• Nem Talált Eredményt

and C D reaction H with OH An experimental theoretical and study on the kinetic isotope effect ofC Chemical Physics Letters

N/A
N/A
Protected

Academic year: 2022

Ossza meg "and C D reaction H with OH An experimental theoretical and study on the kinetic isotope effect ofC Chemical Physics Letters"

Copied!
5
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Chemical Physics Letters

j o ur na l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / c p l e t t

An experimental and theoretical study on the kinetic isotope effect of C 2 H 6 and C 2 D 6 reaction with OH

Fethi Khaled

a

, Binod Raj Giri

a,∗

, Milán Sz ˝ori

b

, Béla Viskolcz

c

, Aamir Farooq

a,∗

aCleanCombustionResearchCenter,DivisionofPhysicalSciencesandEngineering,KingAbdullahUniversityofScienceandTechnology(KAUST), 23955-6900Thuwal,SaudiArabia

bDepartmentofChemicalInformatics,FacultyofEducation,UniversityofSzeged,Boldogasszonysgt.6,H-6725Szeged,Hungary

cInstituteofChemistry,FacultyofMaterialsScienceandEngineering,UniversityofMiskolc,Hungary

a r t i c l e i n f o

Articlehistory:

Received18September2015 Infinalform23October2015 Availableonline30October2015

a b s t r a c t

Wereportexperimentalandtheoreticalresultsforthedeuteratedkineticisotopeeffect(DKIE)ofthe reactionofOHwithethane(C2H6)anddeuteratedethane(C2D6).Thereactionswereinvestigatedbehind reflectedshockwavesover800–1350KbymonitoringOHradicalsnear306.69nmusinglaserabsorp- tion.Inaddition,highlevelCCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZquantumchemicalandstatisticalrate theorycalculationswereperformedwhichagreedverywellwiththeexperimentalfindings.Theresults reportedhereinprovidethefirstexperimentalevidencethatDKIEasymptotestoavalueof1.4athigh temperatures.

©2015ElsevierB.V.Allrightsreserved.

1. Introduction

Smallalkanes(<C5)constitutealmostallofthecompositionof naturalandliquefiedpetroleumgas(LPG),whereaslargerstraight orbranchedalkanes(≥C5)aretheprimaryconstituentsofgaso- line,dieselandaviationfuels[1–4].Hydrogenabstractionreactions fromalkanesbyhydroxylradicals(OH+RH→R+H2O)arethepri- maryoxidationpathwaysofthesefuelsatcombustionconditions.

Accuratemodelingofcombustionkineticsrequirespreciseknowl- edgeoftotalandsite-specificratecoefficientsoverawiderangeof temperaturesandpressures.Aconventionalwaytoderiveoverall andsite-specificratecoefficientsistostartfromsmallmolecules and then usegroup additivity approximationsto estimaterate coefficientsforlongchainmolecules.Variousapproximationshave beenusedin theliterature, suchasthe Next-Nearest-Neighbor (NNN)[5,6]andStructureActivityRelationship(SAR)[7].Tullyetal.

[8–13]pioneeredtheuseofdeuteriumforthestudyofdeuterium kineticisotopeeffect(DKIE)toelucidaterulesforthecalculation ofsite-specificratesofH-abstractionfromavarietyofhydrocar- bonmolecules.Thismethodologyhas,forexample,beenusedto discernthebranchingratiosofthetwocompetingchannelsduring thereactionofpropane(C3H8)withOHatlowtemperatures[10]

andhightemperatures[14].Recently,Badraetal.[15]published

Correspondingauthors.

