• Nem Talált Eredményt

Coupled Oxidative Phosphorylation

ELECTRON TRANSPORT FROM "PYRUVIC DEHYDROGENASE COMPLEX" TO VARIOUS ACCEPTOR SYSTEMS

VIII. Coupled Oxidative Phosphorylation

A . Y I E L D OP " E N E R G Y - R I C H " PHOSPHATE ( ~ P )

I n order t o serve t h e energy requirements of t h e cell, energy released in oxidative reactions must be conserved in some biologically available form.

E q u a t i o n (23) is a general formulation for t h e coupling between oxidation a n d energy-trapping reactions. I n this reaction, the free energy of

theoxida-A H2 + Β + wADP + wP04 —• A + B H2 + nATP + n H20 (23) tion, or a portion of it, is conserved in the "high-energy" bond of adenosine triphosphate ( A T P ) . * T h e mechanisms of A T P utilization cannot be re­

viewed here. T h e reader is referred t o t h e review of Krebs and Kornberg.2 2 T h e yield of ~ P in equation (23) depends upon t h e AF of t h e reaction (voltage span between A H2 and B) and upon t h e number of energy con­

servation steps t h a t m a y be available between A H2 a n d B . W h e n Β is 02, results are usually reported as P / O ratios, t h a t is, equivalents of phosphate esterified per a t o m of oxygen taken u p (i.e., per 2 H oxidized). T h e integral value of t h e ratio is sometimes taken as t h e number of points a t which mechanisms for phosphate esterification exist. Figure 8 shows t h e probable yield of ~ P , based on experiments with animal mitochondria,2 2* 1 7 9 for electron transport between various members of the respiratory chain [vari­

ous pairs of A H2 and Β in equation (23)]. Comparison of the respiratory chain sequence with the dehydrogenation potentials of various substrate

* The term "high-energy bond" has been criticized as being misleading.1 7 8 The free energy released on hydrolysis of a "high-energy" compound is not contained in any one bond, but is a statistical property of the system, being defined by equa­

tion 18. In the text, the symbol ~ P is used for convenience. At pH 7, AF' for the hydrolysis of ATP is approximately — 7900 cal., whereas under the conditions used in oxidative phosphorylation studies, the best approximation for AF' at pH 7 is probably

-12,000 cal.1 7 8 a

356 Μ . I . D O L I N

systems indicates t h e total a m o u n t of phosphate esterification t h a t m a y theoretically be expected for t h e one-step oxidation (one pair of hydrogens transferred) of typical substrates. Oxidation of carbonyl groups t o carboxyl groups, with D P N as electron acceptor, can be coupled with the formation of a n energy-rich bond (without need for further hydrogen transfer reac­

tions). During glucose oxidation via t h e glycolytic p a t h w a y a n d the tri­

carboxylic acid cycle, this reaction occurs upon t h e reduction of D P N b y glyceraldehyde-3-phosphate, pyruvate, a n d α-ketoglutarate.2 2 T h e oxidation of p y r u v a t e and α-ketoglutarate b y various bacteria1 1 0 and of acetaldehyde b y C. kluyveri1*0 offer further examples of this energy-coupled oxidation.

This reaction is usually termed "substrate-linked phosphorylation," to distinguish it from t h e respiratory chain phosphorylation t h a t accompanies t h e reoxidation of D P N H . Substrate-linked phosphorylation is not sensitive t o dinitrophenol, whereas respiratory chain phosphorylation is uncoupled b y this reagent (i.e., phosphorylation is abolished, b u t oxygen u p t a k e is either not affected or somewhat stimulated). T h e mechanism of substrate-linked phosphorylation is reasonably well understood; several acyl esters m a y occur as intermediates.2 2

Phosphate esterification coupled to true electron transport through the respiratory chain is a characteristic property of mitochondria.3 W i t h ani­

mal mitochondrial systems, t h e reoxidation of D P N H , with oxygen as ac­

ceptor yields, experimentally, 3 ~ Ρ for a two-electron transfer (Fig. 8).

Two of the phosphorylations can be obtained with cytochrome c as ac­

ceptor and one in t h e reoxidation of cytochrome c b y o x y g e n .2 2-1 7 9 T h e ­ oretically, one might expect t h a t t h e step from D P N H t o cytochrome c would yield one ^ P between D P N H a n d flavoprotein, and a second ~ P in the reoxidation of reduced flavoprotein b y cytochrome c. Such partial reactions have not been demonstrated to date. T h e oxidation of succinate b y O2 yields two ~ P , in keeping with the predictions t h a t would be m a d e from schemes such as t h a t of Figure 8. I n spite of much work, t h e intimate mechanism of respiratory chain phosphorylation is still not understood.

