• Nem Talált Eredményt

DECLARATIONS OF INTEREST 589

In document Journal Pre-proof (Pldal 29-44)

Journal Pre-proof

DECLARATIONS OF INTEREST 589

The authors declare that they have no known competing financial interests or personal 590

relationships that could have influenced the work reported in this paper.

591

592

REFERENCES 593

Ahern, J.C., Fairchild, R., Thomas, J.S., Carr, J., Patterson, H.H., 2015. Characterization of 594

BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water.

595

Appl. Catal. B Environ. 179, 229–238. https://doi.org/10.1016/j.apcatb.2015.04.025 596

Ahmed, S.N., Haider, W., 2018. Heterogeneous photocatalysis and its potential applications 597

in water and wastewater treatment: A review. Nanotechnology 29.

598

https://doi.org/10.1088/1361-6528/aac6ea 599

Akpan, U.G., Hameed, B.H., 2009. Parameters affecting the photocatalytic degradation of 600

Journal Pre-proof

28

dyes using TiO2-based photocatalysts: A review. J. Hazard. Mater.

601

https://doi.org/10.1016/j.jhazmat.2009.05.039 602

Bárdos, E., Király, A.K., Pap, Z., Baia, L., Garg, S., Hernádi, K., 2019. The effect of the 603

synthesis temperature and duration on the morphology and photocatalytic activity of 604

BiOX (X = Cl, Br, I) materials. Appl. Surf. Sci. 479, 745–756.

605

https://doi.org/10.1016/j.apsusc.2019.02.136 606

Chen, J., Loeb, S., Kim, J.H., 2017. LED revolution: Fundamentals and prospects for UV 607

disinfection applications. Environ. Sci. Water Res. Technol. 3, 188–202.

608

https://doi.org/10.1039/c6ew00241b 609

Cheng, H., Huang, B., Dai, Y., 2014. Engineering BiOX (X = Cl, Br, I) nanostructures for 610

highly efficient photocatalytic applications. Nanoscale 6, 2009–2026.

611

https://doi.org/10.1039/c3nr05529a 612

Cornet, J.F., Marty, A., Gros, J.B., 1997. Revised technique for the determination of mean 613

incident light fluxes on photobioreactors. Biotechnol. Prog. 13, 408–415.

614

https://doi.org/10.1021/bp970045c 615

Dai, G., Yu, J., Liu, G., 2011. Synthesis and enhanced visible-light photoelectrocatalytic 616

activity of p - N junction BiOI/TiO2 nanotube arrays. J. Phys. Chem. C 115, 7339–7346.

617

https://doi.org/10.1021/jp200788n 618

Dai, K., Chen, H., Peng, T., Ke, D., Yi, H., 2007. Photocatalytic degradation of methyl orange 619

in aqueous suspension of mesoporous titania nanoparticles. Chemosphere 69, 1361–

620

1367. https://doi.org/10.1016/j.chemosphere.2007.05.021 621

Di, J., Xia, J., Ji, M., Xu, L., Yin, S., Zhang, Q., Chen, Z., Li, H., 2016. Carbon quantum dots 622

in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced 623

photocatalytic molecular oxygen activation performance. Carbon N. Y. 98, 613–623.

624

https://doi.org/10.1016/j.carbon.2015.11.015 625

Journal Pre-proof

29

Dong, F., Sun, Y., Fu, M., Wu, Z., Lee, S.C., 2012. Room temperature synthesis and highly 626

enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites 627

nanoplates microflowers. J. Hazard. Mater. 219–220, 26–34.

628

https://doi.org/10.1016/j.jhazmat.2012.03.015 629

Flak, D., Braun, A., Mun, B.S., Park, J.B., Parlinska-Wojtan, M., Graule, T., Rekas, M., 2013.

630

Spectroscopic assessment of the role of hydrogen in surface defects, in the electronic 631

structure and transport properties of TiO2, ZnO and SnO2 nanoparticles. Phys. Chem.