E-mailaddresses:binod.giri@kaust.edu.sa(B.R.Giri),aamir.farooq@kaust.edu.sa (A.Farooq).

experimentalresultsanddetailed kineticanalysisontheappli- cationofDKIEtoextractbranchingratiosofthethreecompeting channelsduringthereactionofpropene(C3H6)withOHradicalsat hightemperatures[15].TheimportanceofDKIEofsmallmolecules suchasethane,ethyleneand acetyleneinthedetermination of branchingratiosoflongerchainalkanes,alkenesandalkynesis demonstratedtherein[15].Theaimofthecurrentworkistoextend low-temperature(290–800K)DKIEdataofethane[9]tohightem- peratures(800–1350K)usingratecoefficientmeasurementsofthe reactionofethaneanddeuteratedethanewithOHradicals:

C2H6+OH →C2H5+H2O (R1)

C2D6+OH→ C2D5+HDO (R2)

These resultswill be helpful in elucidating thecompetition ofdifferentH-abstractionchannelsduringthereactionoflarger alkaneswithOHradicals.Moreover,acloserlookintothedatabase fortheratecoefficientsofR1revealsthatthereareonlythreedirect high-temperature(T>950K)measurementsavailableintheliter- ature[16–18].Muchoftheearlierstudiesarelimitedtonearroom temperatures[9,16,17,19–23];andingeneraltheyshowexcellent agreementtoeachotherwithinoveralluncertaintiesof±20%at 298K[19].Surprisingly,therearenotmanyreportsoftheoretical rateconstantestimationsusingtheelectronicstructuremethods otherthantwostudiesfromKrasnoperovandMichael[18] and MelissasandTruhlar[24].ThelateremployedPMP2//MP2/adj2- cc-pVTZleveloftheorytocomputethepotentialenergysurface forthereactionofethanewithOHradicals.Theycomputedthe http://dx.doi.org/10.1016/j.cplett.2015.10.057

0009-2614/©2015ElsevierB.V.Allrightsreserved.

(2)

rateconstantsusingabinitioandcanonicalvariationaltransition statetheorycalculationswithsmallcurvaturetunnelingcorrec- tions.Theircalculatedvalueswerefoundtoagreewellwiththe experimentswithinafactorof2.3overawiderangeoftemper- atures.KrasnoperovandMichael[18]usedB3LYP/6-31G*levelof theorytomapoutthepotentialenergysurfaceforethane+OHreac- tion.Theyhadtoadjustthebarrierheightto10.2kJ/molandone ofthelowbendingmodewastakenas250cm−1toachievegood matchwiththeavailableexperimentaldataover140≤T/K≤1600. Theyfurthersuggestedthata highleveltheoryshouldbeused tostudythereactionbetweenethane and OH.Asfor R2,there isonlyoneexperimentalstudyfromTullyetal.[9]atrelatively lowtemperaturesandnotheoreticalreportsarefoundinlitera- ture.ThecurrentworkthusaimstoreportthetheoreticalDKIEfor ethane/d-ethane+OHreactionusinghigh-levelquantumchemical andstatisticalratetheorycalculations.

2. Experimentalsetup

Thelow-pressureshocktubefacility (LPST)atKingAbdullah UniversityofScienceandTechnology(KAUST)wasusedtoconduct allexperimentspresentedhere.Asthedetailsofourexperimental facilitycouldbefoundelsewhere[25],onlyabriefdescriptionis providedhere.TheLPSThas9mlongdriveranddrivensections withaninnerdiameterof14.2cm.Thelengthofthedriversection ismodifiabledependingontherequiredtesttime.Opticalwin- dowswereinstalledatthesidewalllocation,20mmfromtheend walloftheshocktube.Shocktubewaspumpeddowntolessthan 105mbarusingturbo-molecularpumppriortoeachexperiment toensurehighpurityoftheshocktube.Theshocktubewasfound tohavealeakrateof<1×10−6mbar/min.Allexperimentsreported herewereconductedbehindreflectedshockwaves,andthecon- ditions(T5,P5)werecalculatedbymeasuringtheincidentshock speedandusingRankine–Hugoniotshock-jumprelations[26,27]

embeddedintheFroshcode[28].

