• Nem Talált Eredményt

Bortels, H. Molybdän als Katalysator bei der biologischen Stickstoffbindung

In document of Action of the Mineral (Pldal 74-86)

VIII. Concluding Remarks

33. Bortels, H. Molybdän als Katalysator bei der biologischen Stickstoffbindung

Arch. Mikrobiol 1, 333 (1930).

34. Bradfield, J. R, G. Plant carbonic anhydrase. Nature 159, 467^68 (1947).

35. Bremer, J., and Natori, Y. Behavior of some selenium compounds in trans-methylation. Biochim. et Biophys. Acta 44, 367-370 (1960).

36. Brown, T. E., Eyster, H. C., and Tanner, H. A. Physiological effects of manganese deficiency. In "Trace Elements" (C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp. 135-155. Academic Press, New York, 1958.

37. Broyer, T. C., Carlton, Α. Β., Johnson, C. M., and Stout, P. R. Chlorine—a micronutrient element for higher plants. Plant Physiol. 29, 526-532 (1954).

38. Bullock, G. L., Bush, J. Α., and Wilson, P. W. Calcium requirements of various species of Azotobacter. Proc. Soc. Exptl. Biol. Med. 105, 26-30 (1960).

39. Burström, H. Über die Schwermetallkatalyse der Nitratassimilation. Planta 29, 292-305 (1939).

40. Calvin, M. Chelation and catalysis. In "Mechanism of Enzyme Action" (W. D.

McElroy and H. B. Glass, eds.), pp. 221-256. Johns Hopkins Press, Baltimore, Maryland, 1954.

41. Carlier, Α., and Büffel, K. Polysaccharide changes in the cell walls of water-absorbing potato tuber tissue in relation to auxin action. Acta Botan. Neerl. 4, 551-564 (1955).

42. Chesters, G. G. C , and Rolinson, G. N. The role of zinc in plant metabolism.

Biol. Revs. Cambridge Phil. Soc. 26, 239-252 (1951).

43. Cleland, R. Effect of auxin upon loss of calcium from cell walls. Plant Physiol.

35, 581-584 (1960).

44. Cohen, E., and Elvehjem, C. A. The relation of iron and copper to the cyto-chrome and oxidase content of animal tissues. 7. Biol. Chem. 107, 97-105 (1934).

45. Conn, Ε. E., and Vennesland, Β. Glutathione reductase of wheat germ. 7. Biol.

Chem. 192, 17-28 (1951).

46. Darken, M. A. Production of vitamin B i2 by micro-organisms and its occurrence in plant tissues. Botan. Rev. 19, 99-130 (1953).

47. Davidson, F. M., and Long, C. The structure of the naturally occurring phosphoglycerides. 4. Action of cabbage-leaf phospholipase D on ovolecithin and related substances. Biochem. J. 69, 458-466 (1958).

48. Davis, G. K. Metabolic function and practical use of cobalt in nutrition. In

"Trace Elements" (C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp.

193-211. Academic Press, New York, 1958.

49. Dawson, C. R. The copper protein, ascorbic acid oxidase. In "Copper Metab-olism" (W. D. McElroy and H. B. Glass, eds.), pp. 18-47. Johns Hopkins Press, Baltimore, Maryland, 1950.

50. Dawson, C. R., and Tarpley, W. B. Copper oxidases. In "The Enzymes" (J. B.

Summer and K. Myrbäck, eds.), 1st ed., Vol. II, Part I, pp. 454-498. Academic Press, New York, 1951.

51. Day, D. Some effects on Pisum sativum of a lack of calcium in the nutrient solution. Science 68, 426-427 (1928).

52. Day, R., and Franklin, J. Plant carbonic anhydrase. Science 104, 363-365 (1946).

53. Delwiche, C. C , Johnson, C. M., and Reisenauer, H. M. Influence of cobalt on nitrogen fixation by Medicago. Plant Physiol. 36, 73-78 (1961).

54. DeRenzo, E. C , Heytler, P. G., and Stolzenberg, S. In "Inorganic Nitrogen Metabolism" (W. D. McElroy and H. B. Glass, eds.), pp. 507-512. Johns Hopkins Press, Baltimore, Maryland, 1956.

55. Dick, A. T. Molybdenum in animal nutrition. Soil Sei. 81, 229-258 (1956).

56. Dinning, J. S. Water-soluble vitamins. II. Ann. Rev. Biochem. 29, 437-452 (1960).

57. Dressler, H., and Dawson, C. R. On the nature and mode of action of the cop-per protein, tyrosinase. I. Exchange excop-periments with radioactive copcop-per and the resting enzyme. Biochim. et Biophys. Acta 45, 508-514 (1960).