632

Chem. Phys. 15, 1417–1430. https://doi.org/10.1039/c2cp42601c 633

Fónagy, O., Szabó-Bárdos, E., Horváth, O., 2021. 1,4-Benzoquinone and 1,4-hydroquinone 634

based determination of electron and superoxide radical formed in heterogeneous 635

photocatalytic systems. J. Photochem. Photobiol. A Chem. 407.

636

https://doi.org/10.1016/j.jphotochem.2020.113057 637

Ganose, A.M., Cuff, M., Butler, K.T., Walsh, A., Scanlon, D.O., 2016. Interplay of Orbital 638

and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chem.

639

Mater. 28, 1980–1984. https://doi.org/10.1021/acs.chemmater.6b00349 640

Garg, S., Yadav, M., Chandra, A., Sapra, S., Gahlawat, S., Ingole, P.P., Pap, Z., Hernadi, K., 641

2018a. Biofabricated BiOI with enhanced photocatalytic activity under visible light 642

irradiation. RSC Adv. 8, 29022–29030. https://doi.org/10.1039/c8ra05661g 643

Garg, S., Yadav, M., Chandra, A., Sapra, S., Gahlawat, S., Ingole, P.P., Todea, M., Bardos, 644

E., Pap, Z., Hernadi, K., 2018b. Facile green synthesis of BiOBr nanostructures with 645

superior visible-light-driven photocatalytic activity. Materials (Basel). 11.

646

https://doi.org/10.3390/ma11081273 647

Hao, L., Huang, H., Guo, Y., Du, X., Zhang, Y., 2017. Bismuth oxychloride homogeneous 648

phasejunction BiOCl/Bi 12 O 17 Cl 2 with unselectively efficient photocatalytic activity 649

and mechanism insight. Appl. Surf. Sci. 420, 303–312.

650

Journal Pre-proof

30 https://doi.org/10.1016/j.apsusc.2017.05.076 651

Hatchard, C.G., Parker, C.A., 1956. A new sensitive chemical actinometer - II. Potassium 652

ferrioxalate as a standard chemical actinometer. Proc. R. Soc. London. Ser. A. Math.

653

Phys. Sci. 235, 518–536. https://doi.org/10.1098/rspa.1956.0102 654

Jia, X., Cao, J., Lin, H., Chen, Y., Fu, W., Chen, S., 2015. One-pot synthesis of novel flower-655

like BiOBr0.9I0.1/BiOI heterojunction with largely enhanced electron-hole separation 656

efficiency and photocatalytic performances. J. Mol. Catal. A Chem. 409, 94–101.

657

https://doi.org/10.1016/j.molcata.2015.08.008 658

Jiang, Y.R., Lin, H.P., Chung, W.H., Dai, Y.M., Lin, W.Y., Chen, C.C., 2015. Controlled 659

hydrothermal synthesis of BiOxCly/BiOmIn composites exhibiting visible-light 660

photocatalytic degradation of crystal violet. J. Hazard. Mater. 283, 787–805.

661

https://doi.org/10.1016/j.jhazmat.2014.10.025 662

Jo, W.K., Tayade, R.J., 2014. New generation energy-efficient light source for photocatalysis:

663

LEDs for environmental applications. Ind. Eng. Chem. Res. 53, 2073–2084.

664

https://doi.org/10.1021/ie404176g 665

Khaleel, N.D.H., Mahmoud, W.M.M., Hadad, G.M., Abdel-Salam, R.A., Kümmerer, K., 666

2013. Photolysis of sulfamethoxypyridazine in various aqueous media: Aerobic 667

biodegradation and identification of photoproducts by LC-UV-MS/MS. J. Hazard. Mater.

