• Nem Talált Eredményt

Fúrás

In document Lézersugár-vezetés (Pldal 90-93)

A. Fogalomtár a modulhoz

2. Lézersugaras gyártási eljárások II

2.1. Fúrás

2.1.1. A lézereket fúrásra is lehet alkalmazni oly módon, hogy az anyagot a sugárnyaláb fókuszában elgőzölögtetik.

A 3.2.1.1. ábra olyan lézert és optikai rendszert ábrázol, amely fúráshoz, mikrohegesztéshez és mikroelektronikus alkatrészek előállításához alkalmas.

A lézerek alkalmazása

3.2.1.1. ábra

3.2.1.2. ábra

Lehetőség van folyamatos megfigyelésre, ha nyalábosztót alkalmaznak a kibillenthető tükör helyett, és szűrőt iktatnak be az okulár és a nyalábosztó közé, hogy megakadályozzák a visszavert lézerteljesítmény átjutását az okuláron keresztül.

Fúrásnál az alkalmazott energiának olyan nagynak kell lennie, hogy az anyag gyorsan elgőzölögjön, mielőtt még számottevő radiális hővezetés következne be az anyagban, és így az olvadási hőmérséklet nagyobb területen kialakulna. A maximális teljesítménysűrűséget és impulzushosszat korlátozza a lyuk feletti túlságos elgőzölgés és a nagy teljesítményeknél keletkező plazma, amelynek következtében a lézer energiája nem az anyagban, hanem a gőzben nyelődik el.

A lézerek alkalmazása

A fúrási folyamatot néha úgy segítik elő, hogy pozitív nyomást fejtenek ki a munkadarab elülső felületére, pl.

gázsugárral vagy alacsony nyomású kamrával a munkadarab másik oldalán, az elgőzölögtetett anyag maradványai és a forgács eltávolítása céljából az átlyukadásnál. A gázsugárnak ezenkívül még az az előnye is megvan, hogy megakadályozza a gőz lecsapódását a lencsén. Az anyag alatt biztonságos távolságban elhelyezett fotodetektorral lehet meghatározni, hogy mikor megy végbe az áthatolás.

Igen nagy relatív mélységű lyukak készíthetők (a relatív lyukmélység t/D, ahol t a munkadarab vastagsága, D a lyukátmérő); ez az arány 20:1 is lehet. Ennek oka a lyuk nyalábkorlátozó hatása a fókuszban, valamint a lyuk oldalfalain fellépő többszörös reflexió.

Impulzussorozat alkalmazásával csökkenthető a munkadarabban oldalirányban eldiffundáló energia, és könnyebb a lyukméret és -alak szabályozása. Milliszekundum nagyságrendű impulzus-időtartamokra van szükség ahhoz, hogy elegendő hő diffundálódhassék a lyuk tengelye mentén, és ne csak abszorbeálódjék a felületen. A hődiffúziót ilyen módon minimálisra csökkentő, rövid időtartamú, nagy teljesítményű impulzusok alkalmazása különösen ott előnyös, ahol a metallurgiai követelmények kritikusak, mert így csökkenthető a lyuk peremén a megolvadt anyag újrakristályosodása. A kör alaktól eltérő lyukakat is elő lehet állítani a fókuszált sugárba vagy a lencse elé tett fényrekeszekkel. Fényrekeszt a lézerrezonátoron belülre is lehet tenni, de ez bonyolultabb, jóllehet gyakran hatékonyabb.

A 3.2.1.3. táblázat megad néhány fúrási paramétert különféle fémek impulzus-rubinlézerrel való fúrására. Az átfúrható max. anyagvastagság kb. 2,5 mm-ig, a relatív lyukmélység 20:1 értékig terjedhet. Impulzus rubin- és neodímiumlézereket használnak kis relatív lyukmélységű lyukak fúrására olyan kemény fémekben, amelyeket más módszerekkel nehezen lehet kifúrni. Az alkalmazási területek közül megemlíthetjük a turbinalapátok hűtőlyukait és a mesterséges szálak előállításában használt húzólapok lyukasztásait.

3.2.1.3. ábra

Részletesen tanulmányozták CO2-lézerek alkalmazását lyukak fúrására rozsdamentes acélban, vákuumban és vákuumon kívül. A fúráshoz szükséges teljesítmény küszöbértéke vákuumban háromszor nagyobb volt a rozsdamentes acél vákuumban fellépő nagyobb emisszióképessége miatt. Vizsgálták a hőátadást, és olyan nomogramot készítettek, amely megadja a Pm kritikus teljesítményt vagy az olvadáshoz szükséges időt a tárgy fűtésének beindítása után.

