• Nem Talált Eredményt

Toxicity was measured by the Vibrio fischeri bioluminescence inhibition test.

ToxAlert®100 luminometer developed by Merck was used in compliance with ISO/EN/DIN 11348, using freeze-dried bacteria (Anon, 1999). The luminometer calculates the inhibition effect (Ht) of the samples automatically in % values.

Results and Discussion:

Figures 32-35 show that the pH, soluble phosphate, total nitrogen, and total soluble salts measurements of the samples are between the allowed limits. Therefore, indicate no harm to the environment.

67 Fig. 32: pH measurements of the samples

Fig. 33: Soluble phosphate measurements of the samples

7.5 7.55 7.6 7.65 7.7 7.75 7.8 7.85 7.9 7.95 8

1 2 3 4 5 6 7 8

pH

0 1 2 3 4 5 6

1 2 3 4 5 6 7 8

mg/l

Site

Soluble phosphate

68 Fig. 34: Total nitrogen measurements of the samples

Fig. 35: Total soluble salts measurements of the samples

Figure 36 and table 3 show that COD and TOC measurements of the samples are under the allowed limits while the BOD5 values are exceeding the allowed environmental limits. COD/BOD or BOD/TOC ratio showed that most of the effluent organic compounds and substances are easily biodegradable and in bioavailable form, except at

0 5 10 15 20 25

1 2 3 4 5 6 7 8

ppm

Site

TN

0 200 400 600 800 1000 1200 1400 1600 1800

1 2 3 4 5 6 7 8

ppm

Site

TSS

69 site 3. COD/TOC values showed that the effluent contains a lot of organic-origin compounds. This means that all the organic material present in the water will be broken down biologically more or less in 5 days.

Fig. 36: BOD5, COD and TOC measurements of the samples Sample ID COD/TOC COD/BOD5 BOD5/TOC

1 1.0115808 0.71354167 1.41768982 2 1.0242298 0.62777778 1.63151655 3 3.0617166 2.26282051 1.35305322 4 1.0733471 0.78846154 1.36131831 5 1.4626657 0.65530303 2.23204472

6 1.0014997 0.609375 1.64348666

7 1.9608632 1.21875 1.60891338

8 1.1915294 0.54642857 2.18057667

Table 3: Results of wastewater samples analysis from Bahr El-Baqar drain

On the contrary, figure 37 shows that the samples from sites 1, 6, 7 and 8 exhibit high toxicity levels while the toxicity of samples from sites 2, 3, 4 and 5 were at environmental tolerable level.

0 10 20 30 40 50 60 70 80 90 100

1 2 3 4 5 6 7 8

(mg/l)

Site

BOD5 COD TOC

70 Fig. 37: Toxicity measurements of the samples

The results proved that the physical and chemicals analysis are not enough to give an indication on the wastewater toxicity and prediction of the wastewater behavior in the aquatic ecosystem, and in turn its hazardous environmental impact. Therefore, the toxicity tests have an important role in water quality monitoring and control, in supporting decision-making and in forming the environmental regulations.

Toxicity tests should be incorporated into the water quality standards and environmental regulations, and the existing standards should be revised to include toxicity tests. The authorities should take urgent measures to treat Bahr El-Baqar wastewater before reaching El-Manzala Lake and forbid the people in the surrounding areas from using it or discharging any more pollutants.

0 10 20 30 40 50 60 70 80 90

1 2 3 4 5 6 7 8

% Inhibition

Toxicity

71

References:

1. Abdel-Azeem, A. M., Abdel-Moneim, T. S., Ibrahim, M. E., Hassan, M. A. A., Saleh, M. Y. (2007). Effects of Long-Term Heavy Metal Contamination on Diversity of Terricolous Fungi and Nematodes in Egypt - A Case Study. Water Air Soil Pollut.

Journal, No. 186: 233–254.