There is, however, increasing evidence t h a t vitamin Ki functions in both electron transport and oxidative phosphorylation in b a c t e r i a l1 2 , 8 9 and m a m ­ malian s y s t e m s .1 0 , 1 1 ·8 5 I t has also been suggested t h a t α-tocopherol m a y function in oxidative phosphorylation.1 4 Mechanisms for t h e mediation of phosphate transfer to A D P via vitamin Κ ι1 8 1·1 8 2 and α-tocopherol1 4 h a v e been suggested.

T h e free energy of D P N H oxidation, with oxygen as acceptor, is —52,000 cal. Since, under t h e experimental conditions used for P / O determinations, t h e AF for A T P hydrolysis (pH 7) is approximately - 1 2 , 0 0 0 cal.,1 7 8 t h e efficiency of D P N H oxidation, as carried out b y animal mitochrondria, is approximately 70 %.

6. MICROBIAL ELECTRON TRANSPORT MECHANISMS 357

B . BACTERIAL SYSTEMS

Respiratory particles capable of catalyzing coupled oxidative phosphoryl­

ation have been isolated from several bacterial species including Alcaligenes faecalis*** M. phlei12'188 and Azotobacter vinelandii.Ut 1 8 4 ·1 8 6 T h e Azotobacter and A. faecalis systems differ somewhat from mammalian mitochondria in

(1) being less sensitive to dinitrophenol and (2) exhibiting lower P / O ratios for t h e oxidation of typical substrates. With M. phlei succinate oxidation results in P / O ratios approaching those found for mammalian systems and the phosphorylation is sensitive to typical uncoupling agents. D P N H oxida­

tion b y preparations from Azotobactery A. faecalis, or M. phlei yields P / O ratios approaching 1, whereas with mammalian mitochondria t h e probable ratio is 3 a n d directly observed values as high as 2.6 have been obtained.1 7 9 I t is not clear whether this situation reflects a real difference between bac­

terial a n d mammalian systems (i.e., whether some bacterial respiratory particles h a v e fewer loci for coupled oxidative phosphorylation) or whether optimum conditions have not as y e t been found for the demonstration of oxidative phosphorylation with D P N H as substrate in bacterial systems.

A promising feature of several of t h e bacterial systems is t h e finding t h a t oxidative phosphorylation can be shown to require soluble proteins in ad­

dition to the respiratory particles.

I n Μ. phlei, a soluble protein seems t o be t h e dinitrophenol-sensitive component of t h e phosphorylation system.1 8 6* T h e over-all reaction has also been shown t o require a naphthoquinone.1 2 Irradiation of particles and soluble supernatant components a t 3600 A. leads t o inactivation of both oxidation and phosphorylation; these activities are restored to t h e normal level b y the physiologically occurring naphthoquinone t h a t has been iso­

lated from Μ. pAfei.1 8 e b Vitamin Ki is less effective.1 2 F M N can restore the oxidation b u t not t h e ability to couple oxidation to phosphorylation. Similar ultraviolet inactivations, reversible b y vitamin Κ ι, have been demonstrated for animal mitochondria.1 1 Stimulation of oxidation a n d phosphorylation b y soluble proteins has also been demonstrated for A. vinelandiiu a n d A.

faecalis.*** I n t h e latter system, there appears t o be a n additional require­

m e n t for a polynucleotide of t h e R N A type. Little information is available concerning phosphorylation coupled t o electron transport in bacteria which use inorganic electron donors or acceptors. With intact cells, phosphate turnover studies suggest t h a t oxidative phosphorylation m a y occur when nitrate is t h e electron acceptor for formate oxidation b y E. colt1*7 or when oxygen serves as acceptor for t h e oxidation of sulfur compounds b y thio-bacilli.1 8 8

I n several bacteria, high-molecular weight polyphosphates (metaphos-phate) previously identified histologically as metachromatic granules or volutin g r a n u l e s1-1 8 9 appear to be storage forms for "high-energy"

phos-358 Μ. I . DOLIN

p h a t e generated in oxidative phosphorylation. Chemical identification of t h e volutin granules as polyphosphate h a s been m a d e in A. aerogenes, C.

diphtheriae, mycobacteria, a n d S. cerevisias.1 T h e formation of m e t a p h o s -p h a t e from A T P in E. coli190 a n d probably C. diphtheriae190 a n d y e a s t1 9 1

takes place as follows:

nATP <=± wADP + ( P 08- > (24)

T h e E. coli enzyme h a s been purified and, with substrate concentration of reactants, h a s been shown t o catalyze reaction (24) in a reversible m a n n e r . Polyphosphate is formed solely from t h e terminal phosphate of A T P .