A lézerek alkalmazása

Elemezték az alumínium-oxid fúrásánál fellépő hőfolyamatokat is, és ez egyezett az impulzus rubinlézerekkel és CO2-lézerekkel kapott kísérleti eredményekkel. Ahol lényeges a lyukszimmetria, ott ismétlődő impulzusokat alkalmaznak, párosítva a munkadarab forgatásával, hogy csökkentsék a fókuszált sugár nem egyenletes voltának hatását. Nagy lyukakat úgy lehet előállítani, hogy a munkadarabot excentrikusan forgatják az optikai tengely körül, a magfúráshoz hasonlóan. A tengelyen kívüli fókuszálásra aszférikus lencséket, mégpedig kúplencséket (axicon) is felhasználtak a célból, hogy nemfémes anyagokban a fókuszált sugárnál nagyobb átmérőjű lyukakat állítsanak elő.

Impulzuslézereket alkalmaznak még kis forgó alkatrészek kiegyensúlyozására oly módon, hogy fémet távolítanak el róluk. 0,1 mm vastagságú óra-billegőkerekeket egyensúlyoztak ki dinamikusan impulzus Nd:YAG-lézer osztott sugárnyalábjával, egyidejűleg 0,1-0,7 mm átmérőjű lyukakat fúrva a kerék szemben lévő oldalain. A lézersugár kitérése szinkronban van az alkatrész forgásával, így az impulzus időtartama meghosszabbodik, tehát több anyag távolítható el, mint amennyi más módszerekkel lehetséges volna. A lézert indító trigger jel a tengelyen levő rezgésérzékelőktől automatikusan érkezik.

2 J kimenő energiájú neodímium-üveg impulzuslézert alkalmaznak higanyos üveghőmérők értékbeállítására oly módon, hogy a higanyoszlopot elgőzölögtetik egy előre meghatározott helyen, ami az oszlop szétválását idézi elő. A rubin- és neodímiumlézerek egy másik bevált alkalmazása a huzalkészítésnél használt gyémánt húzószerszámok kinagyolása, ill. átalakítása. A végső megmunkálás a hagyományos csiszolótechnikával történik. Impulzusonként 1,5 J-ig terjedő energiaszinteket alkalmaznak másodpercenként 10 impulzusig, kb. 200 µs időtartammal. Ily módon 0,025 mm-nél kisebb méretű lyukakat lehet létrehozni. Több impulzus használata a gyémánt forgatásával párosítva kielégítő lyukszimmetriát biztosít. A gyémánt forgástengelyének kibillentésével a lézersugár tengelyétől nagy átmérőjű lyukat lehet fúrni, a magfúrási művelethez hasonlóan. Ezzel jelentős időmegtakarítás és a korábban felhasznált gyémánt csiszolópaszta mennyiségének csökkentése érhető el. Ily módon óraköveket is ki lehet fúrni, és ezt az eljárást a gyártási műveletekben alkalmazzák is. Hasonló technikát alkalmaznak a gyémántban levő fekete foltos szennyeződések miatt keletkező hibák eltávolítására.

Jóllehet sok nemfémes anyag könnyen fúrható hagyományos módszerekkel is, a lézereknek bizonyos előnyeik vannak olyan esetekben, amikor nagy sebességre és kis lyukakra van szükség, különösen elasztomer anyagoknál.

Aeroszolos dobozokhoz való műanyag fúvókákat perforáltak, és a fröccsöntött alkatrészekről lézer segítségével távolították el a sorját. Nejlongombokat lyukasztottak át, és így kiküszöbölték a mechanikai fúrásnál fellépő részecskék keletkezését és a szabálytalan széleket, amelyek a felerősítésükre szolgáló szálat elszakítják.

Minthogy az elasztomer anyagok könnyen deformálódnak, a szokásos módszerekkel nehezen fúrhatók át.

Ismeretes a CO2-lézer alkalmazása nagyszámú, kisméretű lyuk fúrására műanyagban és vékony gumilemezben, alumíniummaszk és koaxiális gázsugár segítségével. A CO2-lézereket használják cumisüveg szívógumijának kifúrásához is. Ezeket nehéz átfúrni, mert az anyag hajlamos arra, hogy fúrás közben deformálódjék, ami szabálytalan alakú lyukakat eredményez. Nyalábosztó alkalmazásával egyidejűleg akár több lyukat is lehet fúrni.

In document Lézersugár-vezetés (Pldal 90-93)