• Nem Talált Eredményt

Bortels, Η. Molybdäns als Katalysator bei der Biologischen Stickstoffbindung

V. Toxicity Effects of Metals

34. Bortels, Η. Molybdäns als Katalysator bei der Biologischen Stickstoffbindung

Arch. Mikrobiol. 1, 333-342 (1930).

35. Bové J., Bové, C , and Arnon, D. I. Molybdenum and vanadium requirements of Azotobacter for growth and nitrogen fixation. Plant Physiol. 32, Suppl. 23

(1957).

36. Bray, R. C , Malmström, B. G., and Vanngârd, T. The chemistry of xanthine oxidase. 5. Electron-spin resonance of xanthine oxidase solutions. Biochem. J.

73, 193-197 (1959).

37. Brian, P. W., and Hemming, H. G. Some nutritional conditions affecting spore production by Trichoderma viride. Brit. Mycol. Soc. Trans. 33, 132-141 (1950).

38. Burris, R. H., and Wilson, P. W. Characteristics of the nitrogen fixing enzyme system in Nostoc muscorum. Botan. Gaz. 108, 254-262 (1946).

39. Burris, C. M., and Harris, J. O. The influence of sodium, potassium and ammonium ions on the respiration of Azotobacter chroococcum as related to the composition of the growth medium. Soil Sei. Soc. Am. Proc. 17, 245-246 (1953).

40. Burström, H. Über die schwermetalkatalyse der nitratassimilation. Planta 29, 292-305 (1939).

41. Burström, H. The nitrate nutrition of plants. A general survey of the occurrence and assimilation of nitrate. Lantbruks-Högskol. Ann. 13, 1-86

(1945).

42. Bush, J. Α., and Wilson, P. W. The calcium requirements of the Azotobacter for nitrogen fixation. Bacteriol. Proc. (Soc. Am. Bacteriologists) 58, 9-10 (1958).

43. Butkewitsch, W. The culture of the fungus Aspergillus niger as a method of soil investigation. Zhur. Opyt. Agron. 10, 136-141 (1909).

44. Butkewitsch, W. Über die Bildung der Oxalsäure und des Ammoniaks in den Kulturen von Aspergillus niger auf Pepton. Biochem. Z. 129, 445-454 (1922).

45. Butlin, K. R., and Postgate, J. R. The economic importance of autotrophic micro-organisms. Symposium Soc. Gen. Microbiol. 4, 271-305 (1954).

46. Cain, R. B. The microbial metabolism of nitro-aromatic compounds. 7. Gen.

Microbiol. 19, 1-14 (1958).

47. Cantino, E. C. Physiology and phylogeny in water moulds—a revaluation.

Quart. Rev. Biol. 30, 138-149 (1955).

48. Carnahan, J. E., Mortensen, L. E., Mower, H. F., and Castle, J. E. Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim. et Biophys.

Acta 38, 188-189 (1960).

49. Carnahan, J. E., Mortenson, L. E., Mower, H. F., and Castle, J. E. Nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Biochim. et Biophys.

Acta 44, 520-535 (1960).

50. Cartwright, N. J., and Cain, R. B. Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro-group. Biochem. J. 73, 305-314 (1959).

51. Cartwright, N. J., and Cain, R. B. Bacterial degradation of nitrobenzoic acid.

Biochem. J. 71, 248-261 (1959).

51a. Chance, B., and Williams, G. R. Respiratory chain and oxidative phosphoryla-tion. Advances in Enzymol. 17, 65-135 (1956).

52. Cheniae, G. M., and Evans, H. J. On the relation between nitrogen fixation and nodule nitrate reductase of soybean root nodules. Biochim. et Biophys.

Acta 26, 654-655 (1957).

53. Cheniae, G. M., and Evans, H. J. Physiological studies of nodule-nitrate re-ductase. Plant Physiol. 35, 454-462 (1960).

54. Chesters, C. G. C , and Rolinson, G. N. Trace elements and streptomycin pro-duction. 7. Gen. Microbiol 5, 559-565 (1951).

55. Chesters, C. G. C , and Rolinson, G. N. Zinc in the metabolism of Aspergillus niger. J. Gen. Microbiol 5, 553-558 (1951).

56. Cochrane, V. W. The metabolism of species of Streptomyces. III. The nitrate metabolism of Streptomyces griseus. Bull. Torrey Botan. Club 77, 176-180

(1950).