2. Abdel-Shafy, H. I., & Aly, R. O. (2002). Water issue in Egypt: Resources, pollution and protection endeavors. CEJOEM, 8(1): 3–21.

http://www.fjokk.hu/cejoem/files/Volume8/Vol8No1/CE02_1-01.html

3. Ács, A., Kováts, N., Refaey, M. (2009). Novel Daphnia test for detecting chemical pollution. Exposure and risk assesment of chemical pollution-contemporary methodology. L. Simeonov and M. Hassanien (eds.), Exposure and Risk Assessment of Chemical Pollution – Contemporary Methodology.© Springer Science+Business Media B.V. pp. 439-444. ISBN 978-90-481-2333-9.

4. Ademoroti, C.M.A.. Standard method for water and Effluents Analysis. Foludex press Ltd, Ibadan 1996: 22-23, 44-54, 111-112.

5. Ali, O. M.; El-Sikhry, E. M., & El-Farghal, W. M. Effect of prolonged use of Bahr El-Baqar drain water for irrigation on the total heavy metals content of South Port Said soils. In: Proc. 1st Conf. Egypt. Hung. Env. Egypt, 1993: 53–57.

6. Anderson, D.J., Day, M.J., Russell, N.J., White, G.F. (1990). Die-away kinetic analysis of the capacity of eplithic and planktonic bacteria from clean and polluted river water to biodegrade sodium dodecyl sulfate. Appl. Environ. Microbiol. vol.

56(3): 758-763.

7. Anon: BS EN ISO 11348.3, Part 3 – Method Using Freeze-dried Bacteria. Infonorme London Information, Ascot, UK, 1999.

8. Attia, F. A. (1999). Water and Development in Greater Cairo.

http:// www.cidob.org/Ingles/Publicaciones/Afers/45-46abdel.html

9. Bailey, T. and Beney, C. (2000). The application of luminescent bacteria for the measurement of wastewater toxicity. WISA 2000 Biennial Conference, Sun City, South Africa, 28 May – 1 June 2000.

10. Barbusiński, K. (2005). Toxicity of Industrial Wastewater Treated by Fenton’s Reagent. Polish Journal of Environmental Studies. Vol. 14 (1): 11-16.

72 11. Baylor E. R. (1942). Cardiac pharmacology of the cladoceran, Daphnia. The

Biological Bulletin, 83: 145-301.

12. Beauvais, S.L., Jone, S.B., Brewer, S.K., Little, E. (2000). Physiological measures of neurotoxicity of diazinon and malathion to larval rainbow trout, Oncorhynchus mykiss and their correlation with behavioral measures. Environmental Toxicology Chem., 19 (7): 1875–1880.

13. Ben-Israel, O., Ben-Israel, H., Ulitzur, S. (1998). Identification and quantification of toxic chemicals by use of Escherichia coli carrying lux genes fused to stress promoters. Applied and Environmental Microbiology. Nov. 1998, pp. 4346-4352.

14. Besch, W.K., Kemball, A., Meyer-Waarden, K., Scharf, B. (1976). A biological monitoring system employing rheotaxis of fish. ASTM special technical publication 607: 56-74

15. Billings, R.M. & DeHaas, G.G. Pollution control in the pulp and paper industry.

Industrial Pollution Control Handbook, Lund, H.F. (Ed.), McGraw-Hill, New York, 1971: 18-28.

16. Blinova, I. Use of bioassays for toxicity assessment of polluted water. Proceedings of the Symposium dedicated to the 40th Anniversary of Institute of Environmental Engineering at Tallinn Technical University, 24–26 September 2001, Tallinn, 2001:

149–154.

17. Brovko, L. (2010). Bioluminescence and Fluorescence for In Vivo Imaging. Tutorial Texts in optical engineering. Vol. TT91. Society of Photo-Optical Instrumentation Engineers (SPIE), USA.

18. Burks, R. L., Jeppesen, E. and Lodge, D. M., (2000). Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. OIKOS 88: 139–147.

Copenhagen.