58. Dressler, H., and Dawson, C. R. On the nature and mode of action of the cop-per protein, tyrosinase. II. Exchange excop-periments with radioactive copcop-per and the functioning enzyme. Biochim. et Biophys. Acta 45, 515-524 (1960).

59. Eggerer, H., Overath, P., Lynen, F., and Stadtman, E. R. On the mechanism of the cobamide coenzyme dependent isomerization of methylmalonyl CoA to succinyl CoA. J. Am. Chem. Soc. 82, 2643-2644 (1960).

60. Eichel, B., Wainio, W. W., Person, P., and Cooperstein, S. J. A partial sep-aration and characterization of cytochrome oxidase and cytochrome b. / . Biol.

Chem. 183, 89-103 (1950).

61. Einset, E., and Clark, W. L. The enzymatically catalyzed release of choline from lecithin. / . Biol. Chem. 231, 703-715 (1958).

62. Elvehjem, C. A. The role of iron and copper in the growth and metabolism of yeast. /. Biol. Chem. 90, 111-132 (1931).

63. Elvehjem, C. Α., Hart, Ε. B., and Sherman, W. C. The availability of iron from different sources for hemoglobin formation. / . Biol. Chem. 103, 61-70 (1933).

64. Esposito, R. G., and Wilson, P. W. Calcium and polymetaphosphate synthesis in Azotobacter vinelandii O. Biochim. et Biophys. Acta 22, 186-187 (1956).

65. Esposito, R. G., and Wilson, P. W. Trace metal requirements of azotobacter.

Proc. Soc. Exptl. Biol. Med. 93, 564-567 (1956).

66. Evans, H. J. The biochemical role of iron in plant metabolism. In "Symposium on Mineral Nutrition of Trees." Duke Univ. School of Forestry, Bull. 15

(1959).

67. Evans, H. J. Role of molybdenum in plant nutrition. Soil Sei. 81, 199-208 (1956).

68. Evans, H. J., and Hall, N. S. Association of molybdenum with nitrate re-ductase from soybean leaves. Science 22, 922-923 (1955).

69. Evans, H. J., and Nason, A. Pyridine nucleotide-nitrate reductase from extracts of higher plants. Plant Physiol. 28, 233-254 (1953).

70. Fels, I. G., and Cheldelin, V. H. Selenate inhibition studies. III. The role of sulfate in selenate toxicity in yeast. Arch. Biochem. 22, 402-405 (1949).

71. Folk, J. E., and Gladner, J. A. Cobalt activation of carboxypeptidase A. / . Biol.

Chem. 235, 60-63 (1960).

72. Foster, J. W., and Denison, F. W., Jr. Role of zinc in metabolism. Nature 166, 833-834 (1940).

73. Frey-Wyssling, A. Die unentbehrlichen Elemente der Pfanzennahrung.

Naturwissenschaften 23, 767-769 (1935).

74. Fridovich, I., and Handler, P. Xanthine oxidase. IV. Participation of iron in internal electron transport. / . Biol. Chem. 233, 1581-1585 (1958).

75. Frieden, C. The dissociation of glutamic dehydrogenase by reduced diphyos-phopyridine nucleotide (DPNH). Biochim. et Biophys. Acta 27, 431-432

(1958).

76. Gallagher, C. H., Judath, J. H., and Ress, K. R. The biochemistry of copper deficiency. I. Enzymological disturbances, blood chemistry and excretion of amino acids. Proc. Roy. Soc. B145, 134 (1956).

526 A . N A S O N A N D W . D . M C E L R O Y

77. Gammon, N. Sodium and potassium requirements of Pangola and other pasture grasses. Soil Sei. 76, 81-90 (1953).

78. Gauch, H. G. Mineral nutrition of plants. Ann. Rev. Plant Physiol. 8, 31-64 (1957).

79. Gauch, H. G., and Duggar, W. M., Jr. The physiological action of boron in higher plants: a review and interpretation. Univ. Maryland, Agr. Expt. Sta.

College Park Bull. No. A-80 (1954).

80. Gerloff, G. C., Stout, P. R., and Jones, L. H. P. Molybdenum-manganese-iron antagonisms in the nutrition of tomato plants. Plant Physiol. 34, 608-613 (1959).