668

244–245, 654–661. https://doi.org/10.1016/j.jhazmat.2012.10.059 669

Khan, J.A., Sayed, M., Khan, S., Shah, N.S., Dionysiou, D.D., Boczkaj, G., 2019. Advanced 670

oxidation processes for the treatment of contaminants of emerging concern, 671

Contaminants of Emerging Concern in Water and Wastewater: Advanced Treatment 672

Processes. Elsevier Inc. https://doi.org/10.1016/B978-0-12-813561-7.00009-2 673

Konstantinou, I.K., Albanis, T.A., 2003. Photocatalytic transformation of pesticides in 674

aqueous titanium dioxide suspensions using artificial and solar light: Intermediates and 675

Journal Pre-proof

31

degradation pathways. Appl. Catal. B Environ. 42, 319–335.

676

https://doi.org/10.1016/S0926-3373(02)00266-7 677

Kuhn, H.J., Braslavsky, S.E., Schmidt, R., 2004. INTERNATIONAL UNION OF PURE 678

AND APPLIED CHEMISTRY - Chemical Actinometry. IUPAC Tech. Rep. 1–47.

679

Li, T.B., Chen, G., Zhou, C., Shen, Z.Y., Jin, R.C., Sun, J.X., 2011. New photocatalyst 680

BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances.

681

Dalt. Trans. 40, 6751–6758. https://doi.org/10.1039/c1dt10471c 682

Liu, C., Wang, X.J., 2016. Room temperature synthesis of Bi4O5I2 and Bi5O7I ultrathin 683

nanosheets with a high visible light photocatalytic performance. Dalt. Trans. 45, 7720–

684

7727. https://doi.org/10.1039/c6dt00530f 685

Liu, Z., Wang, Q., Tan, X., Wang, Y., Jin, R., Gao, S., 2019. Enhanced photocatalytic 686

performance of TiO2 NTs decorated with chrysanthemum-like BiOI nanoflowers. Sep.

687

Purif. Technol. 215, 565–572. https://doi.org/10.1016/j.seppur.2019.01.046 688

Mezyk, S.P., Neubauer, T.J., Cooper, W.J., Peller, J.R., 2007. Free-radical-induced oxidative 689

and reductive degradation of sulfa drugs in water: Absolute kinetics and efficiencies of 690

hydroxyl radical and hydrated electron reactions. J. Phys. Chem. A 111, 9019–9024.

691

https://doi.org/10.1021/jp073990k 692

Qian, R., Zong, H., Schneider, J., Zhou, G., Zhao, T., Li, Y., Yang, J., Bahnemann, D.W., 693

Pan, J.H., 2019. Charge carrier trapping, recombination and transfer during TiO2 694

photocatalysis: An overview. Catal. Today 335, 78–90.

695

https://doi.org/10.1016/j.cattod.2018.10.053 696

Sergejevs, A., Clarke, C.T., Allsopp, D.W.E., Marugan, J., Jaroenworaluck, A., Singhapong, 697

W., Manpetch, P., Timmers, R., Casado, C., Bowen, C.R., 2017. A calibrated UV-LED 698

based light source for water purification and characterisation of photocatalysis.

699

Photochem. Photobiol. Sci. 16, 1690–1699. https://doi.org/10.1039/c7pp00269f 700

Journal Pre-proof

32

Shan, L., Bi, J., Liu, Y., 2018. Roles of BiOCl(001) in face-to-faced BiOI(010)/BiOCl(001) 701

heterojunction. J. Nanoparticle Res. 20. https://doi.org/10.1007/s11051-018-4272-9 702

Shen, F., Zhou, L., Shi, J., Xing, M., Zhang, J., 2015. Preparation and characterization of 703

SiO2/BiOX (X = Cl, Br, I) films with high visible-light activity. RSC Adv. 5, 4918–

704

4925. https://doi.org/10.1039/c4ra10227d 705

Siao, C.W., Chen, H.L., Chen, L.W., Chang, J.L., Yeh, T.W., Chen, C.C., 2018. Controlled 706

hydrothermal synthesis of bismuth oxychloride/bismuth oxybromide/bismuth oxyiodide 707

composites exhibiting visible-light photocatalytic degradation of 2-hydroxybenzoic acid 708

and crystal violet. J. Colloid Interface Sci. 526, 322–336.