19. Campisi T., Abbondanzi F., Casado-Martinez C., DelValls T. A., Guerra R., Iacondini A. (2005). Effect of sediment turbidity and color on light output measurement for Microtox Basic Solid-Phase Test. Chemosphere. 60(1):9-15

20. Cairns, J. (1983). Are single species toxicity tests alone adequate for estimating environmental hazard?. Hydrobiologia. 100: 47–57.

73 21. Cēbere, B., Faltina, E., Zelčāns, N. & Kalnina, D. (2009). Toxicity tests for ensuring successful industrial wastewater treatment plant operation. Environmental and Climate Technologies. 3: 41-47.

22. Curtis, C., Lima, A., Lozano, S. J., & Veith, G. D. (1982). Evaluation of a bacterial bioluminescence bioassay as a method for predicting acute toxicity of organic chemicals to fish. In Aquatic Toxicology and Hazard Assessment: Fifth Conference (J. G. Pearson, R. B. Foster, and W. E. Bioship, Eds.). American Society for Testing and Materials, Philadelphia, PA.

23. Daniel, M., Sharpe, A., Driver, J., Knight, A.W., Keenan, P.O., Walmsley, R.M., Robinson, A., Zhang, T. & Rawson, D. (2004). Results of a technology demonstration project to compare rapid aquatic toxicity screening tests in the analysis of industrial effluents. Journal of Environmental Monitoring. 6: 855-865.

24. Dalzell, D. J. B, Alte, S., Aspichueta, E.,de la Sota, A., Etxebarria, J., Gutierrez, M., Hoffmann, C.C., Sales, D., Obst U., & Christofi N. (2002). A comparison of five rapid direct toxicity assessment methods to determine toxicity of pollutants to activated sludge. Chemosphere. 47: 535-545.

25. De Mott, W.R., Dhawale, S. (1995). Inhibition of in vitro protein phosphatase activity in three zooplankton species by microcystin-LR, a toxin from cyanobacteria. Arch.

Hydrobiol. 134: 417-424.

26. Degli-Innocenti F., Bellia G., Tosin M., Kapanen A., Itävaara M. (2001). Detection of toxicity released by biodegradable plastics after composting in activated vermiculite.

Polymer Degradation and Stability. 73, 101-106.

27. Diamond, J. M., Parson, M. J., and Gruber, D. (1990). Rapid detection of sublethal toxicity using Fish ventilatory behavior. Environmental Toxicology Chem. 9: 3–11.

28. El-Gohary, F.A. “Industrial wastewater management in Egypt”. Italian-Egyptian Study Days on the Environment, Cairo, 9-20 October, 1994.

29. Emmanuel, E., Perrodin, Y., Keck, G., Blanchard, J.-M. & Vermande, P. (2005).

Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network, Journal of Hazardous Materials.

A117: 1-11.

74 30. Eriksson, E., Auffarth, K., Eilersen, A. M., Henze, H., Ledin, A. (2003). Household chemicals and personal care products as sources for xenobiotic organic compounds in grey wastewater. Water SA. 29: 135–146.

31. Eriksson, E., Auffarth, K., Henze, H., Ledin, A. (2002). Characteristics of grey wastewater. Urban Water 4: 85–104.

32. Erisction, G. & Larsson, A. (2000). DNA A dots in perch (Perca fluviatillis) in coastal water pollution with bleachen in pulp mill effluents. Ecotoxicol Environ Saf.

46: 167–73.

33. Farré, M., Gajda-Schrantz, K., Kantiani, L., Barceló, D. (2009). Ecotoxicity and analysis of nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry. Volume 393, Issue 1, pp 81-95

34. Farré, M. & Barceló, D. (2003). Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends in Analytical Chemistry. 22(5):

299–310

35. Gelencsér A, Kováts N, Turóczi B, Rostási Á, Hoffer A, Imre K, Nyirő-Kósa, I., Csákberényi-Malasics, D., Tóth, Á., Czitrovszky, A., Nagy, A., Nagy, Sz., Ács, A., Kovács, A., Ferincz, Á., Hartyáni, Zs., Pósfai, M. (2011). The red mud accident in Ajka (Hungary): characterization and potential health effects of fugitive dust, Environmental Science & Technology. 45:1608–15.