57. Cochrane, V. W., and Conn, J. E. The metabolism of species of Streptomyces.

II. The nitrate metabolism of S. coelicolor. Bull. Torrey Botan. Club 77, 10-18 (1950).

58. Cochrane, V. W. "Physiology of Fungi" 524 pp. Wiley, New York, 1958.

59. Corbet, A. S. The formation of hyponitrous acid as an intermediate compound in the biological or photochemical oxidation of ammonia to nitrous acid. Bio-chem. J. 28, 1575-1582 (1934).

60. Chu, S. P. The influence of the mineral composition of the medium on the growth of Planktonic algae. /. Ecol. 30, 284-325 (1942).

61. Chughtai, I. D., and Walker, T. K. The influence of cyanide on Aspergillus niger. Biochem. J. 56, 484-487 (1954).

62. Chung, C. W., and Najjar, V. A. Cofactor requirements for enzymatic denitrifica-tion. 1. Nitrite reductase. J. Biol. Chem. 218, 617-626 (1956).

63. Chung, C. W., and Najjar, V. A. Cofactor requirements for enzymatic denitri-fication. II. Nitric oxide reductase. / . Biol. Chem. 218, 627-632 (1956).

64. Davson, H., and Danielli, J. F. "The Permeability of Natural Membranes"

361 pp. Macmillan, New York, 1943.

64a. Davis, B. D. Intermediates in amino acid biosynthesis. Advances in Enzymol.

16, 247-312 (1955).

65. Davy, H. "Elements of Agricultural Chemistry" Griffin, Glasgow, 1814.

66. De, P. K. The role of blue-green algae in nitrogen fixation in rice fields. Proc.

Roy. Soc. B127, 121-130 (1939).

67. Dehérain, P. P., and Marquenne, L. Sur la réduction des nitrates dans la terre arable. Compt. rend. acad. sei. 95, 691-693 (1882).

68. Delwiche, C. C. Production and utilization of nitrous oxide by Pseudomonas aeruginosa. J. Bacteriol. 77, 55-59 (1959).

69. Donald, C , Passey, Β. I., and Swaby, R. J. Bioassay of available trace metals .from Australian soils. Australian J. Agr. Research 3, 305-325 (1952).

70. Dox, A. W. The phosphorus assimilation of Aspergillus niger. J. Biol. Chem. 10, 77-80 (1911).

71. Drewes, K. Über die Assimilation des Luftstickstaffs durch Blaualgen. Zentr.

Bakteriol. Parasitenk. Abt. Il, 76, 88 (1935).

72. Egami, F., and Itahashi, M. Biochemical studies on the choline sulfate ester.

1. Aspergillus oryzae grows in a medium with choline-sulfate ester as sulfur source. Igaku to Seibutsugakii 19, 292-294 (1951).

73. Egami, F., Yamada, T., and Taniguchi, S. Respiration and the oxidation and reduction enzymes of a halotolerant bacterium. Congr. intern, biochim. 2nd Congr. Paris, 78 (1952).

3. I N O R G A N I C N U T R I E N T N U T R I T I O N O F M I C R O O R G A N I S M S 435

74. Elvehjem, C. A. The role of iron and copper in the growth and metabolism of yeast. J. Biol. Chem. 90, 111-113 (1931).

75. Engel, M. S., and Alexander, M. Growth and autotrophic metabolism of Nitrosomonas europaea. J. Bacteriol. 217, 76-82 (1958).

76. Engel, M. S., and Alexander, M. Culture of Nitrosomonas europaea in media free of insoluble constituents. Nature 181, 136-137 (1958).

76a. English, M. P., and Barnard, Ν. H. The effect of tract metal deficiency on some Trichophyton strains. Brit. My col. Soc. Trans. 38, 78-82 (1955).

77. Esposito, R. G., and Wilson, P. W. Trace metals in the nutrition of Azoto-bacter vinelandii (0). Biochim. et Biophys. Acta 22, 186-187 (1956).

78. Eyster, C. Necessity of boron for Nostoc muscorum. Nature 170, 755-756 (1952).

78a. Farkas-Himsley, H., and Artman, M. Studies on nitrate reduction by Escherichia coli. J. Bacteriol. 74, 690-692 (1957).

79. Fewson, C. Α., and Nicholas, D. J. D. Nitrate reduction in Pseudomonas aeruginosa. Biochem. J. 77, 3-4 Ρ (1960).

80. Fewson, C. Α., and Nicholas, D. J. D. Utilization of nitric oxide by micro-organisms and higher plants. Nature 188, 794-796 (1960).

