans sp.; 850 x LM.

Fig. 5 Juglans sp.; 1400 x SEM.

Fig. 6 Juglans sp.; Detail of the exine surface; HOOOxSEM.

Fig. 7-9: Fig. 7 Onagraceae; 850 x LM.

Fig. 8 Onagraceae; 1700 x SEM.

Fig. 9 Onagraceae; Detail of the exine surface; 12500 x SEM.

Fig. 10-12: Fig. 10 Chenopodiaceae - Gen. 1; 850 x LM.

Fig. 11 Chenopodiaceae - Gen. 1; 2500 x SEM.

Fig. 12 Chenopodiaceae - Gen. 1; Detail of the exine surface; 12000 x SEM.

Fig. 13-15: Fig. 13 Chenopodiaceae - Gen. 2; 850 x LM.

Fig. 14 Chenopodiaceae - Gen. 2; 3000 x SEM.

Fig. 15 Chenopodiaceae - Gen. 2; Detail of the exine surface; 11000 x SEM.

66

6 7

A representative leaf assemblage of the Pannonian Lake from Dozmat near Szombathely