36. Ghassemi,F.,Jakeman,A.J.,Nix,H.A., Salinisation of Land and Water Resources, Sydney, University of New South Wales Press, 1995.

37. Gutiérrez, M., Etxebarria, J., & de las Fuentes, L. (2002). Evaluation of wastewater toxicity: comparative study between Microtox® and activated sludge oxygen uptake inhibition. Water Research. 36: 919-924.

38. Hamed, Y. (2008). Soil structure and salinity effects of fish farming as compared to traditional farming in northeastern Egypt. Land Use Policy Journal 25(3): 301-308.

39. Hamed, Y., Shawky, T., Abd-Elrehim, M., ElKiki, M., Berndtsson, R. & Persson,K.

(2011). Case Study: Investigation of different potential causes of pollution in Lake Manzala northeastern of Egypt. Article in Press.

40. Harkey, G. A., Young, T. M. (2000). Effect of soil contaminant extraction method in determining toxicity using the microtox assay. Environ Toxicol Chem. 19(2):276– 82.

75 41. Hayes, D. F. Editor. Wetlands Engineering and River Restoration Conference (2002).

August 27-31, 2001, Reno, Nevada, USA. Higgins, J. M., El-Qousea, D., Abdel-Azim, A. G., Abdelghaffar, M., “Lake Manzala Engineered Wetland, Egypt”,

42. Heinlaan, M., Kahru, A., Kasemets, K., Kurvet, I., Waterlot, C., Sepp, K., (2007).

Rapid screening for soil ecotoxicity with a battery of luminescent bacteria tests. Alternatives to Laboratory Animal. 35: 101–110.

43. Hickey, C. W. & Martin, M. L. (1995). Relative sensitivity of five benthic invertebrate species to reference toxicants and resin acid contaminated sediments.

Environ. Toxicol. Chem. 14: 1401–1409.

44. Hunter, J. V., Heukelekian, H. (1964). Determination of biodegradability using Warburg respirometric techniques. Purdue Conf., vol. 19, pp 616-627.

45. Illés, E., Takács, E., Dombi, A., Gajda-Schrantz, K., Gonter, K., Wojnárovits, L.

(2013). Radiation induced degradation of ketoprofen in dilute aqueous solution.

Science of The Total Environment 03/2013; 447:286-92.

46. ISO/FDIS 20079: Water quality - Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor) - Duckweed growth inhibition test.

47. Ivask, A., and Bernaus, A. (2004). Assessment of sorption and bioavailability of mercury compounds in soils and sediments. Water Pollution Newsletter. 11: 18-22.

48. Ivask, A., Hakkila, K., Virta, M. (2001). Detection of organomercurials with sensor bacteria. Analytical Chemistry. 73(21): 5168-5171

49. Ivask, A., Virta, M., Kahru, A. (2002). Construction and use of specific luminescent recombinant bacterial sensors for the assessment of bioavailable fraction of cadmium, zinc, mercury and chromium in the soil. Soil Biol. & Biochem. 34: 1439-1447.

50. Jackson, M. L. (1958). Soil Chemical Analysis. Prentice-Hall, Inc. Englewood Cliffs, New Jersey.

51. Johnsen, K., Tana, J., Lehtinen, K. J., Stuthridge, T., Mattsson, K., Hemming, J. &

Carlberg, G. E. (1998). Experimental field exposure of brown trout to river receiving effluent from an integrated newsprint mill. Ecotoxicology and Environmental Safety.

40: 184–193.

76 52. Kahru, A., Ivask, A., Kasemets, A., Pollumaa, L., Kurvet, I., Francois, M., Dubourguier, H. C. (2005). Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environmental Toxicology Chem. 11: 2973–2982.