REFERENCES

1 M. Alexander, Bacteriol. Revs. 20, 67 (1956).

2 D . E. Green, R. E. Basford, and B. Mackler, in "Inorganic Nitrogen Metabolism"

(W. D . McElroy and B. Glass, eds.), p. 628. Johns Hopkins Press, Baltimore, Maryland, 1956.

8 B. Chance and G. R. Williams, Advances in Enzymol. 17, 65 (1956).

4 R. Y. Stanier, in "Cellular Metabolism and Infections" (E. Racker, ed.), p. 3.

Academic Press, Ν . Y., 1954.

6 R. Storck and J. T. Wachsman, / . Bacteriol. 73, 784 (1957).

• L. Smith, Bacteriol. Revs. 18, 106 (1954).

7 M. Kamen, Bacteriol. Revs. 19, 250 (1955).

8 S. W. Edwards and E . G. Ball, / . Biol. Chem. 209, 619 (1954).

9 G. V. Marinetti, D. J. Scaramuzzino, and E. Stotz, J. Biol. Chem. 224, 819 (1957).

1 0 C. Martius and D . Nitz-Litzow, Biochim. et Biophys. Acta 13, 152, 289 (1954).

1 6 d Y. Hatefi and F. Quiros-Perez, Biochim. et Biophys. Acta 31, 502 (1959).

1 δ β R. A. Morton, Nature 182, 1764 (1958).

1 8 J. H. Bruemmer, P. W. Wilson, J. L. Glenn and F. L. Crane, J. Bacteriol. 73, 113 (1957).

1 7 H. S. Mason, Advances in Enzymol. 19, 79 (1957).

1 8 W. H. McShan, in "Respiratory Enzymes" (H. A. Lardy, ed.), p. 101. Burgess Publ. Co., Minneapolis, Minnesota, 1949.

1 9 T. P. Singer, Ε. B. Kearney, and V. Massey, Advances in Enzymol. 18, 65 (1957).

2 0 C. A. Appleby and R. K. Morton, Nature 173, 749 (1954).

2 1 E. Boeri and L. Tosi, Arch. Biochem. Biophys. 60, 463 (1956).

2 2 H. A. Krebs and H. L. Kornberg, Ergeb. Physiol., biol. Chem. u. exptl. Pharmakol.

49, 212 (1957).

2 8 Μ. E. Pullman, A. San Pietro, and S. P. Colowick, / . Biol. Chem. 206, 129 (1954).

2 4 W. M. Clark, "Topics in Physical Chemistry." Williams & Wilkins, Baltimore, Maryland, 1952.

6. MICROBIAL ELECTRON TRANSPORT MECHANISMS 359

2 5 H. R. Mahler, Ann. Rev. Biochem. 26, 17 (1957).

2 6 N. O. Kaplan, Bacteriol. Revs. 19, 235 (1955).

2 7 B. Vennesland and F. H. Westheimer, in "The Mechanism of Enzyme Action"

(W. D . McElroy and B. Glass, eds.), p. 357. Johns Hopkins Press, Baltimore, Maryland, 1954.

3 4 R. Repaske and J. J. Jos ten, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 115 (1955).

3 5 A. Tissieres, H. G. Hovenkamp, and E. C. Slater, Biochim. et Biophys. Acta 25, 336 (1957).

3 8 R. E. Asnis, V. G. Vely, and M. C. Glick, / . Bacteriol. 72, 314 (1956).

3 7 W. A. Wood, Bacteriol. Revs. 19, 222 (1955).

3 8 4 I. Millman and R. W. Darter, Proc. Soc. Exptl. Biol. Med. 91, 271 (1956).

8 8 1 1 G. B. Pinchot, Biol. Chem. 229, 1, 11, 25 (1957).

3 9 Μ. M. Weber and A. F. Brodie, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 105 (1958).

4 0 P. M. Nossal, D. B. Keech, and D . J. Morton, Biochim. et Biophys. Acta 22, 412 (1956).

