• Nem Talált Eredményt

BUDAPEST PHYSICS INSTITUTE FOR RESEARCH CENTRAL

N/A
N/A
Protected

Academic year: 2022

Ossza meg "BUDAPEST PHYSICS INSTITUTE FOR RESEARCH CENTRAL"

Copied!
24
0
0

Teljes szövegt

(1)

KFKI-1930-119

’Hungarian ’ücademy o f Sciences

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

J . S . BAKOS

PLASMA DIAGNOSTICS WITH LASERS

(2)
(3)

J.S. Bakos

Central Research Institute for Physics H-1525 Budapest 114, P.O.B. 49, Hungary

HU ISSN 0368 5330 ISBN 963 371 762 0

(4)

Different methods of laser plasma diagnostics is reviewed and the latest results are discussed.

АННОТАЦИЯ

Обсуждаются методы лазерной диагностики плазмы и дискутируются получен­

ные самые новые результаты.

KI VONAT

A lézeres plazmadiagnosztika módszereit ismertetjük és a legújabb ered­

ményeket diszkutáljuk.

(5)

L aser p l a s m a d i a g n o s t i c s has b e c o m e the la r g e s t b r a n c h a m o n g the p l a s m a d i a g n o s t i c s met h o d s b e c a u s e of the r a p i d d e v e l o p m e n t of laser t e c h n i q u e s d u r i n g the last t w e n t y y e a r s . Bot h the d e v e l ­ o p ment of laser p h y s i c s itself and the a s s o c i a t e d t e c h n i q u e s

hav e i n i t i a t e d n e w d i a g n o s t i c m e t h o d s a n d the n e e d for n e w d i a g ­ n ostics has, in turn, started the i n v e s t i g a t i o n of n e w shorts of lasers, detectors, and opt i c a l c o n f i g u r a t i o n s . The r e s e a r c h a c t i v i t y in the f i e l d of c o n t r o l l e d t h e r m o n u c l e a r fusion p l a y s a deci s i v e role in this respect.

A l m o s t all l a s e r methods can e q u a l l y be us e d for the d i a g ­ n ostics of both l o w t e m p e r a t u r e and h i g h t e m p e r a t u r e p l a s m a s but the needs of t h e r m o n u c l e a r p l a s m a d i a g n o s t i c s d e t e r m i n e s t h e rate of development. L o w t e m p e r a t u r e p l a s m a d i a g n o s t i c s e x p e r i m e n t s tend to be only m o d e l e x p e r i m e n t s p r i o r to a p p l y i n g the n e w m e t h o d in t h e r m o n u c l e a r research. In v i e w of this, e m p h a s i s is p l a c e d on the h i g h t e m p e r a t u r e a p p l i c a t i o n s in this p r e s e n t r e ­ port. The b o u n d a r i e s of laser p l a s m a d i a g n o s t i c s h a v e w i d e n e d v e r y m u c h and fro m time to time r e v i e w h a v e s u m m a r i z e d the r e ­ sults in w i d e l y v a r y i n g s u b f ields [1-14]. In this p a p e r c h i e f l y the r esults p u b l i s h e d after the last r e v i e w p apers / d e t a i l e d above/ are e m p h a s i z e d besides a brief s u m m a r y of the e s s e n c e of the d i f f e r e n t l a ser dia g n o s t i c methods.

2 . WHAT DOES A LASER PLASMA D IA G N O S TIC S S E T -U P LOOK L IK E ?

The general a r r a n g e m e n t of a p l a s m a d i a g n o s t i c s m e a s u r i n g set-up can be seen in Fig. 1 b y means o f w h i c h the p l a s m a c r e ­ ated by the p lasma device can be d i a gnosed. The m e a s u r i n g o p t i c a l c o n f i g u r a t i o n d e p e n d s on the p r o p e r t y o f the p l a s m a to be

(6)

measured. F o r instance, in the c a s e of p l a s m a d e n s i t y m e a s u r e ­ ments, by m e a s u r i n g the index o f r e f r a c t i o n of the p l a s m a this p a r t i c u l a r o p t i c a l c o n f i g u r a t i o n acts as a sort of i n t e r f e r o m e ­ ter /see S e c t i o n 6/. By m e a s u r i n g the e l e c t r o n t e m p e r a t u r e by T h o m s o n s c a t t e r i n g the m e a s u r i n g o p t i c a l c o n f i g u r a t i o n is given b y the s c a t t e r i n g g e o m e t r y /see S e c t i o n 3/. D e p e n d i n g on the p l a s m a to be m e a s u r e d this o p t i c a l c o n f i g u r a t i o n c a n be r e a l i z e d in m a n y ways. The d e v e l o p m e n t of m e a s u r i n g o ptical c o n f i g u r a t i o n s re s u l t s in n e w p lasma d i a g n o s t i c s m e t h o d s /for i n s t a n c e d i f f e r e n t i n t e r f e r o m e t e r s , s c a t t e r i n g ge o m e t r y / . A n y given m e a s u r i n g o p ­ tical c o n f i g u r a t i o n is d e t e r m i n e d , naturally, also b y the type of i n t e r a c t i o n wit h the plasma /for i n s t a n c e local scattering, p h a s e a c c e l e r a t i o n d u r i n g the p a t h of the p r o p a g a t i o n / .

Lasers a r e s e l e c t e d a c c o r d i n g to the p l a s m a p r o perties, the p l a s m a p r o p e r t y to be m e a s u r e d , the type of i n t eraction, the type of d e t e c t i o n and m e a s u r i n g o p t i c a l c o n f i g u r a t i o n . In a c c o r d ­ ance w i t h the g iven r e q u i r e m e n t s t h e laser w a v e l e n g t h varies

fro m 100 n m to 1 mm. F u r t h e r m o r e the laser can be p u l s e d or c o n ­ t i n u o u s w a v e a n d the p o w e r r e q u i r e m e n t s are some lOO M W in the p u l s e d case a n d from som e 100 m W in the C W case. T h e p u l s e d u r a ­ tio n is s o m e t i m e s r e q u i r e d to be some tens of picose c o n d s ;

o t h e r w i s e a l o n g e r p u l s e length in the yse c range is m o r e a d v a n ­ tag e o u s .