Hydroxylradicalswereproducedbyrapidthermaldecompo- sitionoftert-butylhydroperoxide(TBHP),whichisknowntobe acleanthermolyticsourceofOHradicalsandhadbeenvalidated inmanyearlierstudies[25,29,30].Hydroxylradicalsweremea- suredbyusingthewell-characterizedR1(5)absorptionlineinthe (0,0)bandoftheA2+←X2OHtransitionnear306.7nm.Mea- suredabsorbancetime-historywasconvertedtoOHconcentration time-historyusingtheBeer–Lambertlaw.A70% TBHPin water solutionwasobtainedfromSigmaAldrich.Ethane(99.99%),argon (99.999%),andhelium(99.999%)werepurchasedfromAHGases.

Ethane-d6 (98%) was obtained from CDN Isotopes Inc. Several reflected-shockexperimentswereconductedforeachfuel(C2H6

andC2D6)andtheconcentrationsofreactants(fuel,TBHP)were chosenbasedonsensitivityanalysestoachievepseudo-first-order kinetics.

3. Quantumchemicalcalculations

Molecularand transitionstategeometrieswereoptimizedat theMP2/cc-pVTZleveloftheory[31–33]applyingthe‘tight’con- vergencecriterionoftheGaussian09programpackage[34].The MP2/cc-pVTZharmonicvibrationalwavenumbersofthemolecules and transition states were scaled by a factor of 0.95 adopted fromCCCBDBdatabase[35].Similartopreviousworks[36–38], theaccuratedescriptionoftheelectronicstructureswasapprox- imatedbyextrapolationschemes.WhileFellerextrapolation[39]

was utilized for HF energies (using cc-pVXZ basis sets, where X=D,TandQ[31]),Helgakerextrapolation[40]forCCSD(T)cor- relation energies [41] was applied with cc-pVTZ and cc-pVQZ basis sets. Sum of these extrapolated energies manifested in

100 50

0 -5 -4 -3 -2 -1 0

C2H6 + OH => C2H5 + H2O

TBHP => TBUTOXY + OH

CH3COCH3 + OH => H2O + CH2CO + CH3 CH3 + OH => CH2* + H2O

C2H6 (+M) => 2CH3 (+M) CH3 + OH (+M) => CH3OH (+M)

OH sensitivit y

t (µµs)

Figure1.HydroxylsensitivityforC2H6+OHreactionat1106Kand1.38atm.OH sensitivityisdefinedasSOH=(XOH/ki)×(ki/XOH),whereXOHisthelocalOH-mole fractionandkiistherateconstantfortheithreaction.Initialmixturecomposition:

342ppmethane,22.4ppmTBHP(70ppmwater)dilutedinargon.

CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZleveloftheorywhichischo- sentoestablishhigh-levelabinitiodescriptionofthezero-point correctedrelativeenergies(E0)forbothisotopologues(C2H6and C2D6).

The rateconstantsfor ethane+OH and ethane-d6+OH were calculatedusingcanonicaltransitionstatetheory(CTST)withthe molecularparametersfromourabinitiocalculations.IntheseCTST calculations,allspecieswereassumedtobeintheelectronicground stateexceptOH,forwhichtheelectronicpartitionfunctionwascal- culatedwithaspinorbitsplittingof139.7cm1[42].Onelowlying bendingmodecorrespondingtoC-Crotationinthereactantsand twoofthelowfrequencytorsionalmodesofthetransitionstates correspondingtoC CandOHrotationsweretreatedashindered rotorswithinPitzer–Gwinn[43]approximations.Ratecalculations werecarriedoutusingChemRatecode[44].

