• Nem Talált Eredményt

Antal Ja´kli and Na´ndor E´ber Soft materials for linear electromechanical energy conversion

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Antal Ja´kli and Na´ndor E´ber Soft materials for linear electromechanical energy conversion"

Copied!
5
0
0

Teljes szövegt

(1)

Soft materials for linear electromechanical energy conversion Antal Ja´kli

1

and Na´ndor E´ber

2

Webrieflyreviewtheliteratureoflinearelectromechanical effectsofsoftmaterials,especiallyinsyntheticandbiological polymersandliquidcrystals(LCs).Firstwedescriberesultson directandconversepiezoelectricity,andthenwediscussa linearcouplingbetweenbendingandelectricpolarization, whichmaybecalledbendingpiezoelectricity,orflexoelectricity.

Addresses

1LiquidCrystalInstituteandChemicalPhysicsInterdisciplinary Program,KentStateUniversity,Kent,OH44242,USA

2InstituteforSolidStatePhysicsandOptics,WignerResearchCentre forPhysics,HungarianAcademyofSciences,H-1525Budapest,P.O.

Box49,Hungary

Correspondingauthor:Ja´kli,Antal(jakli@lci.kent.edu,ajakli@kent.edu)

CurrentOpinioninChemicalEngineering2013,2:120–124 ThisreviewcomesfromathemedissueonMaterialsengineering EditedbyTheinKyu

ForacompleteoverviewseetheIssueandtheEditorial Availableonline10thNovember2012

2211-3398/$seefrontmatter,#2012ElsevierLtd.Allrights reserved.

http://dx.doi.org/10.1016/j.coche.2012.10.007

Piezoelectricity

Piezoelectricityisalinearcouplingbetweenelectricand mechanical properties in special non-centrosymmetric materials. Ithasbeen knownin crystals sincethe work of Pierre and Jacques Curie in 1880 [1]. Piezoelectric propertieswerealsofoundinamorphousandpolycrystal- linematerials, such asferroelectric ceramics[2–4].The existence of piezoelectricity in certain synthetic and biological polymers [5], such as bone and tendon has been extensively studied [6,7]. Piezoelectric effects in polymersaregenerallysmall,butcanbeincreasedwhen theyaresubjectedtoastrongDCelectricfieldatelevated temperatures [8]. Owing to their flexibility and the possibilitytopreparefilmsoflargearea,thesematerials (especially polyvynilidene fluoride, PVDF) have been utilizedas theactiveelement inmanyapplicationsran- ging from infrared detectors to loudspeakers. Certain cellularpolymersinternallychargedbycoronadischarge (ferroelectrets) have been found to behave like soft sensitive piezoelectrics [9–11]. Similarly large and soft piezoelectricity was found in fiber mats composed of ferroelectricbariumtitanate(BT)nanoparticlesdispersed inpolylacticacid(PLA)[12].

As the type of materials with experimentally observed piezoelectriccoupling,sothedefinitionofpiezoelectricity

extended considerably in time. Originally it was used only for crystals in connection with compressions, but laterit was generalized to polymersand othermaterials for any strains and stresses, including shear. The direct piezoelectriceffect(whenelectricpolarizationisproducedby mechanicalstress)mathematicallycanbeexpressedbythe equation:

Pi¼X

jk

di;jkTjk; (1)

wherePiistheithcomponentofthepolarizationinduced bythestresstensorTjk.Thethirdranktensorcoefficients di,jkarecalledpiezoelectriccoefficients.

Inthe converse (or ‘inverse’) effectthe materialbecomes strained when electric field is applied. Mathematically thisisexpressedas

Sjk¼X

i

di;jkEi: (2)

Here Sjk=@sj/@xk is thestrain tensor (sj is thedisplace- mentofavolumeelementfromitsequilibriumposition), andEiistheexternalelectricfield.

Bysymmetrynotonlysolids,butalsoliquidcrystals(LC) canlackinversionsymmetryowingtothechiralityofrod- shape molecules containing carbon stereo-centers, or owingto asymmetric packingof molecules with special (bent, banana) shapes [13]. The chiral liquid crystal phases are the cholesteric (N*), chiral smectic (e.g.

SmC*ofrod-shapemolecules[14],orSmCPofbent-core molecules[15])andthechiralcolumnarphases.