4 1 A. W. Linnane and J. L. Still, Biochim. et Biophys. Acta 16, 305 (1955).

4 2 H. R. Mahler, in "Currents in Biochemical Research" (D. E. Green, ed.), p. 251.

Interscience, New York, 1956.

4 3 O. Warburg and W. Christian, Biochem. Z. 266, 377 (1933).

4 4 H. Theorell, Nature 138, 687 (1936).

4 5 H. Theorell, in "The Enzymes, Chemistry and Mechanism of Action" (J. B.

Sumner and K. Myrback, eds.), Vol. II, Part 1, p. 335. Academic Press, New York, 1951.

4 6 T. P. Singer and Ε. B. Kearney, in "The Proteins" (H. Neurath and K. Bailey, eds.), Vol. 2, Part A, p. 123. Academic Press, New York, 1954.

4 7 Μ. I. Dolin, Arch. Biochem. Biophys. 55, 415 (1955).

M a L. Michaelis, in "The Enzymes, Chemistry and Mechanism of Action" (J. B.

Sumner and K. Myrback, eds.), Vol. II, Part 1, p. 1. Academic Press, New York, 1951.

360 Μ. I. DOLIN

6 8 b F. H. Westheimer, in "The Mechanism of Enzyme Action" (W. D. McElroy and

B. Glass, eds.), p. 321. Johns Hopkins Press, Baltimore, Maryland, 1954.

5 9 H. Beinert, / . Biol. Chem. 225, 465 (1957).

6 8 S. W. Tanenbaum, Biochim. et Biophys. Acta 21, 335 (1956).

β β M. J. Cormier and J. R. Totter, J. Am. Chem. Soc. 76, 4744 (1954).

8 7 Μ. I. Dolin, J. Bacteriol. 77, 383 (1959).

8 8 Μ. I. Dolin, J. Bacteriol. 77, 393 (1959).

8 9 Μ. I. Dolin, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 105 (1958).

7 0 Μ. Μ. Weber and N. 0 . Kaplan Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 96

8 2 Μ. I. Dolin, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 110 (1957).

8 8 V. Massey, Biochim. et Biophys. Acta. 30, 205 (1958).

8 4 H. R. Rosenberg, "Chemistry and Physiology of the Vitamins," p. 481. Inter-science, New York, 1945.

8 8 J. P. Colpa-Boonstra and E. C. Slater, Biochim. et Biophys. Acta 27, 122 (1958).

8 8 F. Vasington, K. O. Donaldson, and A. Nason, Federation Proc. 17, 327 (1958).

8 7 B. Chance, Federation Proc. 16, 671 (1957).

8 8 J. E. LuValle and D . R. Goddard, Quart. Rev. Biol. 23, 197 (1948).

8 9 W. W. Wainio and S. J. Cooperstein, Advances in Enzymol. 17, 329 (1956).

9 0 E. C. Layne and A. Nason, Biol. Chem. 231, 889 (1958).

eds.), 2nd ed., Vol. 1, p. 249. Academic Press, New York.

9 8 M. G. P. J. Warringa, Ο. H. Smith, A. Giuditta, and T. P. Singer, / . Biol. Chem.

230, 97 (1958).

9 7 M. G. P. J. Warringa and A. Giuditta, Biol. Chem. 230, 111 (1958).

9 8 T. P. Singer, Abstr. Meeting Am. Chem. Soc. p. 41c, Sept. (1957).

9 9 H. D . Peck, Ο. H. Smith, and H. Gest, Biochim. et Biophys. Acta 26, 142 (1957).

H. Krebs, Biochem. J. 31, 2095 (1937).

1 0 1 V. Massey, J. Biol. Chem. 229, 763 (1957).

6. MICROBIAL ELECTRON TRANSPORT MECHANISMS 361

1 0 2 A. M. Pappenheimer, Jr., and E. D . Hendee, J. Biol. Chem. 180, 597 (1949).

1 0 3 C. L. Wadkins and R. C. Mills, Federation Proc. 15, 377 (1956).

1 0 4 E. Kuhn and L. G. Abood, J. Biol. Chem. 180, 813 (1949).

1 0 6 M. Kusunose, S. Nagai, E. Kusunose, and Y. Yamamura, J. Bacteriol. 72, 754

(1956).

1 0 6 Ε. B. Kearney and T. P. Singer, / . Biol. Chem. 219, 963 (1956).

1 0 7 R. Repaske, / . Bacteriol. 68, 555 (1954).