4. Resultsanddiscussion

The JetSurf 1.0 mechanism [45] is used asthe basemecha- nismand tert-butylhydroperoxide(TBHP)chemistryfromPang et.al[46]isaddedtothebasemechanismtosimulateOH-time histories.Sensitivityanalysiswasperformedtoexploretherole ofsecondaryreactionsthatmightaffectOHconcentrationtime- profileinourexperimentalconditions.AscanbeseeninFigure1, thesecondarychemistryhasnegligiblecontributiontoOH-decay profile.Measurements forR1 werecarried outin thetempera- turerangeof847–1285Kusingamixtureof342ppmofethane with22.4ppmTBHPdilutedinargon,whereasthemeasurements ofR2rangedfrom805to1345Kusingamixtureof310ppmof ethane-d6with22.2ppmTBHPdilutedinargon.Toensurepseudo- firstorderkinetics,theconcentrationofTBHPwasalwayskeptat least10timessmallerthanthatofethaneorethane-d6.Therate coefficientsofreactionsR1andR2areobtainedbyfittingthesimu- latedOHtimeprofilestotheexperimentalOHtime-profileswhile varyingtherateconstantofthetargetreactioninthekineticmech- anism.RepresentativeexperimentalandmodeledOHprofilesin additiontotheeffectof20%deviationfromthebestfitforethane andethane-d6areshowninFigures2and3,respectively.Measured valuesoftheratecoefficientsalongwithexperimentalconditions arecompiledinTables1and2.OurdataareplottedinFigure4 along withthepreviouslow-temperaturedatafromTullyetal.

[9] andthree-parameter Arrheniusexpression (k1=2.68×10−18 (T/K)2.224 exp(−373K/T)cm3molecule1s1±13%)obtainedby Krasnoperov and Michael [18] from fitting the entire database

(3)

60 40

20 0

0 5 10 15

20 experimental data

kbest fit=1.4× 10-11cm3 molecule-1 s-1 0.8 × kbest fit

1.2 × kbest fit

OH Mole Fraction (ppm)

t (µµs)

Figure2.Hydroxylmolefractionprofileforethane+OHreactionatT=1106K, P=1.38atm.Themixturecompositionwas342ppmethane,22.4ppmTBHP(70ppm water)inargon.Thebest-fittotheexperimentalprofilealongwith±20%perturba- tionsarealsoshown.

80 60

40 20

0 0 5 10 15 20

experimental data

kbest fit= 1.0 × 10-12cm3 molecule-1 s-1 0.8 × kbest fit

1.2 × kbest fit

OH Mole Fraction (ppm)

t (µµs)

Figure3.Hydroxylmolefractionprofileforethane-d6+OHreactionatexperi- mentalconditionsofT=1133K,P=1.44atm,310ppmethane-d6,22.2ppmTBHP (80ppmwater)dilutedinargon.Alsopresentedarethebest-fitsimulatedprofile andperturbationsof±20%.

Table1

MeasuredratecoefficientsofreactionR1(ethane+OH).

Temperature Pressure k1

(K) (atm) (cm3molecule−1s−1)

847 1.68 6.81×10−12

925 1.6 8.93×10−12

970 1.46 1.06×10−11

1034 1.4 1.23×10−11

1106 1.38 1.39×10−11

1142 1.31 1.54×10−11

1275 1.31 1.94×10−11

1277 1.08 2.08×10−11

1285 1.21 1.96×10−11

for ethane+OH reaction over 138–1367K. As can be seen, the three-parameterexpression[18]underpredictsourmeasuredrate coefficientsforR1bya meandeviationof20%.AsforR2,there arenoliteraturedataavailabletocomparewithinthetempera- turerangeofourstudy.Thebestfitofourexperimentaldataalong withlowtemperatureliteraturedataforR1andR2resultedinto

Table2

MeasuredratecoefficientofreactionR2(d-ethane+OH).

Temperature Pressure k2

(K) (atm) (cm3molecule−1s−1)

805 1.68 3.09×10−12

875 1.63 4.47×10−12

943 1.56 5.73×10−12

997 1.34 7.40×10−12

1030 1.62 8.25×10−12

1133 1.44 1.00×10−11

1190 1.44 1.14×10−11

1240 1.28 1.30×10−11

1254 1.42 1.32×10−11

1345 1.37 1.60×10−11

0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 1E-13

1E-12 1E-11 1E-10

k (cm3 molecule-1 s-1 )

1000 K / T

Figure4. Comparisonofthecalculatedratecoefficientswiththeexperimentaldata.