81. Gest, H., Judis, J., and Peck, H. D., Jr. Reduction of molecular nitrogen and relationships with photosynthesis and hydrogen metabolism. In "Inorganic Nitrogen Metabolism" (W. D. McElroy and H. B. Glass, eds.), pp. 298-315.

Johns Hopkins Press, Baltimore, Maryland, 1956.

82. Gilbert, F. A. The place of sulfur in plant nutrition. Botan. Rev. 17, 671-691 (1951).

83. Gilbert, F. A. "Mineral Nutrition and the Balance of Life." Univ. of Oklahoma Press, Norman, Oklahoma, 1957.

84. Goddard, D. R., and Stafford, H. A. Localization of enzymes in the cells of higher plants. Ann. Rev. Plant Physiol. 5, 115-132 (1954).

85. Grafflin, A. L., and Ochoa, S. Partial purification of isocitric dehydrogenase oxalosuccinic carboxylase. Biochim. et Biophys. Acta 4, 205-210 (1950).

86. Granick, S. Iron metabolism in animals and plants. Harvey Lectures Ser. 44, 220-245 (1950).

87. Granick, S., and Gilder, H. Distribution, structure, and properties of the tetra-pyrroles. Advances in Enzymol. 7, 305-368 (1947).

88. Green, D. E., Basford, R. E., Mackler, B. The role of iron and copper in ter-minal electron transport. In "Inorganic Nitrogen Metabolism" (W. D. McElroy and H. B. Glass, eds.), pp. 628-649. Johns Hopkins Press, Baltimore, Maryland, 1956.

89. Green, L. F., McCarthy, J. F., and King, C. G. Inhibition of respiration and photosynthesis in Chlorella pyrenoidosa by organic compounds that inhibit copper catalysis. /. Biol. Chem. 128, 447-453 (1939).

90. Griffiths, D. E., and Wharton, D. C. Copper in cytochrome oxidase. Biochem.

Biophys. Research Communs. 4, 199-204 (1961).

91. Hallsworth, E. G., Wilson, S. B., and Greenwood, Ε. Α. Ν. Copper and cobalt in nitrogen fixation. Nature 187, 79-80 (1960).

92. Harmer, P. M., Benne, Ε. J., Laughlin, W. M., and Key, C. Factors affecting crops response to sodium applied as common salt on Michigan muck soil.

Soil Sei. 76, 1-17 (1953).

93. Harrison, K. Activation of fumaric dehydrogenase by ferrous ions. Nature 172, 509 (1953).

94. Heath, Ο, V. S., and Clark, J. E. Chelating agents as plant growth substances.

Nature 177, 1118-1121 (1956).

95. Hellerman, L., and Stock, C. C. Activation of enzymes. V. 7. Biol. Chem. 125, 771-792 (1938).

95a. Herman, E. C. Jr., and Wright, B. E. A 5'-nucleotidase activated by ferrous iron. 7. Biol. Chem. 234, 122-125 (1959).

96. Hewitt, E. J. Metal interrelationships in plant nutrition. 2. The relation of metal toxicity, molybdenum, and nitrogen source to chlorophyll and magnesium content of beet in sand culture. 7. Exptl. Botany 5, 110-118 (1954).

97. Hewitt, E. J. The role of the mineral elements in plant nutrition. Ann. Rev.

Phnt Physiol. 2, 25-52 (1951).

98. Hewitt, E. J. The role of mineral elements in the activity of plant enzymes systems. In "Handbuch der Pflanzenphysiologie—Encyclopedia of Plant Phys-iology," Vol. 4, pp. 427-4<81. Springer, Berlin, 1958.

99. Hill, R., and Hartree, Ε. F. Hematin compounds in plants. Ann. Rev. Plant Physiol. 4, 115-150 (1953).

100. Hill, R., and Scarisbrick, R. The haematin compounds of leaves. New Phytol-ogist 50, 98-111 (1951).

101. Hilz, H., and Kittler, M. Reduction of active sulfate (PAPS) by dihydrolipoic acid as substrate. Biochem. Biophys. Research Communs. 3, 140-142 (1960).

102. Hilz, H., and Lipmann, F. The enzymatic inactivation of sulfate. Proc. Natl.

Acad. Sei. Ü.S. 41, 880-890 (1955).

103. Hinkle, D. Α., and Eisenmenger, W. S. Chloroplast pigments in relation to magnesium deficiency. Soil Sei. 70, 213-220 (1950).