1 0 8 B. C. Hertlein and W. A. Wood, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 105

(1958).

1 0 9 Τ. E. King and V. H. Cheldelin, J. Biol. Chem. 224, 579 (1957).

1 1 0 I. C. Gunsalus, in "The Mechanism of Enzyme Action" (W. D . McElroy and B.

Glass, eds.), p. 545. Johns Hopkins Press, Baltimore, Maryland, 1954.

1 1 1 H. S. Moyed and D. J. O'Kane, / . Biol. Chem. 218, 831 (1956).

McElroy and B. Glass, eds.), p. 521. Johns Hopkins Press, Baltimore, Maryland, 1956.

1 1 6 L. Packer and W. Vishniac, Biochim. et Biophys Acta 17, 153 (1955).

1 1 7 H. D . Peck and H. Gest, / . Bacteriol. 73, 569 (1957).

1 1 8 G. Milhaud, J. P. Aubert, and J. Millet, Compt. rend. acad. sci. 246, 1766 (1958).

1 1 9 H. Lees and J. R. Simpson, Biochem. J. 65, 297 (1957).

1 2 0 A. M. Altschul, R. Abrams, and T. R. Hogness, / . Biol. Chem. 136, 777 (1940).

1 2 1 B. Chance, in "The Mechanism of Enzyme Action" (W. D . McElroy and B. Glass,

eds.), p. 399. Johns Hopkins Press, Baltimore, Maryland, 1954.

1 2 2 H. Wieland and H. J. Pistor, Ann. 535, 205 (1938).

1 2 7 S. Taniguchi, R. Sato, and F. Egami, in "Inorganic Nitrogen Metabolism" (W. D .

McElroy and B. Glass, eds.), p. 87. Johns Hopkins Press, Baltimore, Maryland, 1956.

1 2 8 R. Sato, in, "Inorganic Nitrogen Metabolism" (W. D . McElroy and B. Glass,

eds.), p. 163. Johns Hopkins Press, Baltimore, Maryland, 1956.

1 2 9 J. C. Sadana and W. D . McElroy, Arch. Biochem. Biophys. 67, 16 (1957).

130 w . Verhoeven and Y. Takeda, in "Inorganic Nitrogen Metabolism" (W. D . Mc­

Elroy and B. Glass, eds.), p. 159. Johns Hopkins Press, Baltimore, Maryland, 1956.

1 8 1 J. R. Postgate, / . Gen. Microbiol. 14, 545 (1956).

1 8 2 a M. Ishimoto, J. Koyama, T. Yagi, and M. Shiraki, / . Biochem. (Tokyo) 44, 413

(1957).

132 b ye χ Najjar and C. W. Chung, in "Inorganic Nitrogen Metabolism" (W. D . McElroy and B. Glass, eds.), p. 260. Johns Hopkins Press, Baltimore, Maryland, 1956.

1 3 2 0 H. D. Peck, Proc. Natl. Acad. Sci. U. S. 45, 701 (1959).

1 8 3 J. C. Senez and F. Pichinoty, Biochim. et Biophys. Acta 28, 355 (1958).

1 3 4 O. Meyerhof, Arch. ges. Physiol. Ρ finger's 169, 87 (1917).

362 Μ. I. DOLIN

1 3 5 C. Oppenheimer and K. G. Stern, "Biological Oxidation." Interscience, New

York, 1939.

1 3 6 J. H. Quastel and Α. Η. M. Wheatley, Biochem. J. 32, 936 (1938).

1 3 7 T. Thunberg, Skand. Arch. Physiol. 40, 1 (1920).

1 3 8 A. Giuditta and Ε. B. Kearney, Federation Proc. 17, 229 (1958).

1 3 9 D . Keilin and Τ. E. King, Nature 181, 1520 (1958).

1 4 0 L. Smith, in "Methods in Enzymology" (S. P. Colowick and N. O. Kaplan, eds.),

Vol. II, p. 732. Academic Press, New York, 1955.

1 4 1 W. D. Wosilait and A. Nason, / . Biol. Chem. 206, 255 (1954).

1 4 8 b E. A. Delwiche, Bacteriol. Proc. (Soc. Am. Bacteriologists) p. 117 (1959).

1 4 7 J. Molland, Acta. Pathol. Microbiol. Scand. Suppl. 66, 9 (1947).

1 4 8 f t D . Herbert and J. Pinsent, Biochem. J. 43, 193 (1948).