The type of d e t e c t o r c h a n g e s a c c o r d i n g to the w a v e l e n g t h of the laser a n d many t i mes g r e a t e r s e n s i t i v i t y and faster r e s p o n s e are a l s o required. Recen t l y , spe c i a l T V c a m e r a s and s t r e a k - c a m e r a s have b e g u n to s e r v e as detectors.

The d a t a a c q u i s i t i o n and d i s p l a y s y s t e m is c o n t r o l l e d by c o m p u t e r s in m o d e r n d i a g n o s t i c s s y s t e m s of t h e r m o n u c l e a r rese a r c h S o m e t i m e s this da t a a c q u i s i t i o n s y s t e m is simply an osc i l l o s c o p e .

P l a s m a d e v i c e s do n o t b e l o n g to the d i a g n o s t i c s s y s t e m but such dev i c e s d o give c o n t r o l s i g n a l s to the lasers a n d the data a c q u i s i t i o n system. In m o r e s o p h i s t i c a t e d m e a s u r i n g o p t i c a l c o n ­ figu r a t i o n s t h e data a c q u i s i t i o n s y s t e m c o n t r o l s the o p t i c s and the lasers too.

(7)

The use of the p l a s m a d i a g n o s t i c s m e t h o d enables the f o l ­ l o w i n g p l a s m a pa r a m e t e r s to be m e a s ured.

1/ E l e c t r o n den s i t y /n /

by T h o m s o n s c a t t e r i n g /Section 3/, i n t e r f e r o m e t r y /Section 6/ and n o n ­ linear s c a t t e r i n g /Section 5/;

2/ Sp a t i a l and temporal e l e c t r o n d e n s i t y d i s t r u b u t i o n n 0 /r,t/

by T h o m s o n s c a t t e r i n g /Section 3/, a n d i n t e r f e r o m e t r y /Section 6/;

3/ E l e c t r o n t e m p e r a t u r e /Т /

by T h o m s o n s c a t t e r i n g /Sect i o n 3/, and n o n l i n e a r s c a t t e r i n g /Section 5/;

4/ Sp a t i a l and tempo r a l e l e c t r o n t e m p e r a t u r e d i s ­ t r i b u t i o n /Т / r ft//

by T h o m s o n s c a t t e r i n g /Sect i o n 3 / ; 5/ Ion t e m p e r a t u r e /IV/

by T h o m s o n s c a t t e r i n g /Section 3/, n o n l i n e a r s c a t t e r i n g /Section 5/, a n d s c a t t e r i n g on b o u n d e l e c t r o n s /Sect i o n 4/?

6/ Local c u r r e n t d e n s i t y /j /

by T h o m s o n s c a t t e r i n g /Sect i o n 7/;

7/ D e t e r m i n a t i o n of the d e n s i t y of the d i f f e r e n t sp e c i e s of p l a s m a / i m p urity atoms, ions in the g r o u n d and e xcited states, b a c k g r o u n d atoms in the g r o u n d and e x c i t e d state/

by s c a t t e r i n g o n b o u n d e l e c t r o n s /Section 4 / .

8/ Local m a g n e t i c f i eld /Н /

by T h o m s o n s c a t t e r i n g /Section 3/ a n d F a r a d a y r o t a t i o n /Section 7/.

(8)

3 . SCATTERING BY FREE ELECTRONS

L a s e r r a d i a t i o n w i t h p r o p a g a t i o n v e c t o r and f r e q u e n c y o)^ is sent t h r o u g h the plasma. The b y the p l a s m a s c a t t e r e d light with p r o p a g a t i o n v e c t o r к and f r e q u e n c y ш с is observed. The s p e c t r u m of the s c a t t e r e d light can be fitted by the t h e o r e t i c a l func t i o n S/w, к; T , T . , n / given in ref. [14] w h e r e w = w . - w c and k = k .- k ~ 2 k .s i n 0 /2 where 0 is the s c a t t e r i n g angle. The pa r -

l b 1

ameters are the e l e c t r o n t e m p e r a t u r e /T e /f the ion t e m p e r a t u r e /T^/ a n d the e l e c t r o n d e n s i t y /n / , all of w h i c h can be d e t e r ­ m i n e d as a r e s u l t of the f i t t i n g pro c e d u r e .

If k>>k = -r— w h e r e X is the D e b y e length, the f o r m of

D Aq D

func t i o n S is the same as the e l e c t r o n v e l o c i t y d i s t r i b u t i o n function. In the cas e of M a x w e l l i a n d i s t r i b u t i o n the a m p l i t u d e of the s p e c t r u m gives the d e n s i t y of t h e electron, the w i d t h

ЗнТ 1/2

/ A w / d e termines the e l e c t r o n t e m p e r a t u r e Aw = k ( ---- ) . и is e

B o l t z m a n n ' s const a n t , and m is the e l e c t r o n mass.

e

T h e ion t e m p e r a t u r e does not i n f l u e n c e the func t i o n S in that c a s e at all.

The m e a s u r e m e n t is a local one d e t e r m i n i n g n and T at

e e

the p o i n t of i n t e r a c t i o n к . and к .

i s

In the m o s t r e c e n t i n v e s t i g a t i o n s of t o k a m a k p l a s m a [15]

the s p e c t r u m is m e a s u r e d u s i n g a s p e c t r o g r a p h w i t h image i n ­ t e n s i f i c a t i o n a n d v i d e o c a m e r a d e t e ction. The d i f f e r e n t spatial points a m o n g the pat h of the light t h r o u g h the p l a s m a are s i m u l ­ t a n e o u s l y o b s e r v e d u s i n g fibre o p t i c s to p r o j e c t the image of the l i g h t path to the i nput slit of the spectrograph. In this spatial d i s t r i b u t i o n of n and T c a n b e d e t e r m i n e d s i m u l t a -

e e

neously. In this case, a g a i n t p u l s e r u b y laser is use d as the light source.