( )thisworkforC2H6+OHreaction;( )Tullyetal.[9]forC2H6+OHreaction;( ) thisworkforC2D6+OH;( )Tullyetal.[9]forC2D6+OHreaction.Blueandredlines representtheresultsofourabinitio/CTSTcalculationsforC2H6andC2D6reactions withOHradicals,respectively.Solidlinesrepresentthecalculatedratecoefficients withouttunnelingcorrections,whereasthebrokenlinesincorporateWignertun- nelingcorrection.Dottedlinesaretheresultsfromfittingtheentiredatabasefor C2H6+OHreactionovertheT-rangesof138–1367KobtainedbyKrasnoperovand Michael[18].

thefollowingthreeparameterArrheniusexpressions (inunitof cm3molecule−1s−1):

k1(T)=1.02×1017T2.083exp

522.2K

T

(290−1290K) (1) k2(T)=5.48×1017T1.866exp

1138.2K

T

(290−1350K) (2) Ourcalculatedenergyprofileofthereactionofethaneisotopo- logueswithOHisshowninFigure5.Theabinitioreactionenergy forethane(−75.9kJmol−1)agreeswithintheuncertainty(1.70kJ mol−1)oftheexperimentalvalue(−76.01kJmol−1)calculatedfrom thedataavailableintheCCBDBdatabase.Ourabinitiobarrierheight forR1isfoundtobe9.3kJmol−1whichisconsistentwiththeearlier reportof9.75kJmol−1fromMelissasandTruhlar[24].Thesecom- parisonssuggestthattheenergiescalculatedinthecurrentworkfor thedeuteratedspeciesarealsohighlyaccurate.Thebarrierheight forR2iscalculatedtobe13.3kJmol−1.Basedontheenergyprofile displayedinFigure5andmolecularparameterslistedinTable3, weperformedCTSTcalculationsthatarefoundtoreproduceour experimentaldataverywell(seeFigures4and6).However,the calculationsunderpredictexperimentalratecoefficientsforboth R1andR2inthelow-temperatureregion.Thissubtlediscrepancy maybeattributedtothetunnelingeffect.AscanbeseeninFigure4, thequantumtunnelingeffectislesspronouncedforR1asopposed toR2.Thisisexpectedasthereactionswithsmallbarrierscon- tributelesstothequantummechanicaltunneling().Tunneling

(4)

Figure5. Potentialenergy surface (includingzero-point energies) for the H- abstractionreactionofethaneandethane-d6withOHradicals;energiesarerelative tothereactantenergies.

()wascomputedusingWignerformulathatrequiresimaginary frequency(=/)correspondingtothereactioncoordinateandthe thresholdenergy(E0)asgivenby:

=1− 1 24

h=/ kbT

2

1+RT E0

(3) AfterincorporatingWignertunnelingcorrection,thetheoretical ratecoefficients(dashedlines,Figure4)forR2showedexcellent agreementwithexperimentaldataover theentiretemperature range.ButforR1,thetunnelingcorrectionappearstobequantita- tivelylessreliableatlowtemperatures.Thecalculatedrateswere overestimatedbyroughlyafactoroftwointhelow-temperature region.AsimilarbehaviorwasreportedbyMelissasandTruhlar [24]whereWignertunnelingcorrectionresultedinanoverestima- tionoftheratecoefficientsbyafactorof2.3at300K.Thetunneling correction,however,isnearlynegligibleinourexperimentalcon- ditions.Moreover,thecontributionoftunnelingisexpectedtobe cancelledouttothelargepartwhencalculating theratioofthe ratecoefficients(k1/k2).Fromtheresultsofabinitioandtransition statetheorycalculations, theratioof thetunneling-uncorrected ratecoefficientsofreactionsR1andR2,i.e.,DKIE,canbeexpressed overthetemperaturerangeof290–1400K:

k1

k2

(T)=(0.38±0.10)exp

−(3046±70)K T

+(1.02±0.05) exp

(527.5±0.2)K

T

(4)

Thebestfit of experimentaldata(this workandTully etal.

[9])yieldsthefollowingexpressionforDKIEovertheTrangeof

1400 1200 1000 800 600 0 400

2 4 6 8

k1/k2

T (K) 1.4

Figure 6.Comparison of the experimental and theoretical DKIE of ethane (H/D)+OH.(—)experimentalresultsfromthisworkandTullyetal.[9];( )cal- culatedvaluesfromourabinitio/CTSTmethods.(......)ahorizontallineshowing DKIE=1.4.