104. Hoagland, D. R. "Lectures on the Inorganic Nutrition of Plants." Chronica Botanica, Waltham, Massachusetts, 1944.

105. Hoch, F. L., and Vallee, Β. L. The metabolic role of zinc. In "Trace Elements"

(C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp. 337-363. Academic Press, New York, 1958.

106. Holmberg, C. G. Uricase purification and properties. Biochem. J. 33, 1901-1906 (1939).

107. Holm-Hansen, O., Gerloff, G. C , and Skoog, F. Cobalt as an essential element for blue-green algae. Physiol. Plantarum 7, 665-675 (1954).

108. Horner, C. K., Burk, D., Allison, F. E., and Sherman, M. S. Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. 7. Agr. Research 65, 173-193 (1942).

109. Howell, J. M., and Davison, A. N. The copper content and cytochrome oxidase activity of tissues from normal and swayback lambs. Biochem. J. 72, 365-368 (1959).

110. Iida, C , and Yamasaki, K. Spectrographic determination of molybdenum in the nitrate reductase from Escherichia coli. Biochim. et Biophys. Acta 44, 352-353

(1960).

111. Ingraham, J. L., and Emerson, R. Studies of the nutrition and metabolism of the aquatic phycomycete, Allomyces. Am. J. Botany 41, 146-152 (1954).

112. Johnson, J. E., and Hall, N. F. A study of the exchange of nickel in certain complex compounds using radioactive nickel. 7. Am. Chem. Soc. 70, 2344-2348

(1948).

113. Johnson, R. R., and Bentley, O. G. Cobalt and the synthesis of vitamin Bi2-like substances by rumen micro-organisms. In "Trace Elements" (C. A. Lamb, O.

G. Bentley, and J. M. Beattie, eds.), pp. 213-225. Academic Press, New York, 1958.

114. Joselow, M., and Dawson, C. R. The copper of ascorbic acid oxidase; experi-ments with an ion exchange resin. 7. Biol. Chem. 191, 1-10 (1951).

115. Joselow, M., and Dawson, C. R. The copper of ascorbic acid oxidase; exchange studies with radioactive copper. 7. Biol. Chem. 191, 11-20 (1951).

116. Kägi, J. H. R., and Vallee, B. L. The role of zinc in alcohol dehydrogenase.

V. The effect of metal-binding agests on the structure of the yeast alcohol dehydrogenase molecule. 7. Biol. Chem. 235, 3188-3192 (1960).

528 A . N A S O N A N D W . D . M C E L R O Y

117. Keilin, D., and Hartree, E. F. Cytochrome a and cytochrome oxidase. Nature 141, 870-871 (1938).

118. Keilin, D., and Hartree, E. F. On the mechanism of the decomposition of hydrogen peroxide by catalase. Proc. Roy. Soc. B124, 397-405 (1938).

119. Keilin, D., and Mann, T. Carbonic anhydrase. Biochem. J. 34, 1163-1176 (1940).

120. Kenten, R. H., and Mann, P. J. G. The oxidation of manganese by plant ex-tracts in the presence of hydrogen peroxide. Biochem. J. 45, 255-263 (1949).

121. Kenten, R. H., and Mann, P. J. G. The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochem. J. 53, 498-505

(1953).

122. Kenten, R. H., and Mann, P. J. G. The oxidation of manganese by illumi-nated chloroplasts preparations. Biochem. J. 61, 279-286 (1955).

123. Kertesz, D. Tyrosinase and polyphenoloxidase; the role of metallic ions in melanogenesis. Biochim. et Biophys. Acta 9, 170-179 (1952).

124. Kessler, Ε. Stoffwechselphysiologische Untersuchungen an Hydrogenase Enthaltenden Grünalgen. Planta 49, 435-454 (1957).

125. Kinsky, S. C , and McElroy, W. D. Neurospora nitrate reductase: the role of phosphate, flavine, and cytochrome c reductase. Arch. Biochem. Biophys. 73, 466-483 (1958).

126. Kittler, M., and Knape, G. Die Reduktion fon sulf at inder hefe. Biochem. Z.

332, 151-166 (1959).

127. Klein, H. P. Cobalt activation of fatty-acid synthesis in yeast homogenates.

Science 128, 1135-1136 (1958).

128. Klotz, I. M. Thermodynamic and molecular properties of some metal-protein complexes. In "Mechanism of Enzyme Action" (W. D. McElroy and Η. B.