In ano t h e r e x p e r i m e n t [16,17] the rub y l a ser is m o d u l a t e d and so the l a ser gives a series of l i g h t p ulses w i t h a b out 30 ysec s e p a r a t i o n b e t w e e n the pulses. U s i n g p o l y c h r o m a t o r

with s i m u l t a n e o u s d e t e c t i o n in the c h a n n e l s the temp o r a l e v o l u ­ tion /т е / n e / of the t o k a m a k d i s c h a r g e is m e a s u r e d in the v i c i n ­ ity of m a j o r d i s r u p t i o n s .

(9)

If k < < k D a n d w>>Wp /the p l a s m a frequency/ the f u n c t i o n S c a n be r e p l a c e d by S' i.e.

S(o),k;Te ,Ti ,ne ) ~S' (w,k;T1)

and the S' f u n c t i o n c o n t a i n s o n l y T^ as the para m e t e r s , c o n ­ sequently. T h e ion t e m p e r a t u r e /T^/ c a n be d e t e r m i n e d f r o m the m e a s u r e d s c a t t e r e d spectrum. The w i d t h of the s p e c t r u m

1 ЗиТ± 1/2 Г715

w h e r e пк is t h e ion mass.

There are two ways to s a t i s f y the i n e q u a l i t y k < < k Q . One w a y is to d e c r e a s e the s c a t t e r i n g angle, the s econd is to i n ­ c r e a s e the w a v e l e n g t h of the laser.

In the f i r s t case the s c a t t e r e d r a d i a t i o n c a n n o t be s e p a r ­ ated from the inci d e n t beam. The s i m u l t a n e o u s d e t e c t i o n of the i n c i d e n t and s c a t t e r e d b e a m causes a b e a t i n g signal in the

detector. Due t o the s m a l l n e s s of Док the s p e c t r u m of the b e a t ­ ing can be m e a s u r e d e l e c t r o n i c a l l y i n s t e a d of u s i n g a p o l y c h r o - mator. This h o m o d y n e d e t e c t i o n is u s e d in m a n y e x p e r i m e n t s

[18-25]. The d r a w b a c k is the poor s p a t i a l r e s o l u t i o n d u e to the small s c a t t e r i n g angle.

In the s e c o n d case, lon g w a v e l e n g t h h i g h pea k i n t e n s i t y laser and s e n s i t i v e d e t e c t o r s are needed. The c o n s e q u e n c e of this is that e x t e n s i v e r e s e a r c h in b e i n g c a r r i e d out to d e v e l ­ op p ulsed n a r r o w b a n d w i d t h s u b m i l l i m e t e r lasers [26-28] and

s e n s i t i v e det e c t o r s .

4 . SCATTERING BY BOUND ELECTRONS

Plasma u s u a l l y c o n s i s t s of d i f f e r e n t a t o m i c species; this is a l s o true if the o r i g i n a l gas w a s v e r y pur e and the i o n i z a ­ tion grade is n o m i n a l l y 100% /high t e m p e r a t u r e plasma/. The n e u t r a l gas b a c k g r o u n d d e n s i t y is u s u a l l y m a n y o r d e r s of m a g ­

(10)

n i t u d e lower t h a n the e l e c t r o n d e n s i t y in high t e m p e r a t u r e h y d r o g e n t o k a m a k plasmas, b u t this low d e n s i t y b a c k g r o u n d plays an i m p o r t a n t ro l e in p a r t i c l e t r a n s p o r t p r o c e s s e s to t h e wall and ba c k [29]. The wal l i n t e r a c t i o n w i t h h i g h e n e r g y n e u t r a l a t oms emits h e a v y impu r i t y a t oms int o the p l a s m a t h e r e b y c h a n g ­ ing the c o n t e n t and p r i n c i p a l l y c h a n g i n g the state of the p lasma This m eans t h a t the d i a g n o s t i c s c o n c e r n i n g the d e n s i t i e s of the d i f f e r e n t p l a s m a species is of c r u c i a l importance.

The d e t e r m i n a t i o n of the p l a s m a c o n t e n t is n a t u r a l l y an i m p o rtant t a s k also for the d i a g n o s t i c s of pla s m a s of l o w t e m ­ perature, c o n s e q u e n t l y of low i o n i z a t i o n grade.

The l a s e r m e t h o d for l o c a l l y d e t e r m i n i n g the dens i t y , t e m ­ p e r a t u r e and d r i f t v e l o c i t y of t h e d i f f e r e n t p l a s m a spe c i e s is r e s o n a n c e f l u o r e s c e n c e i nduced b y t u n a b l e laser light. The

m e t h o d has b e c o m e a p p l i c a b l e o n l y since the d e v e l o p m e n t of t u n ­ able lasers. T h e r e s o n a n c e light of the laser u s u a l l y s a t u rates the t r a n s i t i o n due to the hig h intensity. In this c a s e the p o p u l a t i o n i n c r e a s e AN^ in the u p p e r level - c o n s e q u e n t l y also the i n t e n s i t y of the r e s o n a n c e f l u o r e s c e n c e /G / - d e p e n d s only on the p o p u l a t i o n of the lower l e vel /N^/

G = t *a *N2.

If the a t o m i c p a r ameters, s p o n t a n e o u s r e l a x a t i o n rates and the r e l a x a t i o n rates ind u c e d by e l e c t r o n s are known, a c a n be c a l c u l a t e d [30,31] and the d e n s i t y of the atoms in the lower level can be d e t e r m i n e d a c c o r d i n g to the a b o v e formula, w h ere t is the d u r a t i o n time of the l a s e r pulse.