1 4 8 b R. K. Clayton, Biochim. et Biophys. Acta 36, 40 (1959).

1 4 9 B. Chance and D. Herbert, Biochem. J. 46, 402 (1950).

1 6 0 B. Chance, Science 116, 202 (1952).

151 Mirko Beljanski and Monique Beljanski, Ann. inst. Pasteur 92, 396 (1957).

1 5 2 J. Jensen and E. Thofern, Z. Naturforsch. 86, 604 (1953).

1 8 9 R. Lemberg and J. W. Legge, "Hematin Compounds and Bile Pigments." Inter­

science, New York, 1949.

1 8 0 B. Chance, Advances in Enzymol. 12, 153 (1951).

1 8 1 R. W. Estabrook, J. Biol. Chem. 227, 1093 (1957).

1 8 2 A. E. Reif and V. R. Potter, Arch. Biochem. Biophys. 48, 1 (1954).

1 8 3 P. Slonimski, Proc. Intern. Congr. Biochem., Srd Congr., Brussels, 1955 p. 243 (1956).

1 8 4 P. Schaeffer, Biochim. et Biophys. Acta 9, 261 (1952).

1 7 2 a A. J. Kluyver and C. B. van Niel, "The Microbe's Contribution to Biology."

Harvard Univ. Press, Cambridge, Massachusetts, 1956.

172 b w w> Wainio, / . Biol. Chem. 216, 593 (1955).

1 7 2 c L. Anderson and G. W. E. Plaut, in "Respiratory Enzymes" (H. A. Lardy, ed.),

p. 71. Burgess Publ. Co., Minneapolis, Minnesota, 1949.

1 7 3 References on the substrate systems and evaluation of potential vs. equilibrium

data given in K. Burton and Τ. H. Wilson, Biochem. J. 64, 86 (1953).

6. MICROBIAL ELECTRON TRANSPORT MECHANISMS 363

1 7 4 F. L. Rodkey, Biol. Chem. 213, 777 (1955).

1 7 8 G. S. Parks and Η. M. Huffman, "The Free Energies of Some Organic Com­

pounds. " Reinhold, New York, 1932.

1 7 β H. Theorell and R. Bonnichsen, Acta. Chem. Scand. 5, 1105 (1951).

1 7 7 S. R. Elsden, in "The Enzymes, Chemistry and Mechanism of Action" (J. B.

Sumner and K. Myrback, eds.), Vol. 2, Part 2, p. 791. Academic Press, New York, 1952.

1 7 8 R. J. Gillespie, G. A. Maw and C. A. Vernon, Nature 171, 1147 (1953).

1 7 8 4 K. Burton, Nature 181, 1594 (1958).

1 7 9 A. L. Lehninger, Harvey Lectures Ser. 49, 176 (1955).

1 8 0 R. M. Burton and E. Stadtman, J. Biol. Chem. 202, 873 (1953).

1 8 1 K. Harrison, Nature 181, 1131 (1958).

1 8 2 V. M. Clark, G. W. Kirby, and A. Todd, Nature 181, 1650 (1958).

1 8 3 A. F. Brodie and C. T. Gray, Biol. Chem. 219, 853 (1956).

1 8 4 I. A. Rose and S. Ochoa, J. Biol. Chem. 220, 307 (1956).

1 8 8 P. E. Hartman, A. F. Brodie, and C. T. Gray, J. Bacteriol. 74, 319 (1957).

1 8 6 a A. F. Brodie and C. T. Gray, Biochim. et Biophys. Acta 19, 384 (1956).

1 8 8 b A. F. Brodie, B. R. Davis, and L. F. Fieser, J. Am. Chem. Soc. 80, 6454 (1958).

1 8 7 H. Takahashi, S. Taniguchi, and F. Egami, / . Biochem. (Tokyo) 43, 223 (1956).

188 ψ, Vishniac and M. Santer, Bacteriol. Proc. (Soc. Am. Bacteriologists) 21, 195 (1957).

1 8 9 G. Schmidt, in "Phosphorus Metabolism" (W. D . McElroy and B. Glass, eds.),

Vol. I, p. 443. Johns Hopkins Press, Baltimore, Maryland, 1951.

1 9 0 S. R. Kornberg, Biochim. et Biophys. Acta 26, 294 (1957).

1 9 1 O. Hoffmann-Ostenhof, J. Kenedy, K. Keck, O. Gabriel, and H. W. Schonfellinger,

Biochim. et Biophys. Acta 14, 285 (1954).