Table 1 lists the LC phases that have no inversion symmetry,that is, which can have linear couplingsbe- tweenelectric field and mechanicalstrain.We seethat several of them (SmC* of chiral rod-shape, the tilted columnar phase of chiral disc shape and the SmCP of achiralbent-coreortiltedbowl-shapemolecules)haveC2

symmetry, which allows 8 independent piezoelectric coefficients.

IntheSmA*andN*phasesashearinducesatilt,which, combined with the lack of mirror plane owing to the molecularchirality,allowstheexistenceofapolarvector normaltotheshearplane.Thisisillustratedintheupper partofFigure1.

The inverse effect, when an electric field is applied perpendicular to the director, results in a shear strain, whichwouldalsoleadtoatiltofthedirector.Theoptical consequenceofthiseffect,rotationoftheopticaxis(the

(2)

director) proportional to the electric field, is known as electro-cliniceffect[16–18].

The direct piezoelectric (or linear mechano-electrical) effect inSmC* materialsisowing to theshear-induced polarization [19,20],andisarisingfromthedistortionof thehelix.Inthegroundstate(no-shear)thepolarization averages out in bulk, but shear unwinds the helix and leads toapolarizationnormalto theshearplane.Direct piezoelectric effects were also observed in various bio- logicalmembranes[21]andinaqueouslyotropics,where thehighlyconductivewaterisoftenreplacedbyethylene

glycol [22–24]. Linear mechano-electrical effects were also found on non-aqueous lyotropic phases [21,25]

Recentlyneatphospholipidswerealsoshowntobepiezo- electric[26,27].

The converse piezoelectric (linear electro mechanical) effect in SmC*materials[28–30] mayresultin audible acoustic effects implying their possible use in electro- mechanicaltransducers [31,32].Asystematicstudy [33]

withaccurate controlofthealignmentrevealedthatthe vibrations parallel to the smectic layers and the film surfacearegenerallythestrongest,especiallyifthepolar- ization isalsoparalleltotheplates.

Linear electro-mechanicaleffects offree-standingferro- electricSmC*filmswerestudiedbylightscatteringwhile applyingACelectricfieldsalongthefilmsurface[34–37].

In addition, they were alsoinvestigated in ferroelectric columnarLCs[38],SmC*elastomers[39,40]andglasses [41],invariousbiologicalsystems[42],lyotropicLCsand in membranes [21]. Converse piezoelectricity was also invoked [43] to explain the swelling of membranes in responsetovoltagechanges[44].Conversepiezoelectric measurementsinferroelectricSmCPbent-coreLCs[45]

andasummaryofexperimentalstudiesinSmC*elasto- mers[46]havebeenpublishedonlyrecently.Anelectro- clinic effectrelatedfield-inducedtwist,whosedirection changes sign with that of the electric field, was also reportedonSmA*elastomers[47,48].

Flexoelectricity

Another linear electromechanical phenomenon, flexoe- lectricity,connectsbendingandelectricity.Initiallyitwas regardedasbendingpiezoelectricity[49,50],however,in contrast to piezoelectricity, flexoelectricity does not requirethelackofinversionsymmetryandthecoupling constantseijkl aregivenbyafourthranktensor:

Piflexo¼eijkl@Sjk

@xl ; A@Tij

@xk ¼eijklEl; (3) corresponding to direct and converse flexoelectricity, respectively.Sjk(Tij)aretheelementsofthestrain(stress) tensor,andAistheareaofthesample.Incrystalsthefirst experiments[51]in1988gavee1011to1010C/m.In perovskite-type[52] andrelaxor ferroelectricceramics [53–55] and in polyvinylidene fluoride (PVDF) film [56,57] the flexoelectric coefficients are 4 orders of magnitudelargerthanindielectriccrystals,andthelarge polarizationinducedbyflexingisevidentlyofferroelec- tricorigin.

In fluid LCs stresses and strains are related mostly to orientational elasticity. R.B. Meyerpredictedflexoelec- tricity [50] for nematic LCs composed of dipolar mol- ecules with asymmetric shapes, such as pear-shape or bent-core.Intheabsenceofelectricfieldsthemolecular dipoles average out and the net polarization is zero.