81. Fewson, C. Α., and Nicholas, D. J. D. Nitric oxide reductase from Pseudo-monas aeruginosa. Biochem. J. 78, 9 (1961).

82. Fewson, C. Α., and Nicholas, D. J. D. The utilization of nitrate by micro-organisms. Nature 190, 2-7 (1961).

83. Fewson, C. Α., and Nicholas, D. J. D. Respiratory enzymes in Micrococcus dentrificans. Biochim. et Biophys. Acta 48, 208-210 (1961).

84. Fewson, C. Α., and Nicholas, D. J. D. Nitrate reductase from Pseudomonas aeruginosa. Biochim. et Biophys. Acta 49, 335-349 (1960).

85. Fogg, G. E. The production of extracellular nitrogenous substances by a blue-green alga. Proc. Roy. Soc. B139, 372-380 (1952).

86. Fogg, G. E., and Wolfe, M. Nitrogen metabolism of blue-green algae. Sym-posium Soc. Gen. Microbiol. 4th, 99-125 (1954).

87. Foster, J. W. "Chemical Activities of Fungi" 648 pp. Academic Press, New York, 1949.

88. Frank, B. Über den experimentellen Nachweis der Assimilation freien Stickstoffs durch erdbodenbewohninde Algen. Ber. deut. botan. Ges. 7, 34-42 (1889).

89. Frazen, H., and Löhmann, E. Beiträge zur Biochemie der Mikroorganismen. Z.

physiol, Chem. Hoppe-Seyler's 63, 52-102 (1909).

90. Fries, L. Studies in the physiology of Coprinus. I. Growth substance, nitrogen and carbon requirements. Svensk. Botan. Tidskr. 49, 475-535 (1955).

91. Fries, L. Studies in the physiology of Coprinus. II. Influence of pH, metal fac-tors and temperature. Svensk. Botan. Tidskr. 50, 47-96 (1956).

92. Gay on, U., and Dupetit, G. Recherches sur la réduction des nitrates par les in-finiment petits. Mém. soc. sei. phys. nat. (Bordeaux), 3e Sér. 11, 201-307

(1886).

93. Gerloff, C. G., Fitzgerald, G. P., and Skoog, F. The minerai nutrition of Micro-cystis aeruginosa. Am. J. Botany 39, 26-32 (1952).

94. Gerretsen, F. C , and Hoop, H. de. Boron, an essential micro-element for Azoto-bacter chroococcum. Plant and Soil 5, 349-367 (1954).

95. Golueke, C. G. Comparative studies of the physiology of Sapromyces and re-lated genera. 7. Bacteriol. 74, 337-343 (1957).

96. Goppelsröder, F. Beiträge zum Studium der saltpeterbildungen. Ann. Physik 115, 127-137 (1862).

97. Granick, S., and Gilder, H. The porphyrin requirements of Haemophilus in-fluenzae and some functions of the vinyl and propionic acid side chains of haem. J. Gen. Physiol. 30, 1-13 (1946).

98. Green, L. F., McCarthy, J. F., and King, C. G. Inhibition of respiration and photosynthesis in Chlorella pyrenoidosa by organic compounds that inhibit cop-per catalysis. 7. Biol Chem. 128, 447-453 (1939).

99. Greenfield, S. S. Inhibitory effects of inorganic compounds on photosynthesis in Chlorella. Am. J. Botany 29, 121-131 (1942).

100. Greenwood, Ε. A. N. The interaction of copper and phosphorus in legume nutrition. In "Nutrition of the Legumes" (E. G. Hallsworth, ed.) pp. 69-72.

Butterworths, London (1958).

101. Gribanov, V. M. The effect of different doses of copper and manganese on the fixation of nitrogen by Azotobacter chroococcum. Mikrobiol. Zhur. Akad. Nauk Ukr. R.S.R. 16, 18-21 (1954).

101a. Gundersen, K. Effects of Β vitamins and amino acids on nitrification. Physiol.

Plantarum 8, 136-142 (1955).

102. Hacskaylo, J., Lilly, V. G., and Barnett, H. L. Growth of fungi on three sources of nitrogen. Mycologia 46, 691-701 (1954).

103. Hallsworth, E. G., Wilson, S. Β., and Greenwood, Ε. Α. Ν. Copper and cobalt in nitrogen fixation. Nature 187, 79-80 (1960).

103a. Harley, J. L. Associations between micro-organisms and higher plants (Mycor-rhiza). Ann. Rev. Microbiol 6, 367-386 (1952).

104. Hawker, L. E., and Fraymouth, J. A re-investigation of the root-nodules of species of Elaeagnus, Hippophae, Alnus and Myrica, with special reference to the morphology and life histories of the causative organisms. /. Gen. Microbiol.