In a r e c e n t e x p e r i m e n t the d e n s t i y of the h y d r o g e n atoms in the first e x c i t e d s t ate was d e t e r m i n e d in tok a m a k p l a s m a [32]

W i t h the k n o w l e d g e of the d e n s i t y of the e x c i t e d a t o m / ^ / the a t o m i c d e n s i t y in the n o rmal s t ate /N^/ c a n be c a l c u l a t e d u s i n g an a c c e p t a b l e p l a s m a model. The d e n s i t y d i s t r i b u t i o n are also d e t e r m i n e d at d i f f e r e n t d i s c h a r g e times.

The d e n s i t y of d i f f e r e n t p l a s m a s pecies has b e e n d e t e r m i n e d in l o w t e m p e r a t u r e pla s m a s in m a n y r e c e n t e x p e r i m e n t s [33-38]

(11)

u s i n g the r e s o n a n c e f l u o r e s c e n c e m ethod. U s i n g this m e t h o d of laser p l a s m a d i a g n o s t i c s it is also p o s s i b l e to m e a s u r e the d i f ­ fusion of the i m p u r i t i e s in the plasma. In t h e e x p e r i m e n t [39]

the d i f f u s i o n of a l u m i n i u m atoms w a s m e a s u r e d in h y d r o g e n plasma.

The a l u m i n i u m a t o m s are i n j e c t e d int o the p l a s m a by a s h o t from a CC>2 T E A laser to the s u r f a c e of a l u m i n i u m in the plasma. The time t aken for t h e d i f f u s i o n to d e v e l o p is m e a s u r e d b y a timed, tuned laser and b y o b s e r v i n g the r e s o n a n c e fluores c e n c e . The p o t e n t i a l a p p l i c a b i l i t y of the m e t h o d for i n v e s t i g a t i n g the p l a s m a - w a l l i n t e r a c t i o n s in t okamak d i s c h a r g e is of g r e a t s i g n i f i c a n c e .

5 . NONLINEAR SCATTERING BY PLASMA MODES

In the p r e c e d i n g d i a g n o s t i c s m e t h o d s the absence o f p e r t u r b a ­ tion of the p l a s m a by the l a ser b e a m is r e q u i r e d /no h e a t i n g / . But sometimes t h e s c a t t e r e d signal - e s p e c i a l l y in t h e case of s c a t t e r i n g b y free e l e c t r o n s - t u r n s out to be too w e a k /the T h o m s o n s c a t t e r i n g c r o s s - s e c t i o n is t o o small/. C o n s e q u e n t l y the laser b e a m m u s t t h e n be v e r y s t r o n g a n d the p l a s m a is perturbed.

The l a ser b e a m d o e s not h e a t the p l a s m a e s s e n t i a l l y b u t induces p l a s m a m o des b y n o n l i n e a r i n t e r a c t i o n and the b e a m s c a t t e r s on these induced mode. One of t hese n o n l i n e a r s c a t t e r i n g p r o c e s s e s is the four w a v e scattering. Two c r o s s i n g laser beams i n d u c e

p l a s m a m o des so th a t the f i rst b e a m forces the e l e c t r o n to o s c i l ­ late a n d the o s c i l l a t i n g e l e c t r o n of h i g h v e l o c i t y i n t e r a c t s w i t h the m a g n e t i c field of the s e c o n d b e a m of d i f f e r e n t f r e ­

quency. The r e s u l t s is a p o n d e r o m o t i v e force a c t i n g o n the e l e c ­ trons w i t h the f r e q u e n c y d i f f e r e n c e ÍÍ = - ш 2 of t h e two

p u m p i n g b e a m a n d w i t h the w a v e v e c t o r к = k^ - k 2 . The force a c t i n g on the e l e c t r o n s is p a r a l l e l to the e l e c t r i c field. C o n ­ sequently, a p l a s m a wave is i n d u c e d if к and ÍÍ s atisfy t h e d i s ­ p e r s i o n r e l a t i o n in the plasma. The u s e of a t hird b e a m it p r o ­ duces s c a t t e r i n g on the i n d u c e d p l a s m a wav e g i v i n g ri s e to a

fourth s c a t t e r e d wave. The c r o s s - s e c t i o n of t h e s c a t t e r i n g de-

(12)

pends on the p r o d u c t of the i n t e n s i t i e s of the p u m p i n g beams and it is of m a n y o r d e r s larger t h a n the T h o m s o n s c a t t e r i n g c r o s s - s e c t i o n [40-44].

The p l a s m a properties, the d e n s i t y and the t e m p e r a t u r e can be d e t e r m i n e d b y m e a s u r i n g the s p e c t r a l p r o p e r t i e s of the s c a t ­ t ered light o r b y d e t e r m i n a t i o n of the r e s o n a n c e c o n d i t i o n c h a n g ­ ing the f r e q u e n c y of the p u m p i n g beams.

The v e r y f i rst e x p e r i m e n t s h a v e been p e r f o r m e d [45,46] s h o w ­ ing the r e s u l t to be in a g r e e m e n t w i t h theo r e t i c a l e x p e c t a t i o n s

[42]. in t h e s e e x p e r i m e n t s two d y e laser b e a m s of different frequency pump the plasma nodes in a free burning arc and the ruby l a ser p u l s e is s c a t t e r e d o n the i n d u c e d f luctuations. T h e incr e a s e in the i n t e n s i t y of t h e s c a t t e r e d light r e l a t i v e to the T h o m s o n s c a t ­ t e r i n g is b e t w e e n one a n d two o r d e r s of magnitude.