Table1

Listofthemostimportant liquidcrystallinephases withtheir symmetryandnon-vanishingpiezoelectriccouplingconstants Phase Molecular

shape

Symmetry Non-zeroPiezoconstants N*,SmA* Chiralrod D1 d1,23=d2,13

SmAP Bentshape C2n d3,11;d3,22;d3,33,d1,13; d2,23

SmC* Chiralrod C2 d3,11;d3,22;d3,33,d1,13; d2,23;d1,23;d2,13;d3,12 SmCP Bentshape C2 d3,11;d3,22;d3,33,d1,13;

d2,23;d1,23;d2,13;d3,12 SmCG Bentshape C1 All18di,jk

Col*tilt Chiraldisc C2 d3,11;d3,22;d3,33,d1,13; d2,23;d1,23;d2,13;d3,12 Ph Bowlshape C1n d3,33;d3,11=d3,22 P*h Chiralbowl C1 d3,33;d3,11;d3,22 Ptilt Tiltedbowl C2 d3,11;d3,22;d3,33,d1,13;

d2,23;d1,23;d2,13;d3,12

Figure1

Flexoelectricity of bent-core nematic LC Piezoelectricity of SmA*

Current Opinion in Chemical Engineering

Illustrationofthemainphysicalmechanismofpiezoelectricityand flexoelectricityinLCs.

(3)

However,whenthedirectorissubjectedtosplayorbend deformations,respectively, thematerialbecome macro- scopicallypolar:

Pflexo¼e1nðdivnÞe2nðcurlnÞ (4)

Thiseffectisillustratedin thelowerrowofFigure 1.

Molecularstatisticaltheoriesbasedonmolecularpacking considerations[58–60]predictedforthesplay andbend flexo-coefficientse1ande3tobeabout1pC/mfornearly rod-shape molecules, and about an order of magnitude larger e3 values for banana shape molecules. Actual measurements onrod-shape LCs [61–69]typically give about e1e310pC/m, owing to a contribution of a quadrupolar mechanism [70]. These values are similar to those measured on elastomers subjected to a defor- mationgradient[51].

A‘peculiarkindofpiezoelectriceffect’wasmeasuredon blacklipidmembranes(BLM)[71–73]andfoundthatthe molecularbasisoftheflexoelectricityoflipidbilayersis anasymmetricredistributionofcharges,dipolesandthe splayed uniaxial orientation of their quadrupolar moments[74].Converse flexoelectric measurementson BLM[75]andvesicles[76]founde1100pC/m,whichis an order of magnitude larger than typical for calamitic

thermotropicLCs.Thesensorymechanismofouterhair cellcompositemembranes[77,78]canbeunderstoodby theflexoelectricpropertiesofthelipidbilayer[79].The converseofthis effect,that is,voltage-generatedcurva- turehasalsobeen observed[80].

The bend flexoelectric coefficient determined from mechanical bending induced electric current measure- mentsinbent-coreLCs[81,82]show3ordersofmagni- tudes larger values than in normal dielectric LCs. An example on 4-chloro-1,3-phenylene bis4-[40-(9-decenyl- oxy)benzoyloxy] benzoate(ClPbis10BB) in comparison withatypicalrod-shapeliquidcrystalpentylcyanobiphe- nyl(5CB)isshownin Figure2.

Thisincrease is similarto that of ferroelectricceramics [55]and indicates the presence of ferroelectric smectic clusters[83–85,86]inbent-corenematics.

Conclusion

Thephysicaleffectsreviewedaboverepresentcouplings between electrical and mechanical phenomena, which mightallowenergy conversion.

Theseconceptsturned out to beuseful in interpreting some functions of living organisms, successfully devel- opedduringevolution.Theseeffectsarealreadyutilized in state-of-the-artsensorand actuatortechnologies,and might have potential for further practical applications.

Thelatterhopefullypromptdesigningandsynthesizing moreappropriatefunctionalmaterials(presumablypoly- mersorelastomers)withlargercouplingcoefficientsand easierprocessability.

Referencesand recommendedreading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

ofspecialinterest ofoutstandinginterest

1. CurieJ,CurieP:De´velopmentparcompressiondel’e´lectricite´

polairedanslescristauxhe´mle´dresafa´cesinclinees.Bulletin no.4delaSocieteeMineralogiquedeFrance1880,3:90.