53. Kaiser, K. L. E., McKinnon, M. B., & Fort, F. L. (1994). Interspecies toxicity correlations of rat, mouse and Photobacterium phosphoreum.Environmental Toxicology and Chemistry. 13, 1060–1599.

54. Karlsson, K., Viklander, M., Scholes, L., & Revitt, M. (2010). Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. Journal of Hazardous Materials. 178: 612–618.

55. Kennedy, K. J., Graham, B., Droste, L. R., Fernandes, L., Narbaitz, R. (2000).

MicrotoxTM and Ceriodaphnia dubia toxicity of BKME with powdered activated carbon treatment. Water SA. 26(2): 205-216.

56. Khalil, M. T. (1985). The effect of sewage and pollutional wastes upon Bahr El-Baqar Drain and the southern area of Lake Manzala, Egypt. Egypt. J. Wil. & Nat.

Resources. 6: 162-171.

57. Köck, M., Farré, M., Martínez, E., Gajda-Schrantz, K., Ginebreda, A., Navarro, A., de Alda, M., Barceló, D. (2010). Integrated ecotoxicological and chemical approach for the assessment of pesticide pollution in the Ebro River delta (Spain). Journal of Hydrology. Vol. 383, Issues 1–2: 73–82.

58. Kovacs, T. G. Martel, P. H. & Voss, R. H. (2002). Assessing the biological status of fish in a river receiving pulp and paper mill effluents. Environ Pollut. 118: 123–140.

59. Kováts, N., Szalay, T., Kiss, I., Kárpáti, Á. and Paulovits, G. (2002). Assessment of degradability in whole effluent toxicity testing using bioluminescent bacteria.

Hungarian Journal of Industrial Chemistry. 30: 271-274.

60. Lappalainen, J., Juvonen, R., Karp, M. (1999). A new flash method for measuring the toxicity of solid and colored samples. Chemosphere. 38(5):1069– 83.

61. Lappalainen J., Juvonen R., Nurmi J., Kap M. (2001). Automated color correction method for Vibrio fischeri toxicity test Comparison of standard and kinetic assays.

Chemosphere. 45: 635– 41.

77 62. Leppanen, H. & Oikari, A. (1999). Occurrence of retene and resin acids in sediments and fish bile from lake receiving pulp and a paper mill effluents. Environ. Toxicol.

Chem., 18(7): 1498– 505.

63. Libralato, G., Losso, C., Arizzi Novelli, A., Avezzù, F., Scandella, A. & Volpi Ghirardini, A. (2006). Toxicity bioassays as effective tools for monitoring the performances of wastewater treatment plant technologies: SBR and UF-MBR as case studies. Proceedings of 4th MWWD and 2nd IEMES, Antalya, Turkey.

64. Lindstrom-Seppa, P., Hunskonen, S., Kotelevtsev, S., Mikkelson, P., Rannen, T. &

Stepanova, L. (1998). Toxicity and mutagenity of wastewaters from Baikalsk pulp and paper mill: evaluation of pollutant contamination in lake Baikal. Mar Environ Res.. 46(1– 5): 273– 277.

65. Liss, S. N., Bicho, P. A., McFarlane, P. N. & Saddler, J. N. (1997). Microbiology and degradation of resin acids in pulp mill effluents: a mini review. Can. J. Microbiol., 75: 599–611.

66. Little, E. E., Finger, S. E. (1990). Swimming behavior as an indicator of sublethal toxicity in fish. Environmental Toxicology Chem., 9: 13–19.

67. Lotocka, M. (2001). Toxic effect of cyanobacterial blooms on the grazing activity of Daphnia magna Straus. Oceanologia, 43(4): 441-453.

68. Lürling, M. (2003). Effects of microcystin-free and Microcystin containing strains of the cyanobacterium Microcystis aeruginosa on growth of the grazer Daphnia magna.

Environmental Toxicology, 18: 202-210.

69. Lürling, M., van der Grinten, E. (2000). Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environmental Toxicology and Chemistry, 22: 1281-1287.