A s ingle laser b e a m can a l s o e x c i t e p l a s m a m o d e s if the i n t e n s i t y is h i g h e n o u g h and the b e a m itself is s c a t t e r e d on the ind u c e d f l u c t u a t i o n /for i n s t a n c e B r i l l o u i n scattering/. T h e s c a t t e r e d l i g h t can be u s e d to d e t e r m i n e p l a s m a p a r a m e t e r s such as ion t e m p e r a t u r e etc. see for i n s t a n c e [47,48].

M a n y o t h e r n o n l i n e a r p r o c e s s e s are b e i n g i n v e s t i g a t e d w i t h a v i e w to u s i n g the m for p l a s m a d i a g n o s t i c s p u r p o s e s [49,50].

6 . MEASUREMENT OF THE INDEX REFRACTION OF THE PLASMA

The m o s t p o p u l a r m e t h o d for d e t e r m i n i n g p lasma d e n s i t y is to m e a s u r e the index of r e f r a c t i o n o f the p l a s m a u s i n g i n t e r ­ f e r o meters w i t h laser light source; viz. the phase a c c e i e ”a tion of the light b e a m c a u s e d b y i s o t r o p i c p l a s m a w i t h o u t a m a g n e t i c field.

Д cp = - 4 , 4 6 * 1 0 ~ 14 ’ X ’ n *£

e

w h e r e Л is t h e w a v e l e n g t h , 1 is t h e length of the plasma. As can be seen t h e longer the w a v e l e n g t h and the length of the p l a s m a the s m a l l e r the d e n s i t y w h i c h can be d e t ermined. F u r t h e r ­ more, the s m a l l e r the p h a s e a c c e l e r a t i o n w h i c h can b e m e a s u r e d

(13)

the s maller the m e a s u r a b l e density. This has §iven ri s e to r e ­ search w o r k and p a p e r s d e a l i n g w i t h the e n l a r g e m e n t of 1 u s ing a m u l t i b e a m i n t e r f e r o m e t e r [51], and the m e a s u r e m e n t of small phase a c c e l e r a t i o n [52]. In addition, a g r eat deal of effort has als o bee n m a d e to d e v e l o p r e l i a b l e far infr a r e d C W lasers

[53-58].

The cor r e c t c h o i c e of the w a v e l e n g t h d epends on two d i s t u r b ­ ing effects: the m e c h a n i c a l v i b r a t i o n of the parts of the i n ­ t e r f e r o m e t e r and the r e f r a c t i o n of the b e a m on the p l a s m a d e n ­ sity gradient. To a v oid the f i rst effect a longer w a v e l e n g t h , to avoid the s e c o n d e ffect a s h o r t e r w a v e l e n g t h has to be used.

Thus the cor r e c t w a v e l e n g t h to be chosen is the r e s u l t of a trade off b e t w e e n the two effects.

In actual p r a c t i c e a w i d e v a r i e t y of i n t e r f e r o m e t e r s are use d to m e a s u r e p h a s e a c c e l e r a t i o n t a king into account, among the o t h e r requirements, the s p e e d of the m e a s u r e m e n t n e e d e d in the case of fast p l a s m a events. T h ese i n t e r f e r o m e t e r s are the f o l l o w i n g :

1/ C l a s s i c a l two b e a m i n t e r f e r o m e t e r s w i t h r e f e r e n c e b e a m of the same f r e q u e n c y as the scene b e a m /Michelson, M a c h - Zender, Jamin, etc./. The d r a w b a c k of these i n t e r f e r o m e t e r s is th a t the m e a s u r e m e n t of t h e phase a c c e l e r a t i o n is d i s ­ t u r b e d by the i n s t a b i l i t y of the laser intensity, the in c r e a s e of p h ase a c c e l e r a t i o n cannot be d i s t i n g u i s h e d from the d e c r e a s e of the phase a c celeration.

2/ H e t e r o d y n e interfe r o m e t e r s . The p l a s m a is set in t o the r e ­ son a t o r of the laser. T h e p h a s e c hange c aused b y the p lasma a ppears as a f r e q u e n c y c h a n g e of the laser. T h e f r e q u e n c y c hange is m e a s u r e d by h e t e r o d y i n g w i t h the b e a m of the

s econd laser [59,60]. The u s e of this m e t h o d a n a b l e s a high d e g r e e of s e n s i t i v i t y to be achieved. Great l a s e r frequency s t a b i l i t y is needed. The s m a l l e s t m e a s u r e d d e n s i t y is about 1 0 12 c m - 3 .

(14)

3/ A s h b y - J e p h s c o t t interferometer. T h e p l a s m a is set into the F a b r y - P e r o t i n t e r f e r o m e t e r w h i c h is in series wit h the laser resonator. The i n t e n s i t y of the laser is m o d u l a t e d a c c o r d i n g to the r e s o nance c a u s e d b y the p l a s m a in the c o m p o u n d interferometer. The sign of the p l a s m a d e n s i t y c h a n g e is a m b i g u o u s in such m e a s u r e m e n t s [61].

4/ M o d u l a t e d i n t e r ferometer. The p a t h l e n g t h is artificially modulated b esides the pathlength change caused by the plasma. The display is on the oscilloscope. The у direction is proportional to the modulation. The interference fringes modulate the b r i g h t n e s s of the display.

In the x d i r e c t i o n the time is d i s p l a y e d /Zebra type display/.

The sign of t h e den s i t y c hange is u n a m b i g u o u s [62,63].