293–1350K:

k1

k2

(T)=(0.5±0.10)exp

−(2607±356)K T

+(0.9±0.1) exp

(526±1)K

T

(5)

BoththeexperimentalandcalculatedvaluesforDKIEaredis- playedinFigure6.Ascanbeseen,thecalculatedandexperimental DKIEvaluesexhibitgoodagreementovertheentiretemperature range.OurcalculatedvalueforDKIEat290Kis6.4whichiscloseto thatreported(4.61±0.56)byTullyetal.[9].At850K,wemeasured aDKIEvalueof1.67whichagreesverywellwiththeextrapolated valueof1.72fromtheworkofTullyetal.[9].Ourexperimentally determinedDKIEasymptotestoavalueof1.4athightemperatures (T>1200K).

The high-temperature asympoting behavior of DKIE can be exploredusingtheoreticalmethods.FromArrheniustheory,DKIE canbewrittenas:

k1

k2

(T)= A1

A2

exp

E

a

RT

(6) whereAisthepre-exponentialfactorandthesubscriptsidentify thecorrespondingreactions;Ea=Ea(D)−Ea(H)isthedifference intheactivationenergiesoftheisotopes.AsTapproachesinfin- ity,k1/k2≈A1/A2.TheratioofA1andA2 canbeapproximatedby takingtheratioofimaginaryfrequenciesofthetransitionstates (1=//2=/)[47].Using 1=/ =1303cm1 and 2=/ =1003cm1 (seeTable3),DKIE(k1/k2)comesouttobe1.3.Ontheotherhand,ab Table3

Rotationalconstants(A,B,andC)andharmonicfrequencies(i)ofthestationarypointscalculatedattheMP2/cc-pVTZleveloftheory.Frequenciesarescaledby0.95.

Frequenciescorrespondingtothetorsionalmodesareshowninbold.

Species A,B,C

(GHz)

i

(cm−1)

C2H6 79.26966

19.81782(2)

3045(2),3025.5(2),2951.7,2950.3,1437.7(2),1437.3(2),1358.9,1331.0, 1166.8(2),990.3,785(2),308.5

C2D6 39.66530

13.70550(2)

2254.5(2),2242(2),2127.4,2116.6,1135.5,1041.8(2),1026(2),1017.4,929.1 (2),822.8,567.4(2),218.4

TS 26.33548

4.80059 4.28371

1303i,3621.5,3073.8,3047.0,3032.1,2992.8,2949.2,1432.6,1427.5,1412.7, 1342.1,1311.6,1266.5,1196.0,1154.4,1019.5,974.6,809.9,786.1,630.4, 160.1,114.6,373.3,51.2

TS-d6 17.78627

4.22738 3.74362

1003i,3621.4,2280.3,2258.9,2244.1,2174.0,2120.2,1138.6,1035.8,1026.2, 1017.8,991.5,959.7,937.9,900.4,888.9,846.0,673.2,567.7,537.5,120.8, 101.5,267.5,49.5

(5)

initio/CTSTcalculationspredictthatDKIEasymptotesto1.5athigh temperatures.Thesevaluesarequiteclosetotheexperimentally determinedDKIEof1.4.

5. Conclusions

The deuterated kinetic isotope effect (DKIE) for the reac- tionofethaneand ethane-d6 withOHradicalswasdetermined experimentallybetween800and1350K.Additionally,highlevel CCSD(T)/cc-pV(T,Q)Z//MP2/cc-pVTZquantumchemicalandstatis- ticalratetheorycalculationswereperformedtocalculatetheDKIE over290–1400K.Thetheoreticaland experimentalDKIEvalues are found to agree well over the entire temperature range of 290–1350K.Our ab initio/CTSTcalculations predictedthatDKIE asymptotesto1.5athightemperatureswhichisonly7%largerthan theDKIEvaluedeterminedexperimentallyinthecurrentwork.This workreports,toourknowledge,thefirstexperimentalevidence thatDKIEasymptotesto1.4athightemperatures.