70. Manusadzianas, L., Balkelyte, L., Sadauskas, K., Blinova, I., Pollumaa, L., Kahru, A., (2003). Ecotoxicological study of Lithuanian and Estonian wastewaters: selection of the biotests, and correspondence between toxicity and chemicalbased indices. Aquatic Toxicology. 63, 27–41.

71. McElroy, W. D., and Green, A. A. (1955). Enzymatic properties of bacterial luciferase. Arch. Biochem. Biophys., 56: 240-255.

78 72. Means, J. L., Anderson, S. J. (1981). Comparison of five different methods for measuring biodegradability in aqueous environment. Water Air Soil Poll. 16: 301-315.

73. Metcalf & Eddy (revised by Tchobanoglous, G., Burton, F.L. & Stensel, H.D.).

Wastewater Engineering, Treatment and Reuse, 4th edition, McGraw-Hill, New York. 2003.

74. Mohamad I. Badawy, Wahaab, R. A. (1997). Environmental impact of some chemical pollutants on Lake Manzala. Int. J. of Environmental Health Research. Vol.7, No. 2.

75. Mortimer, M., Kasemets, K., Heinlaan, M., Kurvet, I., Kahru, A., (2008). High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicology in Vitro. 22: 1412-1417.

76. Nunes-Halldorson, V. S., and Duran, N. L. (2003). Bioluminescent bacteria: lux genes as environmental biosensors. Brazilian Journal of Microbiology. 34: 91-96.

77. Nyholm, N., Lindgaard-Jorgensen, P., Hansen, N. (1984). Biodegradation of 4-Nitrophenol in Standardized Aquatic Degradation Tests. Ecotox. Environ. Safety. 8:

451–470.

78. Oberemm, I., Fastner, J., Steinberg, C.E.W. (1997). Effects of Microcystin-LR and cyanobacterial crude extracts on embryo-larval development on zebrafish (Danio rerio). Wat. Res., 11: 2918-2921.

79. OECD (Organisation for Economic Co-operation and Development): Detailed review paper on biodegradability testing. Environment Monograph No. 98, 1995.

80. Osfor, M. M., El-Dessouky, S. A., El-Sayed, A., Higazy, R. A., Nahrung/Food, Vol.42, Iss.01, 1998: 42-25.

81. Owens, J. W., Swanson, S. M. & Birkholz, D. A. (1994). Environmental monitoring of bleached kraft pulp mill chlorophenolic compounds in a Northern Canadian River system. Chemosphere. 29 (1): 89–109.

82. Palíková, M., Krejcí, R., Hilscherová, K., Babica, P., Navrátil, S., Kopp, R., Bláha, L.

(2007). Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.). Aquatic Toxicology, 81: 312–318.

79 83. Pokhrel, D & Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater

– a review. Sci. Tot. Env., Vol. 333: 37-58.

84. Pollumaa, L., Kahru, A., & Manusadzianas, L. (2004). Biotest- and chemistry-based hazard assessment of soils, sediments, and solid wastes. Journal of Soils and Sediments, 4(4), 267–275.

85. Pollumaa, L., Kahru, A., Eisentrager, A., Reiman, R., Maloveryan, A., & Ratsep, A.

(2000). Toxicological investigations of soils with the solid-phase flash assay:

comparison with other ecotoxicological tests. Alternatives to Laboratory Animals, 28:

461–472.

86. Rashed, I. G., and Holmes, P. G. (1984). Chemical survey of Bahr El Bakar Drain system and its effects on Manzala Lake. In: Proceedings of the 2nd Egyptian Congress of Chemical Engineering. Cairo, Egypt, March 18-20, 1984: 1-10.

87. Rebhun, M., Galil, N. Inhibition by hazardous compounds in an integrated oil refinery. J. Wat. Poll. Contr. Fed. 60, 1988: 1953-1959.

88. Ren, S., (2004). Assessing wastewater toxicity to activated sludge: recent research and developments. Environ. Int. 30: 1151–1164.