5, 369-386 (1951).

105. Henricksson, E. Nitrogen fixation by a bacteria-free, symbiotic Nostoc strain isolated from Collema. Physiol Plantarum 4, 542-552 (1951).

106. Henriksen, Α., and Jensen, H. L. Chemical and microbiological determinations of copper in soil. Acta Agr. Scand. 8, 432-469 (1958).

107. Henry, H., and Stacey, M. Histochemistry of the Gram-staining reaction for micro-organisms. Proc. Roy. Soc. B133, 391-406 (1946).

108. Hewitt, E. J. The use of sand and water culture methods in the study of plant nutrition. Commonwealth Bur. Hort. Plantation Crops (Gt. Brit.) Tech.

Commun. No. 22 (1952).

109. Hewitt, E. J., and Bond, G. Molybdenum and the fixation of nitrogen in Casuarina and Alnus root nodules. Plant and Soil 14, 159-175 (1961).

110. Hockenhull, D. J. D. Studies in penicillin production by Pencillium notatum in surface culture. 2. Further studies in the metabolism of sulphur. Biochem. J.

43, 498-504 (1948).

111. Hof man, T., and Lees, H. The biochemistry of the nitrifying organisms. 2. The free energy efficiency of Nitrosomonas. Biochem. J. 52, 140-142 (1952).

112. Hof man, T., and Lees, H. The biochemistry of the nitrifying organisms. 4.

The respiration and intermediary metabolism of Nitrosomonas. Biochem. J. 54, 579-583 (1953).

112a. Hopkins, E. F., and Wann, F. Β. The effect of the H ion concentration on the availability of iron for Chlorella sp. /. Gen. Physiol. 9, 205-210 (1925).

3. I N O R G A N I C N U T R I E N T N U T R I T I O N O F M I C R O O R G A N I S M S 437

112b. Hopkins, E. F., and Wann, F. Β. Iron requirement for Chlorella. Botan. Gaz.

84, 407-427 (1927).

113. Horner, C. K., Burk, D., Allison, F. E., and Sherman, M. S. Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. /. Agr. Research 65, 173-183 (1942).

114. Horowitz, Ν. H. Biochemical genetics in Neurospora. Advances in Genet. 3, 33-71 (1950).

115. Horsfall, J. G. "Principles of Fungicidal Action" 279 pp. Chronica Botanica, Waltham, Massachusetts, 1956.

116. Hutner, S. H Growth requirements of the photosynthetic bacterium Rhodo-spirillum rubrum. Arch. Biochem. 3, 439-^44 (1944).

117. Hutner, S. H., Provasoli, L., Schatz, Α., and Haskins, C. P. Some approaches to the study of the role of metals in the matabolism of microorganisms. Proc.

Am. Phil. Soc. 94, 152-170 (1950).

118. Hutner, S. H., Provasoli, L., Schatz, Α., and Haskins, C. P. Inorganic require-ments of plant flagellates (Protozoa). Proc. Am. Phil. Soc. 94, 152-163 (1950).

119. Ichioka, P. S., and Arnon, D. I. Molybdenum in relation to nitrogen metabo-lism. II. Assimilation of ammonia and urea without molybdenum by Scenedes-mus. Physiol Plantarum 8, 552-560 (1955).

120. Ingraham, J. L., and Emerson, R. Studies of the nutrition and metabolism of the aquatic phycomycete, Allomyces. Am. J. Botany 41, 146-152 (1954).

121. Isenberg, H. D., Schatz, Α., Angrist, Α. Α., Schatz, V., and Trelawny, G. S.

Microbial metabolism of carbamates. II. Nitrification of urethane by Strepto-myces nitrificans. J. Bacteriol 68, 5 (1954).

122. Iwanoff, Ν. N., and Osnizkaja, L. K. Die Blausäure als N-Quelle für Aspergillus niger. I. Biochem. Z. 271, 22-31 (1934).

123. Iwasaki, H., Matsubayashi, R., and Mori, T., Denitrification. II. Production of nitric oxide and its utilization in the N-N linkage formation by denitrifying bacteria. J. Biochem. (Tokyo) 43, 295-305 (1956).

124. Jensen, H. Denitrifikation und Stickstoffentbindung. In "Handbuch der Tech-nischen Mykologie" Vol. III, p. 182. H. Lafar (ed.), 1904.

125. Jensen, H. L. The influence of molybdenum, calcium and agar on nitrogen fixation by Azotobacter indicum. Proc. Linnean Soc. TV. S. Wales 72, 299-310

(1947).