5/ L i ght b e a t i n g i n t e r f e r o m e t e r s [64,58,65]. The f r e q u e n c y of the light in the r e f e r e n c e a r m d i f f e r s from the f r e q u e n c y of the scene beam. The p h a s e s hift of the b e a t i n g signal is d e t e c t e d r e l a t i v e to the p h a s e of the b e a t i n g signal w h i c h a rises f r o m b e a t i n g the s c e n e b e a m w i t h the r e f e r e n c e b e a m b efore the scene b e a m enters the plasma. The p h a s e

d i f f e r e n c e is m e a s u r e d as a time d i f f e r e n c e b e t w e e n the zero c r o s s i n g of t h e signals fr o m the t w o detectors. T h ere is no sign a m b i g u i t y in the phase change, good temporal r e s o l u ­ tion can be achieved. Da t a a c q u i s i t i o n is c o m p u t e r c o n t r o l ­ led. The i n t e r f e r o m e t e r is i n s e n s i t i v e to the laser l i g h t i n t e n s i t y v a r i a t i o n s and frequency.

6/ D o u b l e interferometer. This is the u sual c l a s s i c a l typ e of i n t e r f e r o m e t e r but two w a v e l e n g t h s are us e d simult a n e o u s l y . O w i n g to the d i f f e r e n t d e p e n d e n c e of the p h ase c h a n g e d u e to the v i b r a t i o n and the p l a s m a e l e c t r o n s on the w a v e l e n g t h the v i b r a t i o n can be s e p a r a t e d [66,52]. This a d v a n t a g e is v e r y useful in b i g p l a s m a d e v i c e s suc h as b i g tokamaks. If two w a v e l e n g t h s are used the n e u t r a l a t o m c o n t r i b u t i o n can al s o be s e p a r a t e d in p a r t i a l l y i o n i z e d p l a s m a [67].

(15)

7/ H o l o g r a p h i e interfer o m e t e r s . The i n t e r f e r e n c e is r e g i s t e r e d in the w h o l e v o l u m e of t h e o b j e c t plasma. As a rule, the d o uble e x p r o s u r e [68] m e t h o d is used. The d r a w b a c k is the o f f - l i n e dat a acquisition, i.e. the h o l o g r a m s a r e reco r d e d

in fil m or o t h e r light s e n s i t i v e plate. This m e a n s that data b e c o m e a v a i lable o n l y a f t e r d e v e l o p m e n t u s i n g a l a b o r i ­ ous da t a a c q u i s i t i o n procedure.

8/ Q u a d r a t u r e interferometer. The i n t e r f e r o m e t r i c m e a s u r e m e n t is t a ken in the two p o l a r i z a t i o n d i r e c t i o n s s i m u l t a n e o u s l y [69]. This type of i n t e r f e r o m e t e r is i n s e n s i t i v e to the ray r e f r a c t i o n on d e n s i t y gradients.

Nowadays, light b e a t i n g i n t e r f e r o m e t e r s s e e m to be the mo s t r e l i a b l e for t h e r m o n u c l e a r research. T h e r e f o r e a l m o s t all the larger t o k a m a k s are e q u i p p e d w i t h this type of i n t e r f e r o m e t e r for p l a s m a d e n s i t y d i s t r i b u t i o n measure m e n t s .

7 . FARADAY ROTATION MEASUREMENTS

In c u r r e n t c a r r y i n g p l a s m a the s patial d i s t r i b u t i o n of the cur r e n t d e n s i t y is also an i m p o r t a n t p a r a m e t e r of t h e discharge.

This is e s p e c i a l l y true in t o k a m a k devices. The c u r r e n t den s i t y can be d e t e r m i n e d b y s c a t t e r i n g on free e l e c t r o n s too, namely the c entre of the s c a t tered s p e c t r u m is s hifted r e l a t i v e to the line c entre of the incident r a d i a t i o n due to the e l e c t r o n d r ift v e l o c i t y [70,71]

A further m e t h o d for c u r r e n t d e n s i t y d e t e r m i n a t i o n is the Fa r a d a y r o t a t i o n m e asurement. N a m e l y there is m a g n e t i c field around the c u r r e n t and the i n d e x of r e f r a c t i o n of the plasma d epends on the m a g n e t i c field. B e c a u s e of the d i f f e r e n t index of r e f r a c t i o n for left and r i g h t c i r c u l a r l y p o l a r i z e d light p r o p a g a t i n g in the d i r e c t i o n of the m a g n e t i c field t h e plane of p o l a r i z a t i o n of the l i n e a r l y p o l a r i z e d light is rotated.

(16)

The rotation a n g l e is given by Э

L 2,63*10~14•X2 *

4

О

n 0 ( r ) * B ( r ) - di

w h e r e В is in К G a u s s units. A f ter m e a s u r i n g the n e (r) d e n s i t y d i s t r i b u t i o n b y i n t e r f e r o m e t r y and t h e p o l a r i z a t i o n r o t a t i o n by p o l a r i m e t r y the l o n g i t u d i n a l m a g n e t i c field B(r) c o n s e q u e n t l y the cu r r e n t d e n s i t y can be determined.

The first e x p e r i m e n t [72,73] h a s s u c c e s s f u l l y b e e n p e r f o r m ­ ed o n the T F R 600 tokamak. On the b a s i s of the r e s u l t the d i r e c ­ tion to be t a k e n for further r e f i n e m e n t of the m e a s u r e m e n t is determined. N e w p o l a r i m é t e r a r r a n g e m e n t s wer e r e c e n t l y p u b l i s h e d

[74] d e s i g n e d s p e c i a l l y for F a r a d a y r o t a t i o n m e a s u r e m e n t s in t o k a m a k p l a s m a s .

8 . SCHLIEREN METHOD

This m e t h o d enables p l a s m a i n h o m o g e n e i t y to be m e a s u r e d by d e t e c t i n g onl y t h e light r e f r a c t e d b y the p l a s m a [1-14].

ACKNOWLEDGEMENTS

M a n y t hanks are due to m y c o - w o r k e r s Dr. Zsuzsa S ö r l e i and Dr. P. ignácz for their h e l p in c o l l e c t i n g the m a t e r i a l for this paper, and to Miss Á n g e s Havas for the e d i t o r i a l work.