89. Riether, K. B., Dollard, M. A., Billard, P. (2001). Assessment of heavy metal bioavailability using Escherichia coli zntAp:lux and copAp:lux based biosensors.

Applied Microbiology and Biotechnology, 5-6: 712-716.

90. Rohrlack, T., Christoffersen, K., Kaebernick, M., Neilan, B.A. (2004). Cyanobacterial protease inhibitor microviridin J causes a lethal molting disruption in Daphnia pulicaria. Applied and Environmental Microbiology. 8: 5047-5050.

91. Saad, A.K. Ph.D. Thesis, Insitute of Environmental Studies, Ain Shams University, 1997, 232.

92. Saad, M. A. H., McComes. S. R., and Elsenreich, S. J. (1985). Metals and chlorinated hydrocarbons in surficial sediments of three Nile Delta lakes, Egypt. Water-Air-Soil Pollution. 24(1): 27-39.

93. Salem, Sh., Hamed, Y., Sheshtawy, A, and Ali, A. (2011). Environmental assessments for areas located both sides of Bar El-Baqar polluted drain northeastern Egypt. Article in Press.

80 94. Sarabun, C. C., Shedd, T. R., Hayek, C. S., Najmi, A-H. (1999). Live Organism Toxicity Monitoring: Signal Analysis. Johns Hopkins APL Technical Digest, Vol: 20, No: 3.

95. Schnell, A., Steel, P., Melcer, H., Hodson, P. V. & Carey, J. H. (2000). Enhanced biological treatment of bleached kraft mill effluents: II. Reduction of mixed function oxygenase (MFO) induction in fish. Water Res., 34(2): 501–9.

96. Shaalan, N. S. (2001). Egypt Country Paper on Wastewater Reuse; joint FHO/WHO consultation for launching the regional network on wastewater reuse, Amman, Jordan.

97. Shelton, D. R., Tiedje, J. M. (1984). General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47: 850-857.

98. Shimp. R. J., Schwab, B. S., Larson, R. J. (1989). Adaptation to a quaternary ammonium surfactant by suspended microbial communities in a model stream.

Environ. Toxicol. Chem. 8: 723-730.

99. Siegel, F. R., Slaboda, M. L. (1994). Environmental Geology and Water Sciences, Vol.23, Issue 2.

100. Šojić, D., Despotović, V., Orčić, D., Szabó, E., Arany, E., Armaković, S., Illés, E., Gajda-Schrantz, K., Dombi, A., Alapi, T., Sajben-Nagy, E., Palágyi, A., Vágvölgyi, Cs., Manczinger, L., Bjelica, L., Abramović, B. (2012). Degradation of thiamethoxam and metoprolol by UV, O3 and UV/O3 hybrid processes: Kinetics, degradation intermediates and toxicity. Journal of Hydrology. Volumes 472–473, Pages 314–327.

101. Steinberg, C. E., Lorenz, R., Spieser, O. H. (1995). Effects of atrazine on swimming behavior of zebrafish, Brachydanio rerio. Water Res., 29: 981–985.

102. Strevett, K., Davidova, I. and Suflita, J. M. (2002). A comprehensive review of the screening methodology for anaerobic biodegradability of surfactants. Reviews Env.

Science Biotechnol. 1:143-167.

103. Sumathi, S. & Hung, Y. T. (2006). Treatment of pulp and paper mill wastes. Waste treatment in the process industries. Eds: Wang, L.K, Hung, Y.T., Lo, H.H., Yapijakis, C. pp: 453-497. Taylor&Francis. ISBN 0-8493-7233-X, USA.

81 104. Szabó, R. K., Megyeri, Cs., Illés, E., Gajda-Schrantz, K., Mazellier, P., Dombi, A.

(2011). Phototransformation of ibuprofen and ketoprofen in aqueous solutions.

Chemosphere 05/2011; 84(11):1658-63.