Acknowledgments

WewouldliketoacknowledgethefundingsupportfromSaudi AramcoundertheFUELCOMprogramandbyKingAbdullahUni- versityofScienceandTechnology(KAUST).Dr.Sz ˝oriisaMagyary Zoltánfellow supportedbyStateof Hungary andtheEuropean Union,financedbytheEuropeanSocialFundintheframeworkof TÁMOP4.2.4.A/2-11-1-2012-0001“NationalExcellenceProgram”

under the respective grant number of A2-MZPD-12-0139. This workwassupportedbytheJánosBolyaiResearchScholarshipof theHungarianAcademyofSciences(BO/00113/15/7).

References

[1]C.J.Mueller,W.J.Cannella,T.J.Bruno,B.Bunting,H.D.Dettman,J.A.Franz,M.L.

Huber,M.Natarajan,W.J.Pitz,M.A.Ratcliff,etal.,EnergyFuels26(2012)3284.

[2]W.J.Pitz,C.J.Mueller,Prog.EnergyCombust.Sci.37(2011)330.

[3]J.Burri,R.Crockett,R.Hany,D.Rentsch,Fuel83(2004)187.

[4]W.D.McCain,ThePropertiesofPetroleumFluids,PennWellBooks,1990.

[5]N.Cohen,Int.J.Chem.Kinet.14(1982)1339.

[6]R.Sivaramakrishnan,J.V.Michael,J.Phys.Chem.A113(2009)5047.

[7]E.S.C.Kwok,R.Atkinson,Atmos.Environ.29(1995)1685.

[8]F.P.Tully,M.L.Koszykowski,J.StephenBinkley,Symp.(Int.)Combust.20(1985) 715.

[9]F.P.Tully,A.T.Droege,M.Koszykowski,C.F.Melius,J.Phys.Chem.90(1986) 691.

[10]A.T.Droege,F.P.Tully,J.Phys.Chem.90(1986)1949.

[11]F.P.Tully,J.Goldsmith,A.T.Droege,J.Phys.Chem.90(1986)5932.

[12]A.T.Droege,F.P.Tully,J.Phys.Chem.90(1986)5937.

[13]A.T.Droege,F.P.Tully,J.Phys.Chem.91(1987)1222.

[14]J.Badra,E.F.Nasir,A.Farooq,J.Phys.Chem.A118(2014)4652.

[15]J.Badra,F.Khaled,B.R.Giri,A.Farooq,Phys.Chem.Chem.Phys.17(2015)2421.

[16]J.F.Bott,N.Cohen,Int.J.Chem.Kinet.23(1991)1075.

[17]J.B.Koffend,N.Cohen,Int.J.Chem.Kinet.28(1996)79.

[18]L.N.Krasnoperov,J.V.Michael,J.Phys.Chem.A108(2004)5643.

[19]R.Atkinson,D.L.Baulch,R.A.Cox,J.N.Crowley,R.F.Hampson,R.G.Hynes,M.E.

Jenkin,M.J.Rossi,J.Troe,I.Subcommittee,Atmos.Chem.Phys.6(2006)3625.

[20]P.Sharkey,I.W.M.Smith,J.Chem.Soc.FaradayTrans.89(1993)631.

[21]R.K.Talukdar,A.Mellouki,T.Gierczak,S.Barone,S.Y.Chiang,A.R.Ravishankara, Int.J.Chem.Kinet.26(1994)973.

[22]J.N.Crowley,P.Campuzano-Jost,G.K.Moortgat,J.Phys.Chem.100(1996)3601.

[23]N.M.Donahue,J.G.Anderson,K.L.Demerjian,J.Phys.Chem.A102(1998)3121.

[24]V.S.Melissas,D.G.Truhlar,J.Phys.Chem.98(1994)875.

[25]J.Badra,A.E.Elwardany,F.Khaled,S.S.Vasu,A.Farooq,Combust.Flame161 (2014)725.

[26]J.N.Bradley,ShockWavesinChemistryandPhysics,Methuen,1962.

