• Nem Talált Eredményt

CRediT (Contributor Roles Taxonomy) authorship contribution statement

In document Journal Pre-proof (Pldal 25-42)

621 622

Csaba Kirchkeszner: conceptualization, design and conduct the experiments, data evaluation 623

and visualization, formal analysis, writing – original draft 624

Noémi Petrovics: conceptualization, design and conduct the experiments, data evaluation and 625

visualization, formal analysis, writing – original draft 626

Tamás Tábi: production and analysis of plastics, data interpretation, writing – review &

627

editing, funding acquisition 628

Norbert Magyar: data visualization, formal analysis, writing – review & editing 629

József Kovács: data visualization, formal analysis, writing – review & editing, funding 630

acquisition 631

Bálint Sámuel Szabó: writing – review & editing, conceptualization 632

Zoltán Nyiri: writing – review & editing, conceptualization 633

Zsuzsanna Eke: conceptualization, supervision, writing – review & editing, funding 634

acquisition 635

Journal Pre-proof

24

References

636

Alin, J., & Hakkarainen, M. (2010). Type of polypropylene material significantly influences 637

the migration of antioxidants from polymer packaging to food simulants during 638

microwave heating. Journal of Applied Polymer Science, 118(2), 1084–1093.

639

https://doi.org/10.1002/app.32472 640

Aznar, M., Ubeda, S., Dreolin, N., & Nerín, C. (2019). Determination of non-volatile 641

components of a biodegradable food packaging material based on polyester and 642

polylactic acid (PLA) and its migration to food simulants. Journal of Chromatography A, 643

1583, 1–8. https://doi.org/10.1016/j.chroma.2018.10.055 644

Battegazzore, D., Bocchini, S., & Frache, A. (2011). Crystallization kinetics of poly(lactic 645

acid)-talc composites. Express Polymer Letters, 5(10), 849–858.

646

corresponding authorised food simulant. Food Additives and Contaminants - Part A 650

Chemistry, Analysis, Control, Exposure and Risk Assessment, 32(8), 1358–1366.

651

https://doi.org/10.1080/19440049.2015.1055523 652

Chang, Y., Kang, K., Park, S. J., Choi, J. C., Kim, M. K., & Han, J. (2019). Experimental and 653

theoretical study of polypropylene: Antioxidant migration with different food simulants 654

and temperatures. Journal of Food Engineering, 244(February 2018), 142–149.

655

https://doi.org/10.1016/j.jfoodeng.2018.09.028 656

European Commission (2011). Plastic materials and articles intended to come into contact 657

with food. European Commission Regulation No 10/2011 EC. Available at: https://eur-658

lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02011R0010-20200923 659

Feigenbaum, A. E., Riquet, A. M., & Scholler, D. (2000). Fatty food simulants: Solvents to 660

mimic the behavior of fats in contact with packaging plastics. In ACS Symposium Series 661

(Vol. 753, Issue 1, pp. 71–81). https://doi.org/10.1021/bk-2000-0753.ch007 662

Garde, J. A., Catalá, R., Gavara, R., & Hernandez, R. J. (2001). Characterizing the migration 663

of antioxidants from polypropylene into fatty food simulants. Food Additives and 664

Contaminants, 18(8), 750–762. https://doi.org/10.1080/02652030116713 665

Journal Pre-proof

25

Gavriil, G., Kanavouras, A., & Coutelieris, F. A. (2018). Food-packaging migration models:

666

variogram függvénnyel a Kis-Balaton Vízvédelmi Rendszer példáján. Természetvédelmi 670

Közlemények, 18(Pomogyi 1991), 202–210.

671

Hatvani, G., Kirschner, A. K. T., Farnleitner, A. H., Tanos, P., & Herzig, A. (2018). Hotspots 672

and main drivers of fecal pollution in Neusiedler See, a large shallow lake in Central 673

Europe. Environmental Science and Pollution Research, 25(29), 28884–28898.

674

https://doi.org/10.1007/s11356-018-2783-7 675

Hatvani, G., Erdélyi, D., Vreča, P., & Kern, Z. (2020). Analysis of the spatial distribution of 676

stable oxygen and hydrogen isotopes in precipitation across the Iberian Peninsula. Water 677

Polar Science, 13, 23–32. https://doi.org/10.1016/j.polar.2017.04.001 681

Hatvani, G., Magyar, N., Zessner, M., Kovács, J., & Blaschke, A. P. (2014). Die Europäische 682

Wasserrahmenrichtlinie: Kann man aus den Grundwassermessdaten mehr Informationen 683

gewinnen? Eine Fallstudie im Seewinkel, Burgenland, Österreich. Hydrogeology 684

Journal, 22(4), 779–794. https://doi.org/10.1007/s10040-013-1093-x 685

Iñiguez-Franco, F., Auras, R., Burgess, G., Holmes, D., Fang, X., Rubino, M., & Soto-686

Valdez, H. (2016). Concurrent solvent induced crystallization and hydrolytic degradation 687

Effect of nanoparticles on the hydrolytic degradation of PLA-nanocomposites by water-691

ethanol solutions. Polymer Degradation and Stability, 146, 287–297.