105. Taha, A.A., El-Mahmoudi, A.S., El-Haddad, I.M., Emirates Journal for Engineering research, 9(1), 2004: 35-49.

106. Tauriainen, S., Karp, M., Chang, W., Virta, M. (1998). Luminescent bacterial sensors for cadmium and lead. Biosensors and Bioelectronics, 13: 931-938.

107. Thompson, G., Swain, J., Kay, M. & Forster, C. (2001). The treatment of pulp and paper mill effluent: a review. Bioresource Technology, 77: 275–286.

108. Thompson J. A. (1997). Cellular fluorescence capacity as an endpoint in algal toxicity testing. Chemosphere, 9: 2027-2037.

109. Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, P., Mergeay, M. (2001).

A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants.

Environ. Pollut., 113: 19–26.

110. Tisler, T., Zagorc-Koncan, J., Ros, M., Cotman, M. (1999). Biodegradation and toxicity of wastewater from industry producing mineral fibres for thermal insulation.

Chemosphere, 38(6): 1347-1352.

111. Tom-Petersen, A., Hosbond, C., Nybroe, O. (2001). Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiology Ecology, 38 (1): 59–67.

112. UN-Water, Water a shared responsibility, In World Water Development Report, Editors. 2006.

113. USEPA (1993). Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 4th ed., EPA/600/4-90/027F.

U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory (currently, National Exposure Research Laboratory, Cincinnati, OH.

114. USEPA (1994). Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 3rd ed., EPA/600/4-91/002. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory (currently, National Exposure Research Laboratory, Cincinnati, OH.

82 115. USEPA: Methods for Chemical Analysis of Water and Wastes. EPA-600/4-79-020,

Cincinnati. 1982.

116. van der Schalie, W. H., Shedd, T. R., Zeeman, M. G. (1988). Ventilatory and Movement Responses of Rainbow Trout Exposed to 1,3,5-Trinitrobenzene in an Automated Biomonitoring System, in Automated Biomonitoring: Living Sensors as Environmental Monitors, D. S. Gruber and J. M. Diamond (eds.), Ellis Horwood Ltd., Chichester, UK, pp. 67–74.

117. Vogl, C., Grillitsch, B., Wytek, R., Hunrich Spieser, O., Scholz, W. (1999).

Qualification of spontaneous undirected locomotor behavior of fish for sublethal toxicity testing. Part I. Variability of measurement parameters under general test conditions. Environmental Toxicology Chem., 18 (12), 2736–2742.

118. Vass, K.K.; Mukopadhyay, M.K.; Mistra, K. & Joshi, H.C. (1996). Respiratory stresses in fishes exposed to paper and pulp wastewater. Environ Ecol., 14(4): 895–

897.

119. Wang, C., Yediler, A., Lienert, D., Wang Z., & Kettrup, A. (2002). Toxicity evaluation of reactive dyestuffs, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere, 46: 339-344.

120. Ward, D. M., Brock, T. D. (1976). Nutrient limitation of oil biodegradation in lakes of varying water quality in Vilas County. Trans. Wisc. Acad. Sci., 64: 240–249.

121. Whole Effluent Toxicity (WET), Evaluation Summary. Publication #98-16. 1998.

122. Wylie, G. D., Jones, J. R. & Johnson, B. T. (1982). Evaluation of the river dye-away biodegradation test. JWPCF, 54(8): 1231-1236.

123. Xing, X-H., Tanaka, T., Matsumoto, K., Unno, H. (2000). Characteristics of a newly created bioluminescent Pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system. Biotechnology Letters, 22: 671–676.

124. Yen, N. T., Oanh, N. T. K., Reutergard, L. B., Wise, D. L. & Lan, L. T. T. (1996).

An integrated waste survey and environmental effects of COGIDO, a bleached pulp and paper mill in Vietnam on the receiving water body. Global Environ Biotechnol.,

An integrated waste survey and environmental effects of COGIDO, a bleached pulp and paper mill in Vietnam on the receiving water body. Global Environ Biotechnol.,