(17)

REFERENCES

[1] L.N. Pjátnyickij: Lazernaja Diag n o s t i k a Plazmi, Mo s z k v a Atomizdat /1976/

[2] H.J. Kunze: The Laser as a Tool for Plasma Diagnostics Plasma Diagnostics /Ed. by W. L o h t e - H o l t r e v e n / ,

Nort-Holland, Amsterdam, 1968, p.550

[3] A.W. DeS i l v a and G.C. Goldenbaum: Plasma D i a gnostics by Light Scattering, Methods of Experimental Physics, Vol.9A,

/Ed. by Hans R. G r i e m and R.H. Lovberg/ Acad e m i c Press, New York 1970, p.61.

[4] F.C. J ahoda and G.A. Sawyer: Opt i c a l Refractivity of Plasmas, M ethods of E x p erimental Physics, Vol.9B,

/Ed. by R.H. Lovberg and Hans R. Griem/ Acad e m i c Press, New York 1971, p.l

[5] L. Pieroni: Diagnostics of T o k a m a k Plasmas by Far Infrared Techniques, C.N.E.N. - Edizioni Scientifice, Roma, 1977

[6] D. Verőn: Submillimeter I nterferometry of High Den s i t y

Plasmas, Instrumentation and Techniques for Plasma Research /Ed. by K.J. Button/ Academic Press, New York, 1978

[7] G.T. Razdobarin and I.P. Folomkin: Zh. Techn. Fiz., 4 9 , 1353 /1979/

[8] E. Holzhauer: Infrared Physics, 1(5 135 /1978/

[9] W.B. Johnson: IEEE T r a nsactions on Antennas and Propagation, A P - 1 5 , 152 /1967/

[10] A .N. Zajdelj, G.V. O s z t r o v s z k a ja and Yu.I. Osztrovszkij : . Zh. Techn. Fiz., 3(5, 1405, /1968/

[11] D.T. Attwood: IEEE Journ. of Q u a n t u m Electronics QE-14, 909 /1978/

[12] F.F. Chen: IEEE Trans, on Plasma Science, P S - 5 , 231 /1977/

[13] D.E. Evans: Physica, 8 2 C , 27 /1976/

[14] D.E. Evans and J. Katzenstein: R e p . P r o g .P h y s ., 32, 207 /1969/

[15] N. Bretz, D. Dimock, V. Foote, D. Johnson, D. Long and E. T o l n a s : A p p l . Opt., 17, 192 /1978/.

[16] R. Behn: Phys.Lett., 1AA, 316 /1979/

[17] R. Behn, H. Röhr, K.H. Steuer and D. Meisel: A p p l .P h y s . L e t t ., 36, 363 /1980/.

[18] A. Gondhalekar and F. Keilmann: Report of M a x - P l a n c k - -Institute für Plasma-Physik, München, IPP IV/26 /1971/

[19] C.M. Surko, R.E. Slusher and D.R. Moler: P h y s .R e v .L e t t ., 29, 81 /1972/

(18)

[20] A. G o n dhalekar and E. Holzhauer: Phys.Lett., 5 1 A . 178 /1975/

[21] G.M. Surjo and R.E. Slusher: P h y s . R e v . L e t t . , 37.' 1747 /1976/

[22] A. Gondhalekar, K. Molving and M.S. Tekula: Phys.Rev.Lett., 38, 354 /1977/

[23] D.R. Baker, N.R. Heckenberg and J. Meyer: IEEE Trans, on Plasma Science, P S - 5 , 27 /1977/

[24] H. Hailer: Phys.Lett., 62A, 419 /1977/

[25] E. Holzhauer: Phys.Lett., 6 2 A , 495 /1977/

[26] P. Woskoboinikow, H.C. Praddaude, W.J. Mulligan, D.R. Chin and B. Lax: J.Appl .Phys. , 5C>, 1125 /1979/

[27] D.E. Evans and L.E. Sharp: Appl. Phys. L e t t . , 26_, 630 /1975/

[28] D.B. McDermott, T.C. Marshall, S.P. Schlesinger, R.K. Parker and V.L. Granatstein: Phys.Lett., 4_1, 1368 /1978/

[29] P. Bogen and E. Hintz: Comments Plasma Phys. Cont. Fusion, 4, 111 /1978/

[30] G.T. Razdobarin and I.P. Folomkin: Plasma D i a gnostics by the M e thod of the Resonance Fluorescence, D i a gnostics for Fusion Experiments, /Ed. by E. Sindoni and C. Wharton/

Pergamon Press, Oxford and N e w York, 311, /1979/

[31] G.T. Razdobarin, V.V. Somenov, L.V. Sokolova, I.P. Folomkin, V.S. Burajov, P.Ya. Misakov, P.A. N a u m e n k o v and S.V. Nachaev:

Nuclear Fusion, 1£, 1439 /1979/

[32] V.C. Burakov, P.Ya. Miszakov, P.A. Haumenko, Sz.B. Hecsaev, G.T. Razdobarin, V.V. Szemenov, L.V. Szokolova and

I.P. Folomkin: Pisma v ZsETF, 2[6, 547 /1977/

[3 3] H.F. Döbele and K. Hirsch: Phys.Lett., 5 4 A , 267 /1975/

[34] L. Vriene and M. Adriaansz: Journ. of Appl.Phys., 4 5 , 4422 /1974/

[35] A .В . Rodrigo and R.M. Measures: IEEE Journ. of Q u a n t u m Electronics, Q E - 9 , 972 /1973/

[36] D.D. Burgess and C.H. Skinner: J.Phys.B., 1_, L297 /1974/

[37] R.A. Stern and J.A. Johnson, III: P h y s .R e v . L e t t ., 3 4 , 1548 /1975/

[38] K. Bergstedt, G. Himmel and F. Pinnekamp: Phys.Lett., 5 ЗА, 261 /1975/

[39] H.C. M e n g and H.J. Kunze: Phys.Fluids, 2_2, 1082 /1979/

[40] H.C. Praddaude, D.W. Scudder and B. Lax: A p p l .P h y s .L e t t ., 35, 766 /1979/