126. Jensen, H. L. Nitrification of oxime compounds by heterotrophic bacteria. / . Gen. Microbiol. 5, 360-367 (1951).

127. Jordan, J. V., and Anderson, G. R. Effect of boron on nitrogen fixation by Azotobacter. Soil Sei. 69, 311-319 (1950).

128. Kaji, Α., and McElroy, W. D. Enzymic formation of choline sulphate. Biochim.

et Biophys. Acta 30, 190-191 (1958).

129. Keeler, R. F., and Varner, J. E. Tungstate as an antagonist of molybdate in Azotobacter vinelandii. Arch. Biochem. Biophys. 70, 585-590 (1957).

130. Kessler, Ε. Über den Mechanismus der Nitratreduktion von Grünalgen. Flora (Jena) 140, 1-11 (1953).

131. Kessler, E., Arthur, W., and Brugger, J. E. The influence of manganese and phosphate on delayed light emission, fluorescence, photoreduction and

photo-synthesis in algae. Arch. Biochem. Biophys. 71, 326-335 (1957).

132. Kingma-Boltjes, T. Y. Untersuchungen über die nitrifizierenden Bakterien.

Arch. Mickrobiol. 6, 79-86 (1935).

133. Klotz, I. M. Thermodynamic and molecular properties of some metal-protein complexes. In "Mechanism of Enzyme Action" (W. D. McElroy and B. Glass, eds.) pp. 257-284. Johns Hopkins Press, Baltimore, Maryland, 1954.

134. Kluyver, A. J., and Donker, R. J. L. Die Einheit in der Biochemie. Chem.

Zelle u. Gewebe 13, 134-190 (1926).

135. Kluyver, A. J., and Verhoeven, W. Studies on true dissimilatory nitrate reduc-tion. II. The mechanism of denitrifïcareduc-tion. Antonie van Leeuwenhoek. J. Micro-biol. Serol. 20, 241-262 (1954).

136. Kluyver, A. J., and van Niel, C. B. "The Microbe's Contribution to Biology"

Harvard Univ. Press, Cambridge, Massachusetts, 1956.

137. Koffler, H., Knight, S. G., and Frazier, W. C. The effect of certain mineral elements on the production of penicillin in shake flasks. /. Bacterid. 53, 115-123 (1947). .

138. Kosceleckii, A. Soil fertility in relation to phosphoric acid. Zhur. Opyt. Agr on.

10, 321-331 (1909).

139. Kratz, W., and Myers, J. Nutrition and growth of several blue-green algae.

Am. J. Botany 42, 282-287 (1955).

140. Krebs, Η. Α., Wittam, R., and Hems, R. Potassium uptake by Alcaligenes faecalis. Biochem. J. 66, 53-60 (1957).

141. Lascelles, J. An assay for protoporphyrin based on the reduction of nitrate by a variant strain of Staphylococcus aureus: synthesis of iron protoporphyrin by suspensions of Rhodopseudomonas sphéroïdes. J. Gen. Microbiol. 15, 404-416

(1956).

142. Lavollay, J. Les oligo elements dans la nutrition et la croissance des micro-organisms. VIe Congr. Intern. Microbiol. Symposium, Roma, Î953 LXII, No.

3-4, pp. 1-25 (1953).

143. Lees, H., Simpson, J. R., Jensen, H. L., and Serensen. Formation of nitrite from oximes and hydroxylamine by micro-organisms. Nature 173, 358-359 (1954).

144. Lees, H., and Quastel, J. H. Bacteriostatic effects of potassium chlorate on soil nitrification. Nature 155, 276-278 (1945).

145. Lees, H. The effect of zinc and copper on soil nitrification. Biochem. J. 42, 534-538 (1948).

146. Lees, H., and Meiklejohn, J. Trace elements and nitrification. Nature 161, 398-399 (1948).

147. Lees, H. Soil percolation technique. Plant and Soil 1, 221-239 (1949).

148. Lees, H. Isolation of the nitrifying organisms from soil. Nature 167, 355-356 (1951).

149. Lees, H. The biochemistry of the nitrifying organisms. I. The ammonia-oxidising systems of Nitrosomonas. Biochem. J. 52, 134-141 (1952).

150. Lees, H. "Biochemistry of Autotrophic Bacteria" Butterworths, London, 1955.

151. Lees, H., and Simpson, J. R. Biochemistry of the nitrifying organisms. 5.

Nitrite oxidation by Nitrobacter. Biochem. J. 65, 297-305 (1959).

152. Little, H. N. Oxidation of nitroethane by extracts from Neurospora. J. Biol.

Chem. 193, 347-358 (1951).