[27]A.Lifshitz,ShockWavesinChemistry,Taylor&Francis,1981.

[28]M.F.Campbell,D.R.Haylett,D.F.Davidson,R.K.Hanson,ShockWaves,2015,pp.

1.

[29]V.Vasudevan,D.F.Davidson,R.K.Hanson,J.Phys.Chem.A109(2005)3352.

[30]S.S.Vasu,D.F.Davidson,R.K.Hanson,D.M.Golden,Chem.Phys.Lett.497(2010) 26.

[31]T.H.Dunning,J.Chem.Phys.90(1989)1007.

[32]W.J.Hehre,L.Radom,P.V.R.Schleyer,J.A.Pople,AbInitioMolecularOrbital Theory,Wiley,NewYork,1986.

[33]C.Moller,M.S.Plesset,Phys.Rev.46(1934)618–622.

[34]M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman, G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,etal.,Gaussian 09,RevisionA.02,GaussianInc.,Wallingford,CT,2009.

[35]R.D.JohnsonIII(Ed.),NISTComputationalChemistryComparisonandBench- markDatabase,NISTStandardReferenceDatabaseNumber101,2013.

[36]C.Bansch,J.Kiecherer,M.Szori,M.Olzmann,J.Phys.Chem.A117(2013)8343.

[37]R.Izsak,M.Szori,P.J.Knowles,B.Viskolcz,J.Chem.TheoryComput.5(2009) 2313.

[38]E.P.Farago,M.Szori,M.C.Owen,C.Fittschen,B.Viskolcz,J.Chem.Phys.142 (2015).

[39]D.Feller,J.Chem.Phys.96(1992)6104.

[40]T.Helgaker,W.Klopper,H.Koch,J.Noga,J.Chem.Phys.106(1997)9639.

[41]J.D.Watts,J.Gauss,R.J.Bartlett,J.Chem.Phys.98(1993)8718.

[42]G.Herzberg,MolecularSpectraandMolecularStructure,R.E.KriegerPub.Co., Malabar,FL,1989.

[43]K.S.Pitzer,W.D.Gwinn,J.Chem.Phys.10(1942)428.

[44]V.B.VladimirMokrushin,W.Tsang,M.R.Zachariah,V.D.Knyazev,W.Sean McGivern,ChemRate,MD20899.NIST,Gaithersburg,USA,RRKM/MasterEqua- tionModeling,2011.

[45]B.Sirjean,E.Dames,D.Sheen,X.You,C.Sung,A.Holley,F.Egolfopoulos,H.

Wang,S.Vasu,D.Davidson,JetSurFversion1,2008.

[46]G.A.Pang,R.K.Hanson,D.M.Golden,C.T.Bowman,Z.Phys.Chem.225(2011) 1157.

[47]B.Anhede,N.A.Bergman,J.Am.Chem.Soc.106(1984)7634.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Spin state of neighbouring nuclei seen through chemical bonds Splitting of peaks. Measured in Hz, not dependent from magnetic field Same for the

and the radical transfers, on the ratio of their reaction rate constants with the primary radicals and on the k values of the studied organic compounds and the radicals formed in

An interesting feature of the photocatalytic reaction of NO + C 2 H 5 OH is that while C 2 H 5 OH, or more precisely its products can participate in the photocatalytic reduction of

Rate constants for H-abstraction reactions by hydroxyl and methyl radicals were computed using Transition State Theory (TST) for temperatures ranging from 500 to 1300 K.. As

Always comparing with the methanol molecule adsorbed on a clean surface, when methanol is adsorbed on K top site, the H atom from OH shows more electron density, the C atom presents

The primary mission of the institute is conducting basic research in the fields of theoretical and experimental solid state physics and materials science including metal

The main profile of the institute is basic research in the fields of theoretical and experimental solid state physics and materials science including metal physics, crystal physics

As a continuation of our studies of the photo- catalytic decomposition of HCOOH, C 2 H 5 OH and CH 3 OH on Au/TiO 2 samples [20,21], we now present an account of the