2. WulBM,GoldmanIM:DielectricconstantofBaTiO3asa functionofstrengthofanalternatingfield.DoklAkadNauk SSSR1945,49:179.

3. VonHippelA,BreckenridgeRG,ChesleyFG,TiszaL:High dielectricconstantceramics.IndEngChem1946, 38:1097-1109.

4. RobertsS:Dielectricandpiezoelectricpropertiesofbarium titanate.PhysRev1947,71:890-895.

5. WadaY:Chapter4.Piezoelectricityandpyroelectricity.In ElectronicPropertiesofPolymers.EditedbyMostJ,PfisterG.New York:Wiley-Interscience;1982.

6. FukadaE:Piezoelectricityinpolymersandbiological materials.Ultrasonics1968,6:229.

7. FukadaE:Piezoelectricpropertiesofbiological macromolecules.AdvBiophys1974,6:121.

8. KawaiH:Thepiezoelectricityofpoly(vinylidenefluoride).JpnJ ApplPhys1970,8:975-976.

Figure2

40

30

20 0

0.02 0.04

10

0

-15 -10 -5

-4 -2 0

0 ClPbis10B 5CB

T-TN-I(°C) le3l (nC/m)

Current Opinion in Chemical Engineering

Variationoftheflexoelectriccoefficientonarelativetemperaturescale T–TN-Iforthebent-coreliquidcrystalClPbis10BB(molecularstructure seenabovethegraph),andforthecalamiticliquidcrystal5CBmeasured incellsofA=1cm2activeareas.Theinsetshowspartofthefigure(je3j of5CB)atamagnifiedscale.

(4)

9. LekkalaJ,PoramoR,NyholmK,KaikkonenT:EMFforcesensor aflexibleelectretfilmforphysiologicalapplications.MedBiol EngComput1996,34:67-68.

10. SesslerGM,HillenbrandJ:Electromechanicalresponseof cellularelectretfilms.ApplPhysLett1999,75:3405-3407.

11. BauerS,Gerhard-MulthauptR,SesslerGM:Ferroelectrets:soft electroactivefoamsfortransducers.PhysToday2004,57:37.

12.

MorvanJ,BuyuktanirE,WestJL,Ja´kliA:Highlypiezoelectric biocompatibleandsoftcompositefibers.ApplPhysLett2012, 100063901/1–4.

Biocompatiblesoftfiberswerepreparedfrompolylacticacidcontaining bariumtitanate ferroelectricceramicparticlesbyelectrospinning.The fibersshowedtwoordersofmagnitudelargerpiezoelectricconstantper weightthansinglecrystalbariumtitanatefilms.

13. NioriT,SekineT,WatanabeJ,FurukawaT,TakezoeH:Distinct ferroelectricsmecticliquidcrystalsconsistingofbanana shapedachiralmolecules.JMaterChem1996,6:1231-1233.

14. MeyerRB,LiebertL,StrzeleckiI,KellerP:Ferroelectricliquid crystals.JPhysLett(Paris)1975,36:L69-L72.

15. LinkDR,NataleG,ShaoR,MaclennanJE,ClarkNA,Ko¨rblovaE, WalbaDM:Spontaneousformationofmacroscopicchiral domainsinafluidsmecticphaseofachiralmolecules.Science 1997,278:1924-1927.

16. GaroffS,MeyerRB:ElectrocliniceffectattheA-Cphase changeinachiralsmecticliquidcrystal.PhysRevLett1977, 38:848-851.

17. BahrCH,HeppkeG:Opticalanddielectricinvestigationsonthe electrocliniceffectexhibitedbyaferroelectricliquidcrystal withhighspontaneouspolarization.LiqCryst1987,2:825-831.

18. AnderssonG,DahlI,KellerP,KuczynskiW,LagerwallST,SkarpK, SteblerB:Submicrosecondelectro-opticswitchinginthe liquid-crystalsmecticAphase:thesoft-modeferroelectric effect.ApplPhysLett1987,51:640-642.

19. PieranskiP,GuyonE,KellerP:Shearflowinducedpolarization inferroelectricsmecticsC.JPhys(Paris)1975,36:1005-1010.

20. Ja´kliA,BataL:Mechano-electricaleffectsonplanarSC*liquid crystals.MolCrystLiqCryst1991,201:115-124.

21. BlinovLM,DavidyanSA,PetrovAG,YablonskySV:Manifestation offerroelectricityinalyotropicliquidcrystalwithachiral impurity:astructuralanalogofabiologicalmembrane.JETP Lett1988,48:285-288.