709

https://doi.org/10.1016/j.jcis.2018.04.097 710

Singh, S., Sharma, R., Khanuja, M., 2018. A review and recent developments on strategies to 711

improve the photocatalytic elimination of organic dye pollutants by BiOX (X=Cl, Br, I, 712

F) nanostructures, Korean Journal of Chemical Engineering.

713

https://doi.org/10.1007/s11814-018-0112-y 714

Stefan, M.I., 2017. Advanced Oxidation Processes for Water Treatment - Fundamentals and 715

Applications , Water Intelligence Online. https://doi.org/10.2166/9781780407197 716

Tauc, J., 1968. Optical properties and electronic structure of amorphous Ge and Si. Mater.

717

Res. Bull. 3, 37–46. https://doi.org/10.1016/0025-5408(68)90023-8 718

Wang, J., Huang, Y., Guo, J., Zhang, J., Wei, X., Ma, F., 2020. Optoelectronic response and 719

interfacial properties of BiOI/BiOX (X=F, Cl, Br) heterostructures based on DFT 720

investigation. J. Solid State Chem. 284. https://doi.org/10.1016/j.jssc.2020.121181 721

Wegner, E.E., Adamson, A.W., 1966. Photochemistry of Complex Ions. III. Absolute 722

Quantum Yields for the Photolysis of Some Aqueous Chromium(III) Complexes.

723

Chemical Actinometry in the Long Wavelength Visible Region. J. Am. Chem. Soc. 88, 724

394–404. https://doi.org/10.1021/ja00955a003 725

Journal Pre-proof

33

Wu, L., Zhang, Q., Li, Z., Liu, X., 2020. Mechanochemical syntheses of a series of bismuth 726

oxyhalide composites to progressively enhance the visible-light responsive activities for 727

the degradation of bisphenol-A. Mater. Sci. Semicond. Process. 105.

728

https://doi.org/10.1016/j.mssp.2019.104733 729

Xiao, X., Hao, R., Liang, M., Zuo, X., Nan, J., Li, L., Zhang, W., 2012. One-pot solvothermal 730

synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light 731

photocatalytic activities for the degradation of bisphenol-A. J. Hazard. Mater. 233–234, 732

122–130. https://doi.org/10.1016/j.jhazmat.2012.06.062 733

Xiao, X., Liu, C., Zuo, X., Liu, J., Nan, J., 2016. Microwave synthesis of hierarchical BiOCl 734

microspheres as a green adsorbent for the pH-dependent adsorption of methylene blue. J.

735

Nanosci. Nanotechnol. 16, 12517–12525. https://doi.org/10.1166/jnn.2016.12969 736

Yang, C., Li, F., Zhang, M., Li, T., Cao, W., 2016. Preparation and first-principles study for 737

electronic structures of BiOI/BiOCl composites with highly improved photocatalytic and 738

adsorption performances. J. Mol. Catal. A Chem. 423, 1–11.

739

https://doi.org/10.1016/j.molcata.2016.06.007 740

Yang, J., Xie, T., Zhu, Q., Wang, J., Xu, L., Liu, C., 2020. Boosting the photocatalytic 741

activity of BiOX under solar light: Via selective crystal facet growth. J. Mater. Chem. C 742

8, 2579–2588. https://doi.org/10.1039/c9tc05752h 743

Yao, S., Wang, J., Zhou, X., Zhou, S., Pu, X., Li, W., 2020. One-pot low-temperature 744

synthesis of BiOX/TiO2 hierarchical composites of adsorption coupled with 745

photocatalysis for quick degradation of colored and colorless organic pollutants. Adv.