692

26

antioxidant active films made of poly(l-lactic acid). Journal of Agricultural and Food 696

Chemistry, 60(26), 6515–6523. https://doi.org/10.1021/jf300668u 697

ISO 1133-2:2011 (2011). Plastics – Determination of the melt mass-flow rate (MFR) and melt 698

volume-flow rate (MVR) of thermoplastics – Part 2: Method for materials sensitive to 699

time-temperature history and/or moisture. International Organization for 700

Standardization.

701

Jamshidian, M., Tehrany, E. A., & Desobry, S. (2012). Release of synthetic phenolic 702

antioxidants from extruded poly lactic acid (PLA) film. Food Control, 28(2), 445–455.

703

https://doi.org/10.1016/j.foodcont.2012.05.005 704

Jamshidian, M., Tehrany, E. A., & Desobry, S. (2013). Antioxidants Release from Solvent-705

Cast PLA Film: Investigation of PLA Antioxidant-Active Packaging. Food and 706

Bioprocess Technology, 6(6), 1450–1463. https://doi.org/10.1007/s11947-012-0830-9 707

Kang, K., Chang, Y., Choi, J. C., Park, S. J., & Han, J. (2018). Migration Study of Butylated 708

Hydroxytoluene and Irganox 1010 from Polypropylene Treated with Severe Processing 709

Conditions. Journal of Food Science, 83(4), 1005–1010. https://doi.org/10.1111/1750-710

3841.14104 711

Kern, Z., Erdelyi, D., Vreča, P., Krajcar Bronić, I., Forizs, I., Kandu, T., Štrok, M., Palcsu, L., 712

Suveges, M., Czuppon, G., Kohan, B., & Hatvani, I. G. (2020). Isoscape of amount-713

weighted annual mean precipitation tritium (3H) activity from 1976 to 2017 for the 714

Adriatic-Pannonian region - AP3H_v1 database. Earth System Science Data, 12(3), 715

2061–2073. https://doi.org/10.5194/essd-12-2061-2020 716

Kovács, J., Korponai, J., Székely Kovács, I., & Hatvani, I. G. (2012). Introducing sampling 717

frequency estimation using variograms in water research with the example of nutrient 718

loads in the Kis-Balaton Water Protection System (W Hungary). Ecological 719

Engineering, 42, 237–243. https://doi.org/10.1016/j.ecoleng.2012.02.004 720

Kuorwel, K. K., Cran, M. J., Sonneveld, K., Miltz, J., & Bigger, S. W. (2013). Migration of 721

antimicrobial agents from starch-based films into a food simulant. LWT - Food Science 722

and Technology, 50(2), 432–438. https://doi.org/10.1016/j.lwt.2012.08.023 723

Lu, W., Jiang, K., Chu, Z., Yuan, M., Tang, Z., & Qin, Y. Y. (2021). Changes of thermal 724

properties and microstructure of nano-ZnO/polylactic acid composite films during Zn 725

Journal Pre-proof

27

migration. Packaging Technology and Science, 34(1), 3–10.

726

propolis compounds in Polylactic acid polymer for the development of anti-microbial 733

des variables régionalisées. 107, 263–275.

737

Nasiri, A., Peyron, S., Gastaldi, E., & Gontard, N. (2016). Effect of nanoclay on the transfer 738

properties of immanent additives in food packages. Journal of Materials Science, 51(21), 739

9732–9748. https://doi.org/10.1007/s10853-016-0208-x 740

Ortiz-Vazquez, H., Shin, J., Soto-Valdez, H., Auras, R. (2011). Release of butylated 741

hydroxytoluene (BHT) from Poly(lactic acid) films. Polymer Testing, 30(5), 463–471.

742

https://doi.org/10.1016/j.polymertesting.2011.03.006 743

Ramos, M., Beltrán, A., Peltzer, M., Valente, A. J. M., & Garrigós, M. del C. (2014). Release 744

and antioxidant activity of carvacrol and thymol from polypropylene active packaging 745

films. LWT - Food Science and Technology, 58(2), 470–477.

746

https://doi.org/10.1016/j.lwt.2014.04.019 747

Samsudin, H., Auras, R., Mishra, D., Dolan, K., Burgess, G., Rubino, M., Selke, S., & Soto-748

Valdez, H. (2018). Migration of antioxidants from polylactic acid films: A parameter 749

estimation approach and an overview of the current mass transfer models. Food 750

Research International, 103(July 2017), 515–528.