22. MoucharafiehN,FribergS:MolCrystLiqCryst1979,49:231.

23. PetrovAG,DurandG:Thermalinstabilityinlamellarphases oflecithin:aplanarundulationmodel.JPhysLett1983, 44:L793-L798.

24. PetrovAG,CagnonM,GalerneY,DurandG:Thermaland mechanicalinstabilitiesinnonaqueouslamellarlyotropic lecithin-ethylenglycol.MolCrystLiqCryst1988,154:179-193.

25. KagawaY,HatakeyamaT:Piezoelectriceffectinliquidcrystals.

JSoundVibration1977,53:585-593.

26. Ja´kliA,HardenJ,NotzC,BaileyC:Piezoelectricityof phospholipids:apossiblemechanismformechanoreception andmagnetoreceptioninbiology.LiqCryst2008,

35:395-400.

27. HardenJ,DiorioN,PetrovAG,Ja´kliA:Chiralityoflipidsmakes fluidlamellarphasespiezoelectric.PhysRevE2009,79011701.

28. Ja´kliA,BataL,BukaA´,E´berN,Ja´nossyI:New

electromechanicaleffectinchiralsmecticC*liquidcrystals.J PhysLett1985,46:L759-L761.

29. Ja´kliA,BataL,BataN,E´berN:ElectromechanicaleffectinSC* liquidcrystals.Ferroelectrics1986,69:153-163.

30. FedoryakoAP,PivnenkoMN,PopovaEV,SeminozhenkoVP:Free oscillationsinaferroelectricliquidcrystal.TechPhysLett1997, 23:287-288.

31. BataL,E´berN,Ja´kliA:Electromechanicaltransducer.

HungarianPatent20052B(10.28.1988).

32. YuasaK,HashimotoK:(IdemitsuKosanCo.,Ltd.).Jpn.Kokai TokyoKohoJP01,175,400(11July1989);SeikoEpson(62- 203132).

33. Ja´kliA,SaupeA:Theroleofgoldstonemodeandelectroclinic effectsinelectromechanicalresponsesofchiralsmecticC liquidcrystals.MolCrystLiqCryst1993,237:389-398.

34. DemikhovEI,PikinSA,PikinaES:Kinkswitchinginferroelectric free-standingfilmswithhighspontaneouspolarization.Phys RevE1995,52:6250-6259.

35. UtoS,OzakiM,YoshinoK:Molecularreorientationand deformationofafreelysuspendedferroelectricliquidcrystal film.ApplPhysLett1999,74:117-119.

36. UtoS,TazohE,OzakiM,YoshinoK:Mechanicalvibrationof freelysuspendedferroelectricliquid-crystalfilmexcitedby soundandelectricfield.JApplPhys1997,82:2791-2794.

37. YablonskiiSV,OueT,NambuH,MikhailovAS,OzakiM, YoshinoK:Electromechanicaleffectinfreelysuspendedliquid crystalfilms.ApplPhysLett1999,75:64-66.

38. Ja´kliA,Mu¨llerM,Kru¨erkeD,HeppkeG:Firstobservationof electromechanicaleffectsinachiralferroelectriccolumnar liquidcrystal.LiqCryst1998,24:467.

39. VallerienSU,KremerF,FischerEW,KapitzaH,ZentelR,PothsH:

Experimentalproofofpiezoelectricityincholestericandchiral smecticC*-phasesofLC-elastomers.MakromolChemRapid Commun1990,11:593-598.

40. ChangC-C,ChienL-C,MeyerRB:Piezoelectriceffectsin cholestericelastomergels.PhysRevE1997,55:534-537.

41. Ja´kliA,Toth-KatonaT,ScharfT,SchadtM,SaupeA:

Piezoelectricityofaferroelectricliquidcrystalwithaglass transition.PhysRevE2002,66011701.

42. WilliamsWS:Ferroelectrics1982,41:2251andreferencestherein.

43. LeuchtagHR:Indicationsoftheexistenceofferroelectricunits inexcitable-membranechannels.JTheorBiol1987,127:321.

44. IwasaK,TasakiI,GibbonsRC:Swellingofnervefibers associatedwithactionpotentials.Science1980,210:338.

45. Ja´kliA,PinteIC,SerranoJL,RosMB,delaFuenteMR:Piezoelectric andelectric-field-inducedpropertiesofaferroelectricbent-core liquidcrystal.AdvMater2009,21:3784-3788.