Glass eds.), pp. 257-285. Johns Hopkins Press, Baltimore, Maryland, 1954.

129. Kornberg, Α., Ochoa, S., and Mehler, A. H. Spectrophometric studies on the decarboxylation of j3-keto acids. / . Biol. Chem. 174, 159-172 (1948).

130. Kozloff, I. M., and Lute, M. Calcium content of bacteriophage T2. Biochim. et Biophys. Acta 37, 420-424 (1960).

131. Krebs, Η. A. The effect of inorganic salts on the ketone decomposition of oxaloacetic acid. Biochem. J. 36, 303-305 (1942).

132. Kubowitz, F. Über die chemische Zusammensetzung der Kartoffeloxydase.

Biochem. Ζ. 292, 221-229 (1937).

133. Kubowitz, F. Staltung und Rb Synthese der Polyphenoloxydase und des Hämo-cyanins. Biochem. Z. 299, 32-57 (1938).

134. Lardy, Η. A. The influence of inorganic ions on phosphorylation reactions. In

"Phosphorus Metabolism" (W. D. McElroy and Η. B. Glass, eds.), Vol. I, pp.

477-479. Johns Hopkins Press, Baltimore, Maryland, 1951.

135. Legge«, J. E., and Epstein, E. Kinetics of sulfate absorption by barley roots.

Plant Physiol. 31, 222-226 (1956).

136. Lehninger, A. L. Role of metal ions in enzyme systems. Physiol. Revs. 30, 393-429 (1950).

137. Lemberg, R., and Legge, J. W. "Hematin Compounds and Bile Pigments."

Interscience, New York, 1947.

138. Levin, A. P., Funk, H. B., and Tendier, M. D. Vitamin Β», rhizobia, and leguminous plants. Science 120, 784. (1954).

139. Linderstram-Lang, K. Über den Antagonismus von Zink und Blausäure bei deren Eienwirkung auf die Teptidasenaktivitat. Z. physiol. Chem. Hoope-Seyler's 224, 121-126 (1934).

140. Lindskog, S., and Malmström, B. G. A reversible dissociation of zinc in bovine carbonic anhydrase. Biochem. Biophys. Research Communs. 2, 213-217 (1960).

141. Loew, O. The physiological role of mineral nutrients in plants. U.S. Dept. Agr.

Bureau Plant Ind. Bull. 45, 9-70 (1903).

142. Lowe, R. H., Evans, H. J., and Shaukat-Ahmed. The effect of cobalt on the growth of Rhizobium japonicum. Biochem. Biophys. Research Communs. 3, 675-678 (1960).

143. LuValle, J. E., and Goddard, D. R. The mechanism of enzymatic oxidations and reductions. Quart. Rev. Biol. 23, 197-228 (1948).

144. McCollum, R. E., Hageman, R. H., and Tyner, Ε. H. Influence of potassium on pyruvic kinase from plant tissue. Soil Sei. 86, 324-331 (1958).

145. McElroy, W. D. The role of trace elements in enzyme systems. In "Symposium on Nutrition" (R. M. Herriott, ed.), pp. 262-286. Johns Hopkins Press, Balti-more, Maryland, 1953.

146. McElroy, W. D., and Nason, A. Mechanism of action of micronutrient elements in enzyme systems. Ann. Rev. Plant Physiol. 5, 1-30 (1954).

147. McHargue, J. S. The role of manganese in plants. 7. Am. Chem. Soc. 44, 1592-1598 (1922).

148. Mackler, B., and Penn, N. Studies on the electron transport system. IX. Frag-mentation of D P N H oxidase. Biochem. et Biophys. Acta 24, 294-300 (1957).

149. MacLachlan, G. Α., and Way good, E. R. Kinetics of the enzymically catalyzed oxidation of indoleacetic acid. Can. J. Biochem. and Physiol. 34, 1233-1250

(1956).

150. MacLeod, R. Α., and Snell, Ε. E. The effect of related ions on the potassium requirement of lactic acid bacteria. 7. Biol. Chem. 176, 39-52 (1948).

151. Mahler, H. R., and Elowe, D. G. Studies on metalloflavoproteins. II. 7. Biol.

Chem. 210, 165-179 (1954).

152. Mahler, H. R., Hubscher, G., and Baum, H. Studies on uricase. I. 7. Biol. Chem.

216, 625-641 (1955).

152a. Mahler, H. R., Mackler, B., Green, D. E. and Bock, R. M. Studies on metallof-lavoproteins. III. Aldehyde oxidase: a molybdoflavoprotein. 7. Biol. Chem. 210, 465-480 (1954).