751

https://doi.org/10.1016/j.foodres.2017.09.021 752

Samsudin, H., Soto-Valdez, H., & Auras, R. (2014). Poly(lactic acid) film incorporated with 753

marigold flower extract (Tagetes erecta) intended for fatty-food application. Food 754

Control, 46, 55–66. https://doi.org/10.1016/j.foodcont.2014.04.045 755

Journal Pre-proof

28

Sato, S., Gondo, D., Wanda, T., Kanehashi, S., Nagai, K. (2012). Effects of various liquid 756

organic solvents on solvent-induced crystallization of amorphous poly(lactic acid) film.

757

Journal of Applied Polymer Science, 129(3), 1607–1617.

758

https://doi.org/10.1002/app.38833 759

Shapiro, S. S., & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete 760

Samples) (Vol. 52, Issue 3). https://www.jstor.org/stable/2333709 761

Trásy, B., Garamhegyi, T., Laczkó-Dobos, P., Kovács, J., & Hatvani, I. G. (2018).

762

Geostatistical screening of flood events in the groundwater levels of the diverted inner 763

delta of the Danube River: Implications for river bed clogging. Open Geosciences, 10(1), 764

64–78. https://doi.org/10.1515/geo-2018-0006 765

Vera, P., Canellas, E., & Nerín, C. (2018). Identification of non volatile migrant compounds 766

and NIAS in polypropylene films used as food packaging characterized by UPLC-767

MS/QTOF. Talanta, 188, 750–762. https://doi.org/10.1016/j.talanta.2018.06.022 768

Welch, B. L. (1951). On the Comparison of Several Mean Values: An Alternative Approach 769

(Vol. 38, Issue 3).

770

Wunderlich, B. (2005). Structure and Properties of Materials. In B. Wunderlich (Ed.), 771

Thermal Analysis of Polymeric Materials, (pp. 512–516). Springer.

772

Yang, W., Fortunati, E., Dominici, F., Giovanale, G., Mazzaglia, A., Balestra, G. M., Kenny, 773

J. M., & Puglia, D. (2016). Effect of cellulose and lignin on disintegration, antimicrobial 774

and antioxidant properties of PLA active films. International Journal of Biological 775

Macromolecules, 89, 360–368. https://doi.org/10.1016/j.ijbiomac.2016.04.068 776

777 778

Journal Pre-proof

29

Figure captions

779

Figure 1 Swelling kinetic curves of reference PLA (1.A) and PP (1.C) in isooctane and 780

ethanol 95 v/v%, and their empirical semivariograms in ethanol 95 v/v% (1.B for PLA and 781

1.D for PP) 782

Figure 2 Swelling kinetic curves of PLA (2.A) in ethanol 95 v/v% and PP (2.B) in isooctane 783

Figure 3 Migration and swelling of TBAC-compounded PLA (3.A and 3.B) and PP (3.C and 784

3.D) in isooctane and ethanol 95 v/v%, respectively 785

Figure 4 Surface normalized concentrations divided by the applied mass ratios of the 786

additives for PLA and PP in ethanol 95 v/v% and isooctane, respectively (Molecular weight 787

values: MBHT = 220.3 g/mol, MUvinul 3039 = 361.5 g/mol, MTBAC = 402.5 g/mol, MIonox 220 = 788

424.7 g/mol, MTOTM = 546.8 g/mol, MIrgafos 168 = 646.9 g/mol) 789

Figure 5 Relation between swelling and surface normalized concentrations in ethanol 95 790

v/v% for Uvinul 3039 from PLA (5.A) and BHT from PP (5.B) 791

Table captions

792

Table 1 Retention time, qualifier and quantifier ions, LLOQ and recovery (at LLOQ) of target 793

compounds 794

Table 2 Mechanical and thermal properties of the investigated plastic samples 795

Table 3 Maximum surface normalized concentrations 796

Table 4 Starting points of steady-states in the swelling and migration curves 797

Journal Pre-proof

Table 1 Retention time, qualifier and quantifier ions, LLOQ and recovery (at LLOQ) of target compounds

Target Compounds

Retention time (min)

Quantifier ion (m/z)

Qualifier ions (m/z)

LLOQ*

(mg/L)

Recovery at LLOQ (%) Ethanol

95 v/v% Isooctane Ethanol

95 v/v% Isooctane

BHT 6.67 205 145 220 0.025 0.05 104.8 112.6

Ionox 220 12.62 409 367 424 0.5 0.5 97.3 119.6

Irgafos 168 16.81 441 147 308 0.5 0.1 101.6 112.9

Uvinul 3039 12.86 249 204 360 0.5 0.5 87.3 89.1

TBAC 9.48 185 259 129 0.1 0.1 119.9 81.6

TOTM 16.97 305 193 435 0.5 0.1 89.7 108.0

Mirex

(ISTD) 12.33 272 237 332

*LLOQ: lower limit of quantitation

Journal Pre-proof

Table 4 Starting points of steady-states in the swelling and migration curves

Additives

Starting points of steady-states (h)