153. Lockwood, L. B., and Reeves, M. D. Some factors affecting the production of itaconic acid by Aspergillus terreus. Arch. Biochem. 6, 455-469 (1945).

154. Lockwood, L. B., and Nelson, G. Ε. N. Some factors affecting the production of itaconic acid by Aspergillus terreus in agitated cultures. Arch. Biochem. 10, 365-374 (1946).

155. Loginova, Ε. B. The effect of copper on the activity of vetch nodule bacteria.

Sbornik. Ν auch. Trudov Ivanovsk. Energet. Inst. 7, 53-60 (1955).

3. I N O R G A N I C N U T R I E N T N U T R I T I O N O F M I C R O O R G A N I S M S 439

156. Lowe, R. H., Evans, H. J., and Ahmed, S. The effect of cobalt on the growth of Rhizobium japonicum. Biochem. Biophys. Research Communs. 3, 675-678

(1960).

157. Ludwig, C. A. The availability of different forms of nitrogen to a green alga.

Am. J. Botany 25, 448 (1938).

158. McCalla, T. M. The adsorption of H+ by bacteria as measured by the glass electrode. 7. Bacteriol. 41, 775-784 (1941).

159. McCallan, S. E. A. The nature of the fungicidal action of copper and sulfur.

Botan. Rev. 15, 629-643 (1949).

160. McHargue, J. S., and Calfee, R. K. Effect of manganese, copper and zinc on growth and metabolism of Aspergillus flavus and Rhizopus nigricans. Botan.

Gaz. 91, 183-193 (1931).

161. McHargue, J. S., and Calfee, R. K. Effect of manganese, copper and zinc on the growth of yeast. Plant Physiol. 6, 559-566 (1931).

162. MacLeod, R. Α., and Snell, Ε. E. The effect of related ions on the potassium requirement of lactic acid bacteria. 7. Biol. Chem. 176, 39-52 (1948).

163. MacLeod, R. Α., and Snell, Ε. E. The relation of ion antagonism to the in-organic nutrition of lactic acid bacteria. 7. Bacteriol. 59, 783-792 (1950).

164. MacLeod, R. A. Further mineral requirements of Streptococcus faecalis. J.

Bacteriol. 62, 337-345 (1951).

165. McNall, E. G., and Atkinson, D. E. Nitrate reduction. I. Growth of E. coli with nitrate as sole source of nitrogen. 7. Bacteriol. 72, 226-229 (1956).

166. McNall, E. G., and Atkinson, D. E. Nitrate reduction. II. Utilization of possible intermediates as nitrogen sources and electron acceptors. 7. Bacteriol. 74, 60-66

(1957).

167. Maertens, H. Das Wachstum von Blaualgen in mineralischen Nährlösungen.

Beitr. Biol. Pflanz. 12, 439-444 (1914).

168. Malavolta, E., Delwiche, C. C , and Bürge, W. D. Carbon dioxide fixation and phosphorylation by Nitrobacter agilis. Biochem. Biophys. Research Communs.

2, 445^149 (1960).

169. Mann, T. Studies on the metabolism of mould fungi. Biochem. 7. 38, 345-351 (1944).

170. Manson, V. D., and Tomashevska, O. G. The influence of micro-organisms on the solubility of fertilizer phosphorus and on its uptake by plants. Dopovidi Akad. Nauk Ukr. R.S.R. No. 6, 600-605 (1955).

171. Marshall, Β. H. Some effects of inorganic nutrients on the growth and patho-genicity of five fungal pathogens of gladiolus. Phytopathology 45, 676-680

(1955).

172. Martin, H. "The Scientific Principles of Plant Protection" 4th ed., 385 pp.

Edward Arnold, London, 1959.

173. Martin, H., Wain, R. L., and Wilkinson, Ε. H. Studies upon the copper fun-gicides. V. A critical examination of the fungicidal value of copper compounds.

Ann. Appl. Biol. 29, 412-438 (1942).

174. Matuoshvili, S. I. The effect of boron and molybdenum on the morphology and physiology of Azotobacter chroococcum. Mikrobiologiya 16, 19-31 (1947).

175. Mayer, A. M. Problems of the assimilation of nitrogen by Chlorella vulgaris.

Ph.D. thesis, University of London, England, 1950.

176. Medina, Α., and Nicholas, D. J. D. Metallo-enzymes in the reduction of nitrate to ammonia in Neurospora. Biochem. et Biophys. Acta 25, 138-41 (1957).