746

Powder Technol. 31, 1924–1932. https://doi.org/10.1016/j.apt.2020.02.023 747

Yusoff, M.A.M., Imam, S.S., Shah, I., Adnan, R., 2019. Photocatalytic activity of bismuth 748

oxyiodide nanospheres and nanoplates in the degradation of ciprofloxacin under visible 749

light. Mater. Res. Express 6. https://doi.org/10.1088/2053-1591/ab2918 750

Journal Pre-proof

34

Zhang, F., Chen, X., Wu, F., Ji, Y., 2016. High adsorption capability and selectivity of ZnO 751

nanoparticles for dye removal. Colloids Surfaces A Physicochem. Eng. Asp. 509, 474–

752

483. https://doi.org/10.1016/j.colsurfa.2016.09.059 753

Zhang, Y., Zhang, J., Tang, W., Wang, N., Liu, Y., Guo, H., 2020. Preparation and 754

characterization of hierarchical BiO0.5Cl0.5 with excellent adsorption and photocatalytic 755

abilities for removal of aquatic dyes. Desalin. WATER Treat. 201, 356–368.

756

https://doi.org/10.5004/dwt.2020.25866 757

Zhao, Q., Xing, Y., Liu, Z., Ouyang, J., Du, C., 2018. Synthesis and Characterization of 758

Modified BiOCl and Their Application in Adsorption of Low-Concentration Dyes from 759

Aqueous Solution. Nanoscale Res. Lett. 13. https://doi.org/10.1186/s11671-018-2480-y 760

Zhong, Y., Liu, Y., Wu, S., Zhu, Y., Chen, H., Yu, X., Zhang, Y., 2018. Facile fabrication of 761

BiOI/BiOCl immobilized films with improved visible light photocatalytic performance.

762

Front. Chem. 6, 1–11. https://doi.org/10.3389/fchem.2018.00058 763

764

Journal Pre-proof

35

SUPPLEMENTARY 765

Table S1. The chemical parameters of the water-matrices 766

Parameter River water

(River Tisza, Hungary)

Biologically treated domestic wastewater

pH 7.2 7.8

Conductivitiy (µS cm−1) 671 1258

COD (mg dm−3) 12.8 24.4

NH4

+−N (mg dm−3) < 0.4 < 0.4

NO3

(mg dm−3) 7.84 3.37

Cl(mg dm−3) no data 120

TOC(mg dm−3) 3.8 6.9

HCO3

(mg dm−3) 148 525

767

768

Journal Pre-proof

36

Fig. S1 High resolution X-ray photoelectron spectroscopy (XPS) spectra of elements (Bi 4f;

791

O 1s; I 3d and Cl 2p) of BiOI, BiOCl and 80:20 BiOI:BiOCl composite 792

793

208 206 204 202 200 198 196 194 192 190

Intensity (a.u.)

174 172 170 168 166 164 162 160 158 156

Intensity (a.u.)

174 172 170 168 166 164 162 160 158 156

Intensity (a.u.)

174 172 170 168 166 164 162 160 158 156

Intensity (a.u.)

540 538 536 534 532 530 528 526 524 522 520

Intensity (a.u.)

540 538 536 534 532 530 528 526 524 522 520

Intensity (a.u.)

540 538 536 534 532 530 528 526 524 522 520

Intensity (a.u.)

635 630 625 620 615 610

Intensity (a.u.)

208 206 204 202 200 198 196 194 192 190

Intensity (a.u.)

635 630 625 620 615 610

Intensity (a.u.)

208 206 204 202 200 198 196 194 192 190

Intensity (a.u.)

635 630 625 620 615 610

Intensity (a.u.)