Swelling Migration

PLA ethanol

BHT 87; 165 87; 165

Ionox 220 111; 191 70; 143; 193

Uvinul 3039 63; 135; 261 68; 135; 260

TBAC 112; 167 117; 237

TOTM 73; 112; 162 93; 147; 212

PP–ethanol

BHT 87; 163; 260 115; 260

Ionox 220 60; 167 163; 260

Irgafos 168 68; 210 116; 238

Uvinul 3039 93; 167 117; 233

TBAC 67; 133; 207 73; 133; 207

TOTM 117; 213 188

PP–isooctane BHT 60; 113 87; 165

Ionox 220 114 255

Irgafos 168 165 208

Uvinul 3039 167 167

TBAC 44 63

TOTM 60 115

Journal Pre-proof

Table 2 Mechanical and thermal properties of the investigated plastic samples

Additives MFR (g/10 min)

Tg (°C)

Tm (°C)

ΔHm (J/g)

Tcc (°C)

ΔHcc (J/g)

X (%)

2500HP PLA

Reference 3.2 ± 0.1 61.1 ± 0.1 175.8 ± 0.1 46.8 ± 1.0 95.3 ± 0.3 28.1 ± 1.1 20.1 ± 0.8 BHT 5.1 ± 0.1 61.7 ± 0.1 175.6 ± 0.1 45.4 ± 0.7 90.7 ± 0.2 24.7 ± 0.6 22.5 ± 0.8 Ionox 220 3.4 ± 0.1 61.2 ± 0.2 175.5 ± 0.0 46.4 ± 0.4 91.4 ± 0.2 24.7 ± 1.1 23.6 ± 1.4 Uvinul 3039 5.4 ± 0.1 61.3 ± 0.2 175.3 ± 0.2 46.1 ± 1.0 90.9 ± 0.1 26.5 ± 0.8 21.2 ± 0.4 TBAC 6.8 ± 0.2 55.8 ± 0.2 174.4 ± 0.0 41.2 ± 1.0 86.3 ± 0.3 21.3 ± 0.9 22.5 ± 2.2 TOTM 6.5 ± 0.1 56.3 ± 0.1 174.4 ± 0.1 46.9 ± 1.6 81.0 ± 0.1 21.4 ± 0.3 28.9 ± 2.2

H145F PP

Reference* 9.8 ± 0.1 165.1 ± 0.1 81.5 ± 1.0 39.4 ± 0.5

BHT 13.9 ± 0.1 164.5 ± 0.2 77.6 ± 1.4 37.5 ± 0.7

Ionox 220 13.3 ± 0.1 164.6 ± 0.0 87.2 ± 1.9 42.1 ± 0.9

Uvinul 3039 14.0 ± 0.1 164.8 ± 0.1 81.2 ± 0.7 39.2 ± 0.3

TBAC 15.1 ± 0.1 163.6 ± 0.1 82.3 ± 1.0 39.8 ± 0.5

TOTM 14.9 ± 0.2 164.1 ± 0.2 80.9 ± 2.6 39.0 ± 1.2

*It contained Irgafos 168 antioxidant.

**All values are given as mean ± standard deviation.

Journal Pre-proof

Table 3 Maximum surface normalized concentrations

Additives

Maximum value of cA,mig,i

(mg/dm2)

Isooctane Ethanol 95 v/v%

PLA

BHT 0.0036 ± 0.0011 14.2 ± 1.06

Ionox 220 0.0040 ± 0.0015 6.75 ± 0.972 Uvinul 3039 0.0055 ± 0.00036 7.32 ± 0.514

TBAC 0.11 ± 0.019 174 ± 15.3

TOTM 0.043 ± 0.0082 34.1 ± 4.54

PP

BHT 48.2 ± 1.82 2.77 ± 0.138

Ionox 220 31.1 ± 1.33 0.48 ± 0.040

Irgafos 168 5.24 ± 0.150 0.032 ± 0.0010 Uvinul 3039 32.2 ± 1.56 1.75 ± 0.067

TBAC 339 ± 3.26 33.5 ± 0.581

TOTM 327 ± 3.10 20.4 ± 0.776

*All values are given as mean ± standard deviation.

Journal Pre-proof

Journal Pre-proof

Journal Pre-proof

Journal Pre-proof

Journal Pre-proof

Journal Pre-proof

Highlights

 Migration and swelling kinetics of polylactic acid and polypropylene were studied.

 Swelling strongly affects plastic additive migration from food contact materials.

 The effect of molecular weight on additive migration can be overruled by plasticizers.

Variography was successfully applied to identify steady-states on kinetic curves.

Journal Pre-proof

In document Journal Pre-proof (Pldal 25-42)