177. Medina, Α., and Nicholas, D. J. D. Hyponitrite reductase in Neurospora. Nature 179, 533-534 (1957).

178. Medina, Α., and Nicholas, D. J. D. Some properties of a zinc-dependent hexo-kinase from Neurospora crassa. Biochem. J. 66, 573-578 (1957).

179. Mehlich, Α., Fred, Ε. B., and Truog, E. The Cunninghamella plaque method of measuring available phosphorus in soil. Soil Sei. 38, 445-452 (1934).

180. Meiklejohn, J. Iron and the nitrifying bacteria. J. Gen. Microbiol. 8, 58-65 (1953).

181. Meiklejohn, J. Some aspects of the physiology of the nitrifying bacteria.

Symposium Soc. Gen. Microbiol. 4th, 68-83 (1954).

182. Meyerhof, O. Untersuchungen über den Atmungsvorgang nitrifizierender Bakterien. Arch. ges. Physiol. Ρ flüger9 s 166, 240-280 (1917).

183. Miller, L. P., McCallan, S. Ε. Α., and Weed, R. M. Quantitative studies on the role of hydrogen sulfide formation in the toxic action of sulfur to fungus spores.

Contribs. Boyce Thompson Inst. 17, 151-171 (1953).

184. Miller, L. P., McCallan, S. Ε. Α., and Weed, R. M. Rate of uptake and toxic dose on a spore weight basis of various fungicides. Contribs. Boyce Thompson Inst. 17, 173-195 (1953).

185. Miller, L. P., and McCallan, S. E. A. Toxic action of metal ions to fungus spores. /. Agr. Food Chem. 5, 116-122 (1957).

187. Millet, J. In "Colloque sur la biochimie du soufre" Vol. 77, p. 79. Centre Na-tional de la Recherche Scientifique, Paris, 1956.

188. Mitchell, P. Transport of phosphate through an osmotic barrier. Symposia Soc.

Exptl. Biol. No. 8, 254-261 (1954).

189. Molliard, M. Caractères physiologiques présentés pour le Sterigmatocystis nigra en inanition de zinc et de fer. Compt. rend. acad. sei. 189, 417-420 (1929).

190. Molisch, H. "Die Eisenbakterien." Fischer, Jena, Germany, 1910.

191. Morton, A. G., and MacMillan, A. The assimilation of nitrogen from am-monium salts and nitrate by fungi. 7. Exptl. Botany 5, 232-252 (1954).

192. Mothes, K. Über den schwefelst offwechsel der pflanzen. II. Planta 29, 67-109 (1939).

193. Mulder, E. G. Sur l'influence du cuivre sur la croissance des microorganismes.

Ann. Ferment. 4, 513-533 (1938).

194. Müller, E., and Biedermann, W. Der einflus von Cu+ 2-Ionen auf den Keimungs-ablauf. Phytopathol. Ζ. 19, 343-350 (1952).

195. Müntz, J. A. The role of potassium and ammonium ions in alcoholic fermenta-tion. 7. Biol. Chem. 171, 653-665 (1947).

196. Murometsev, G. S. The utilization of water-insoluble phosphate by soil micro-organisms. Doklady Akad. Saukh Ν auk 5, 35 (1955).

197. Myers, J. Physiology of the Algae. Ann. Rev. Microbiol. 5, 157-180 (1951).

198. Najjar, V. Α., and Allen, M. B. Formation of nitrogen, nitrous oxide and nitric oxide by extracts of denitrifying bacteria. J. Biol. Chem. 206, 209-214 (1954).

199. Nason, Α., Kaplan, N. O., and Colowick, S. P. Changes in enzymatic constitu-tion in zinc-deficient Neurospora. J. Biol. Chem. 188, 397-406 (1951).

200. Nason, Α., Abraham, R. G., and Averbach, Β. C. Enzymatic reduction of nitrite to ammonia by reduced pyridine nucleotides. Biochem. et Biophys. Acta 15, 159-161 (1954).

201. Neilands, J. B. Some aspects of microbial iron metabolism. Bacteriol. Revs. 21, 101-111 (1957).

202. Nicholas, D. J. D., and Fielding, A. H. The use of Aspergillus niger (M) for the determination of magnesium, zinc, copper and molybdenum available in soils to crop plants. / . Hort. Sei. 26, 125-147 (1951).

3. I N O R G A N I C N U T R I E N T N U T R I T I O N O F M I C R O O R G A N I S M S 4 4 1

203. Nicholas, D. J. D. The use of fungi for determining trace metals in biological materials. Analyst 77, 629-642 (1952).