153. Malmström, B. G. Interaction of manganous ions with enolase. Nature 171, 392-393 (1953).

154. Mapson, L. W., and Goddard, D. R. The reduction of glutathione by plant tissues. Biochem. 7. 49, 592-601 (1951).

155. Marston, H. R. Cobalt, copper, and molybdenum in the nutrition of animals and plants. Physiol. Revs. 32, 66-121 (1952).

156. Mason, H. S. Mechanisms of oxygen metabolism. Advances in Enzymol. 19, 79-233 (1957).

157. Mason, H. S., Fowlks, W. L., and Peterson, E. Oxygen transfer and electron transport by the phenolase complex. 7. Am. Chem. Soc. 77, 2914-2915 (1955).

158. Massey, V. Studies on fumarase. Biochem. 7. 53, 67-71 (1953).

159. Maze, P. Influence respective des elements de la solution minérale sur le développement du maïs. Ann. inst. Pasteur 28, 1-5 (1914).

160. Metzler, D. E., and Snell, E. E. Some transamination reactions involving vita-min Be. 7. Am. Chem. Soc. 74, 979-983 (1952).

161. Miller, C. O. Relationship of the cobalt and light effects on expansion of etiolated bean leaf disks. Plant Physiol. 27, 408-412 (1952).

530 A . N A S O N A N D W . D . M C E L R O Y

162. Miller, G., and Evans, H. J. The influence of salts on pyruvate kinase from tissues of higher plants. Plant Physiol 32, 346-354 (1957).

163. Millikan, C. R. Effects of molybdenum on the severity of toxicity symptoms in flax induced by an excess of either manganese, zinc, copper, nickel, or cobalt in the nutrient solution. 7. Australian Inst. Agr. Sei. 13, 180-186 (1947).

164. Millikan, C. R. Antagonism between molybdenum and certain heavy metals in plant nutrition. Nature 161, 528 (1948).

165. Moxon, A. L. Selenium: its occurrence in rocks and soils, absorption by plants, toxic action in animals, and possible essential role in animal nutrition. In "Trace Elements" (C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp. 175-191.

Academic Press, New York, 1958.

166. Mudd, J. B., and Burris, R. H. Participation of metals in peroxidase-catalyzed oxidations. 7. Biol Chem. 234, 2774-2777 (1959).

167. Mudd, S. H., and Cantoni, G. L. Selenomethionine in enzymatic transmethyla-tions. Nature 180, 1052 (1957).

168. Mulder, E. C. Importance of molybdenum in the nitrogen metabolism of micro-organisms and higher plants. Plant and Soil 1, 94-119 (1948).

169. Mulder, E. C. Molybdenum in relation to growth of higher plants and micro-organisms. Plant and Soil 5, 368-415 (1954).

170. Mullison, W. R., and Mullison, E. Growth responses of barley seedlings in relation to potassium and sodium nutrition. Plant Physiol. 17, 632-644 (1942).

171. Nason, A. Metabolism of micronutrient elements in higher plants. II. Effect of copper deficiency on the isocitric enzyme in tomato leaves. 7. Biol Chem. 198, 643-653 (1952).

172. Nason, A. Enzymatic steps in the assimilation of nitrate and nitrite in fungi and green plants. In "Inorganic Nitrogen Metabolism" (W. D. McElroy and H. B. Glass, eds.), pp. 109-136. Johns Hopkins Press, Baltimore, Maryland, 1956.

173. Nason, A. The role of metal ions in yeast fermentation. Am. Brewer (February, 1957). pp. 49-55.

174. Nason, A. The function of metals in enzyme systems. Soil Sei. 85, 63-77 (1958).

175. Nason, A. The metabolic role of vanadium and molybdenum in plants and animals. In "Trace Elements" (C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp. 269-296. Academic Press, New York, 1958.

176. Nason, Α., Abraham, R. G., and Averbach, Β. C. The enzymic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochim. et Biophys. Acta

15, 159-161 (1954).

177. Nason, Α., and Evans, H. J. Triphosphopyridine nucleotide-nitrate reducttase in Neurospora. J. Biol. Chem. 202, 655-673 (1953).

178. Nason, Α., Kaplan, N. O., and Colowick, S. P. Changes in enzymatic constitu-tion in zinc-deficient Neurospora. J. Biol. Chem. 188, 397-406 (1951).