BiOCl BiOI 80:20 BiOI:BiOCl

Journal Pre-proof

37 Evaluation of XPS results:

794

The peaks with the binding energies of 158.8 and 167.7 eV are attributed to Bi 4f7/2 and Bi 795

4f5/2, respectively, and represent the typical Bi3+. A reduced/metallic component is caused by 796

the X-ray source during the measurement and can be observed only in the case of BiOCl.

797

Lower binding energy oxygen peak component (O1s) refers to the lattice oxygen in the 798

(BiO)22+, higher binding energy peak is attributed to the surface hydroxyl groups (Liu and 799

Wang, 2016). For BiOCl only the lattice oxygen was observed, while for BiOI and composite 800

both peaks appear. The peak of Cl 2p3/2 at 197.9 eV (197.6 eV in the composite) corresponds 801

to Cl(Hao et al., 2017). The anomalous background of the Cl 2p spectra is due to the 802

neighboring Bi 4f peaks. The peaks of I 3d can be found at 630.0 and 618.8 eV, and attributed 803

to I 3d3/2 and I 3d5/2, respectively, corresponding to I in the BiOI (Di et al., 2016).

804

805

806 807

Fig S2 The The spectra of the LED light sources 808

809 810

Journal Pre-proof

38 811

Fig. S3 The effect of the 80:20 BiOI:BiOCl catalyst dosage on the relative adsorbed amount 812

(%) and initial transformation rate of methyl orange (2.0×10–4 M) 813

814

815

Fig. S4 The concentration of methyl orange as a function of time with and without the 816

addition of fluoride ions (80:20 BiOI:BiOCl, UV-LED) 817

818

 ads. MO (%)

r

0 SMP

 r

0 MO

Journal Pre-proof

39 819

Fig. S5 The relative concentration of MO and SMP, and their primary products versus time of 820

treatment (a: MO+BiOCl; b: MO+80:20 BiOI:BiOCl composite; c: MO+BiOI, d:

821

SMP+BiOCl; e: SMP+80:20 BiOI:BiOCl composite; f: SMP+BiOI) using various light 822

sources 823

824

0 30 60 90

t (min)

0 30 60 90

0.0 0.2 0.4 0.6 0.8 1.0

t (min) c/c0

0 30 60 90

t (min)

0 200 400 600 800 1000

Area (230 nm)

0 200 400 600 800 1000 1200

Area (464 nm)

0.2 0.4 0.6 0.8 1.0

UV Cool white Warm white UV (Product) Cool white (Product ) Warm white (Product)

c/c0 SMPc/c0 MO

BiOCl 80:20 BiOCl/BiOl BiOl

Journal Pre-proof

40 825

826

Fig. S6 The spectra of the treated solutions using 80:20 BiOI/BIOCl composite (a) and P25 827

photocatalysts (b), and the chemical structure of the products determined by HPLC-MS 828

BiOI:BiOCl/Vis; TiO2/UV

SMP

41 830

Fig. S7 The XRD patterns of the 80:20 BiI:BiOCl catalyst before and after the three cycle 831

832

833

Fig S8 Effect of pH and matrix components on the iodide ion leaching from the 80:20 834

BIOI:BiOCl photocatalyst. The UV spectrum of the suspensions after stirring for 30 minutes 835

in dark 836

0.0 0.4 0.8 1.2 1.6 2.0

200 300 400 500 600

Absorbance (A.U.)

Wavelength (nm)

Ref.; pH = 6.5 NaCl NaHCO3 Na-humate NaOH; pH = 9.2 H2SO4; pH = 4.0

0.0 0.4 0.8 1.2 1.6 2.0

200 225 250 275 300

Absorbance (A.U.)

Wavelength (nm)

Ref.; pH = 6.5 NaCl NaHCO3 Na-humate NaOH; pH = 9.2 H2SO4; pH = 4.0

Iodide ion

MO

a b

Journal Pre-proof

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Pre-proof

In document Journal Pre-proof (Pldal 29-44)

KAPCSOLÓDÓ DOKUMENTUMOK