[41] F.V. Bunkin, F.V. Kalinyin, P.P. Pasinyin: K v a n tovaja Elektronika, _5, 486 /1978/

(19)

[42] J. Meyer: Phys.Rev., 6A, 2291 /1972/

[43] J. Meyer and В. Stansfield: C a n .J o u r n .P h y s ., £9, 2187 /1971/

[44] N.M. Kroll: P h y s .R e v . L e t t ., 1^, 83 /1964/

I 45] B.L. Stansfield, R. Nod w e l l and J. Meyer: P h y s . R e v . L e t t . , 26, 1219 /1971/

[46] L.A. Godfrey, R.A. N odwell and F.L. Curzon: Phys.Rev., 2 0 A , 567 /1979/

[47] A.A. Offenberger, M.R. Cervenan, A.M. Yam and A.W. Pasternak Journ. A p p l . Phys., £7, 1451 /1976/

[48] Z .A . Pietrzyk and R. Massey: J o u r n . A p p l .P h y s ., £8, 1876 /1977/

[49] N.G. Baszov, V.Yu. Bychenkov, N.N. Zorev, M.V. Osipov, A.A. Rupasov, V.P. Silin, G.V. Sklizkov, A.N. Starodub and V.T. Tikhonchuk: P i s m a v ZsETF, 30, 439 /1979/

[50] N.G. Basov, V.Yu. Bychenkov, M.V. Odipov, A.A. Rupasov, V.P. Silin, A . S . Shikanov, G.V. Sklizkov, A.N. Starodun, V.T. Tikhonchuk and N.N. Zorev: Phys.Lett., 11 A , 163 /1980/

[51] V.V. Kotobkin, A.A. Malyutin: S o v . F i z . T e k n . F i z ., 13, 908 /1969/

[52] Yu.D. Pavlov: IAE-2961 reprint /1978/ M oscow

[53] P. Beiland, C. Pigot and D. V e r b n : Phys.Let., 56A, 21 /1976/

[54] P. Beiland, D. Verőn and L.B. Whitbourn: J.Phys.D., 8, 2113 /1975/

[55] P. Beiland and D. Verőn: Opt.Comm., 9_, 146 /1973/

[56] P. Beiland, A.I. Cinre and L.B. Whitbourn: Opt.Comm., 11, 21 /1974/

[57] D.T. Hodges, F.B. Foote and R.D. Reel: A p p l .P h y s .L e t t ., 29, 662 /1976/

[58] S.M. Wolfe, K.J. Button, J. W a l d a m and D.R. Cohn: Appl.Opt., 15, 2645 /1976/

[59] I.K. Belal and M.H. Dunn: J.Phys.D., 11, 313 /1978/

[60] J. Aiken and G.S. Higginson: J.Phys.D., 1Í5, 1541 /1977/

[61] A.N. Kolerov and G.D. Petrov: Opt. i Spektr., £1, 741 /1976/

[62] A. Gibson and G.W. Reid: A p p l . P h y s .L e t t ., 5, 195 /1964/

[63] A. Lesage, J. Richou, P. Charil, M. Combier and J.L. Lebrun:

R e v . Sei.I n s t r u m . , 5, 1306 /1979/

[64] D. Verőn: Opt.Comm., 10, 95 /1974/

[65] C.A.J. Hugenhöltz and B.J. Meddens: R e v . S e i .I n s t r u m . , 50, 1123 /1979/

(20)

[66] D.R. Baker and Shu-Tso Lee: Rév. Sei . Ins'trum. , 49_, 919 /1978/

[67] M.C. Richardson and A.J. Alcock: J. Quantum Electronics, Q E - 9 , 1139 /1973/

[68] W.T. A r m s trong and P.R. Forman: Appl.Opt., 16^, 229 /1977/

[69] C.J. Buchenauer and A.R. Hacohson: R é v . S e i .I n s t r u m . , 4 8 , 769 /1977/

[70] F. A lladio and M. Mártoné: Phys.Lett., 6 4 A , 199 /1977/

[71] F. Alladio and M. Mártoné: Phys.Lett., 60A, 39 /1977/

[72] W. K u n z : N u c l e .F u s i o n , 1J3, 1729 /1978/

[73] G. Dobel and W. K u n z : Infrared Physics, 18_, 773 /1978/

[74] C.H. Ma, D.O. Hutchinson and K.L.V. Sluis: A p p l .P h y s .L e t t ., 34, 218 /1979/

(21)

Fig. 1.

(22)
(23)
(24)

I

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Szegő Károly

Szakmai lektor: Szentpétery Imre Nyelvi lektor: Harvey Shenker Gépelte: Beron Péterné

Példányszám: 310 Törzsszám: 80-699 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly

Budapest, 1980. november hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Gamma fields of different environmental sources which are uniformly or exponentially distributed sources or plane sources in the air, in the soil or in an

The type of the PA crystallites and their orientation within the fibers have raised some controversy. The fibrous structure is usually a sign of the

gation of the inner morphology of unruptured blisters, because the increase of the bombarding dose, in our experiences, smears out fine, structural informations

Moreover, if the doping level near the interface is nonuniform, the Poisson equation, describing the potential distribution in the MOS structure cannot be

In searching for a suitable model we recall that in ordinary critical phenomena the limit when the number of components of the order parameter field goes to

The number and the current intensity of the rods defines the multipolar field. If we apply the same approximation to oar spheromak arrangement, we can

tion of positron annihilation in the liquid and amorphous phases of glycerol- -water solutions can be of special importance because the inhibition and quenching effects

It is shown that the Bogomolny equations for the simplest static, axially symmetric gauge fields are equivalent to the Ernst equation. The BPS one monopolé is