179. Nason, Α., Kaplan, N. O., and Oldewurtel, H. A. Further studies of nutritional conditions affecting enzymatic constitution in Neurospora. J. Biol Chem. 201, 435-444 (1953).

180. Nason, Α., Oldewurtel, Η. Α., and Propst, L. M. Role of micronutrient elements in the metabolism of higher plants. I. Arch. Biochem. Biophys. 38, 1-13 (1952).

181. Nason, Α., and Takahashi, H. Inorganic nitrogen metabolism. Ann. Rev. Micro-biol 13, 203-246 (1958).

182. Neish, A. C. Studies on chloroplasts. II. Their chemical composition and the distribution of certain metabolites between the chloroplasts and the remainder of the leaf. Biochem. 7. 33, 300-308 (1939).

183. Nicholas, D. J. D., and Nason, A. Molybdenum and nitrate reductase. II. 7.

Biol. Chem. 207, 353-360 (1954).

184. Nicholas, D. J. D., and Nason, A. Mechanism of action of nitrate reductase from Neurospora. J. Biol. Chem. 211, 183-197 (1954).

185. Nicholas, D. J. D., and Nason, A. Diphosphopyridine nucleotide-nitrate reduc-tase from Escherichia coli. J. Bacteriol. 69, 580-583 (1955).

186. Nicholas, D. J. D., and Nason, A. Role of molybdenum as a constituent of nitrate reductase from soybean leaves. Plant Physiol. 30, 135-143 (1955).

187. Nicholas, D. J. D., Nason, Α., and McElroy, W. D. Molybdenum and nitrate reductase. I. 7. Biol. Chem. 207, 341-351 (1954).

188. Nicholas, D. J. D., and Scawin, J. H. A phosphate requirement for nitrate reductase from Neurospora crassa. Nature 178, 1474-1475 (1956).

189. Nicholas, D. J. D., and Stevens, Η. M. Valence changes of molybdenum during the enzymatic reduction of nitrate in Neurospora. Nature 176, 1066-1067

(1955).

190. Nightingale, G. T. Potassium and calcium in relation to nitrogen metabolism.

Botan. Gaz. 98, 725-734 (1937).

191. Nishi, A. Activation and inhibition by bivalent metal ions of yeast glycylglycine dipeptidase. 7. Biochem. (Tokyo) 45, 991-1004 (1958).

192. Ochoa, S. Biosynthesis of tricarboxylic acids by carbon dioxide fixation. 1. The preparation and properties of oxalosuccinic acid. 7. Biol. Chem. 174, 115-122

(1948).

193. Ochoa, S. Biological mechanism of carboxylation and decarboxylation. Physiol.

Revs. 31, 56-106 (1951).

194. Oikawa, A. The role of calcium in taka-amylase Α. II. The exchange reaction of calcium. 7. Biochem. (Tokyo) 46, 463-473 (1959).

195. Oikawa, Α., and Maeda, A. The role of calcium in taka-amylase A. 7. Biochem.

(Tokyo) 44, 745-752 (1957).

196. Okunuki, K., Sekuzu, I., Yonetani, T., and Takemori, S. Studies on cytochrome a. I. Extraction, purification, and some properties of cytochrome a. 7. Biochem.

(Tokyo) 45, 847-854 (1958).

197. Oppenheimer, C , and Stern, K. G. "Biological Oxidation." Junk, The Hague, 1939.

198. Ordin, L., Cleland, R., and Bonner, J. Methyl esterification of cell wall con-stituents under the influence of auxin. Plant Physiol. 32, 216-220 (1957).

199. Pauling, L, "The Nature of the Chemical Bond and the Structure of Molecules and Crystals," 2nd ed. Cornell Univ. Press, Ithaca, New York, 1948.

200. Peck, H. D., Jr. The ATP-dependent reduction of sulfate with hydrogen in ex-tracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sei. U.S. 45, 701-708

(1959).

201. Peterson, W. H. Forms of sulfur in plant materials and their variation with the soil supply. 7. Am. Chem. Soc. 36, 1290-1300 (1914).

202. Pinsent, J. The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem. J.

57, 10-16 (1954).

203. Pirson, A. Functional aspects in mineral nutrition of green plants. Ann. Rev.

Plant Physiol. 6, 71-114 (1955).

204. Pirson, A. Manganese and its role in photosynthesis. In "Trace Elements"

(C. A. Lamb, O. G. Bentley, and J. M. Beattie, eds.), pp. 81-98. Academic Press, New York, 1958.