204. Nicholas, D. J. D., Nason, Α., and McElroy, W. D. Molybdenum and nitrate reductase. I. Effect of molybdenum deficiency on the Neurospora enzyme. 7.

Biol Chem. 207, 341-351 (1954).

204a. Nicholas, D. J. D., and Nason, A. Molybdenum and nitrate reductase. II. 7.

Biol Chem. 207, 352-360 (1954).

205. Nicholas, D. J. D., and Stevens, Η. M. Valency changes of molybdenum during the enzymatic reduction of nitrate in Neurospora. Nature 176, 1066-1067 (1955).

206. Nicholas, D. J. D., and Nason, A. Diphosphopyridine nucleotide-nitrate reductase from Escherichia coli. 7. Bacteriol 69, 580-583 (1955).

207. Nicholas, D. J. D. Role of metals in enzymes with special reference to flavo-proteins. Nature 179, 800-804 (1957).

208. Nicholas, D. J. D. The function of trace metals in the nitrogen metabolism of plants. Ann. Botany (London) 21, 587-598 (1957).

209. Nicholas, D. J. D. Role of trace metals in the nitrogen metabolism of plants with special reference to micro-organisms. 7. Sei. Food Agr. 8, S15-S25 (1957).

210. Nicholas, D. J. D. The effect of molybdenum deficiency on the catalase and peroxidase content of Neurospora crassa. J. Gen. Microbiol. 17, 689-698 (1957).

211. Nicholas, D. J. D. Metallo-enzymes in nitrate assimilation of plants with special reference to micro-organisms. Symposia Soc. Exptl. Biol. No. 13, 1-26 (1959).

212. Nicholas, D. J. D. Metabolism of inorganic nitrogen and its compounds in plants.

4th Intern. Congr. Biochem. Vienna XIII (Colloquia), 307-331 (1959). Per-gamon Press, London.

213. Nicholas, D. J. D. The use of fungi for determining trace metals in biological materials. In "Proceedings of International Symposium on Microchemistry,,

R. Belcher (ed.) pp. 205-211. Pergamon Press, London, 1959.

214. Nicholas, D. J. D., Medina, Α., and Jones, O. T. G. A nitrite reductase from Neurospora crassa. Biochem. et Biophys. Acta 37, 468^76 (1960).

215. Nicholas, D. J. D., and Jones, O. T..G. Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea. Nature 185, 512-514 (1960).

216. Nicholas, D. J. D., and Fisher, D. J. Nitrogen fixation in extracts of Azoto-bacter vinelandii. Nature 186, 735-736 (1960).

217. Nicholas, D. J. D., and Fisher, D. J. Nitrogen fixation in extracts of Azotobacter vinelandii. J. Sei. Food Agr. 10, 603-608 (1960).

218. Nicholas, D. J. D., Fisher, D. J., Redmond, W. J., and Wright, M. A. Some aspects of hydrogenase activity and nitrogen fixation in Azotobacter spp. and in Clostridium pasteurianum. J. Gen. Microbiol 22, 191-205 (1960).

219. Nicholas, D. J. D., Silvester, D. J., and Fowler, J. F. The use of radioactive nitrogen in studying nitrogen fixation in bacteria and their extracts. Nature 189, 634-636 (1961).

220. Nicholas, D. J. D. Minor mineral elements. Ann. Rev. Plant Phys. 13, 63-90 (1961).

220a. Nicholas, D. J. D. unpublished results (1961).

220b. Nicholas, D. J. D., Maruyama, Y., and Fisher, D. J. The effect of cobalt deficiency on the utilization of nitrate nitrogen in Rhizobium. Biochem. et Biophys. Acta 56, 623-626 (1962).

220c. Nicholas, D. J. D., Kobayashi, M., and Wilson, P. W. Cobalt requirement for nitrogen metabolism in microorganisms. Microbiol. Proc. p. 101 (1962) and Proc. Nat. Acad. Sei. U.S. 49 (1962).

221. Nord, F. F. Enzymatische Umsetzungen durch Fusarien. In "Beitrag zum Mechanimns der alkoholischen Gärung in Ergebnisse der Enzymforsuch" (F. F.

Nord, and R. Weidenhagen, eds.) 7th ed. Akademische, Verlagsgese. Leipzig, 1939.

222. Nord, F. F., and Mull, R. P. Recent progress in the biochemistry of Fusaria.

Enzymologia 5, 165-205 (1945).

223. Norris, J. R., and Jensen, H. L. The calcium requirements of Azotobacter.

223. Norris, J. R., and Jensen, H. L. The calcium requirements of Azotobacter.