532 A . N A S O N A N D W . D . M C E L R O Y

205. Possingham, J. V. The effect of molybdenum in the organic and inorganic phosphorus metabolism of plants. Australian J. Biol. Sei. 7, 221-224 (1954).

206. Postgate, J. R. Competitive and non-competitive inhibitors of bacterial sulfate reduction. /. Gen. Microbiol. 6, 128-142 (1952).

207. Postgate, J. R., Presence of cytochrome in an obligate anaerobe. Biochem. J. 56, xi-xii (1954).

208. Quinlan-Watson, T. A. F. The effect of zinc deficiency on the aldolase activity in the leaves of oats and clover. Biochem. J. 53, 457-460 (1953).

209. Reed, H. S. Effects of zinc deficiency on phosphate metabolism of the tomato plant. Am. J. Botany 33, 778-784 (1946).

210. Reed, H. S. A physiological study of boron deficiency in plants. Hilgardia 17, 377-409 (1947).

211. Reisenauer, H. M. Cobalt in nitrogen fixation by a legume. Nature 186, 375-376 (1960).

212. Remy, C. N , Richert, D. Α., Doisy, R. J., Wells, I. C, and Westerfeld, W. W.

Purification and characterization of chicken liver xanthine dehydrogenase. /.

Biol. Chem. 217, 293-305 (1955).

213. Richert, D. Α., and Westerfeld, W. W. The relationship of iron to xanthine oxidase. /. Biol Chem. 209, 179-189 (1954).

214. Rickenberg, Η. V. The effect of metal ions and proteins on the stability of the ß-galactosidase of Escherichia coli. Biochem. et Biophys. Acta 35, 122-129

(1959).

215. Riggs, T. R., Walker, L. M., and Christensen, Η. Ν. Potassium migration and amino acid transport. J. Biol Chem. 233, 1479-1484 (1958).

216. Robbins, P. W., and Lipmann, F. Identification of enzymatically active sulfate as adenosine-3,-phosphate 5'-phosphosulfate. 7. Am. Chem. Soc. 78, 2652-2653 (1956).

217. Robbins, P. W., and Lipmann, F. The enzymatic sequence in the biosynthesis of active sulfate. J. Am. Chem. Soc. 78, 6409-6410 (1956).

218. Robinson, W. O., and Edgington, G. Minor elements in plants and some ac-cumulator plants. Soil Sei. 60, 15-28 (1945).

219. Rosenberg, M. A.-J. Action du bore et du m-inositol sur Clostridium saccharo-butyricum. Compt. rend. acad. sei. 222, 1310-1311 (1946).

220. Sadana, J. C , and McElroy, W. D. Nitrate reductase from Achromobacter fischeri. Purification and properties: function of flavines and cytochrome. Arch.

Biochem. Biophys. 67, 16-33 (1957).

221. Sadasivan, V. Biochemical studies on Pénicillium chrysogenum Q.176. I. Phos-phatase activity and the role of zinc in the production of penicillin. Arch. Bio-chem. 28, 100-110 (1950).

222. Sadasivan, V. Zinc, ionic, equilibrium and phosphatase activity. Nature 170, 421 (1952).

223. Sands, R. H., and Beinert, H. On the function of iron in D P N H cytochrome c reductase. Biochem. Biophys. Research Communs. 1, 171-174 (1959).

224. Sands, R. H., and Beinert, H. On the function of copper in cytochrome oxidase.

Biochem. Biophys. Research Communs. 1, 175-178 (1959).

225. Sastry, K., Sivarama, R., and Sarma, P. S. The influence of molybdenum toxicity on sulfur amino acid metabolism in Neurospora crassa. Biochim. et Biophys. Acta 30, 438-439 (1958).

226. Schwarz, Κ. Production of dietary necrotic liver degeneration using American torula yeast. Proc. Soc. Exptl. Biol Med. 77, 818-823 (1951).

227. Schwarz, Κ., and Foltz, C. M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. /. Am. Chem. Soc. 79, 3292-3293 (1959).

228. Scott, D. Α., and Mendive, J. R. Chemical observations on carbonic anhydrase.

/. Biol. Chem. 140, 445-451 (1941).

229. Shaukat-Ahmed, and Evans, H. J. Effect of cobalt on the growth of soybeans

229. Shaukat-Ahmed, and Evans, H. J. Effect of cobalt on the growth of soybeans

In document of Action of the Mineral (Pldal 74-86)