46. HiraokaK,KobayashiM,KazamaR:Electromechanicsof monodomainchiralsmecticCelastomer:mechanical responsetoelectricstimulation.5thInternationalLiquidCrystal ElastomerConference;September24–26,2009,Kent,OH,USA, ElectronicLiquidCrystalPresentations:2009http://www.e-lc.org/

presentations/docs/2009_10_02_05_33_52.

47. SpillmannCM,RatnaBR,NaciriJ:Anisotropicactuationin electroclinicliquidcrystalelastomers.ApplPhysLett2007, 90021911.

48. RatnaBR,DeschampsJR,KonnertJH,SpillmannCM,NaciriJ:

StressandE-fieldinducedstructuralchangesinelectroclinic elastomers.5thInternationalLiquidCrystalElastomer

Conference;September24–26,2009,Kent,OH,USA:2009http://

www.e-lc.org/presentations/docs/2009_10_05_13_48_26.

49. KoganShM:Piezoelectriceffectonnon-uniformdeformation andacousticalscatteringofcarriersincrystals.SovPhysSolid State1964,5:2069-2071.

50. MeyerRB:Piezoelectriceffectsinliquidcrystals.PhysRevLett 1969,22:918-921.

51. MarvanM,HavranekA:Flexoelectriceffectinelastomers.In RelationshipsofPolymericStructureandProperties,Progressin ColloidandPolymerScience,vol78.EditedbyChuda´cekI.New York:Springer-Verlag;1988:33-36.

52.

Ja´kliA:Electro-mechanicaleffectsinliquidcrystals.LiqCryst 2010,37:825-837.

Linear(piezoelectricityandflexoelectricity)andquadratic (electrostric- tion)electromechanicaleffectsofliquidcrystals(nematic,smecticand columnarphases) andliquidcrystalline polymersandelastomers are reviewed.

(5)

53. MaW,CrossL:Anexperimentalinvestigationof

electromechanicalresponseinadielectricacrylicelastomer.

ApplPhysA2004,78:1201-1204.

54. MaW,CrossLE,LargeA:Largeflexoelectricpolarizationin ceramicleadmagnesiumniobate.ApplPhysLett2001, 79:4420-4422.

55. MaY:Flexoelectricity:straingradienteffectsinferroelectrics.

PhysScr2007,T129:180-183.

56.

BaskaranS,RamachandranN,HeX,ThiruvannamalaiS,LeeHJ, HeoH,ChenQ,FuJY:Giantflexoelectricityinpolyvinylidene fluoridefilms.PhysLettA2011,375:2082-2084.

A polyvinylidenefluoride filmwas foundto exhibitgiantflexoelectric polarizationuponmechanicaldeformation.

57.

BaskaranS,HeX,ChenQ,FuJY:Experimentalstudiesonthe directflexoelectriceffectina-phasepolyvinylidenefluoride films.ApplPhysLett2011,98242901.

Giantflexoelectricresponsewasdetectedintheapolara-phaseofthe polymerfilmofpolyvinylidenefluoride.Thestraingradientsoccurringin thesampleswerenumericallycalculated.

58. HelfrichW:Asimplemethodtoobservethepiezoelectricityof liquidcrystals.PhysLett1971,35A:393-394.

59. HelfrichW:Thestrengthofpiezoelectricityinliquidcrystals.Z Naturforsch1971,26a:833-835.

60. DerzhanskiA,PetrovAG:Amolecular-statisticalapproachto thepiezoelectricpropertiesofnematicliquidcrystals.Phys Lett1971,36A:483-484.

61. SchmidtD,SchadtM,HelfrichW:Liquid-crystallinecurvature electricity:thebendingmodeofMBBA.ZNaturforsch1972, 27a:277-280.

62. BarberoG,TavernaValabregaP,BartolinoR,ValentiB:Evidence fortheflexo-electriceffectinanematicliquidcrystalcell.Liq Cryst1986,1:483-490.

63. DozovI,Martinot-LagardePh,DurandG:Flexoelectrically controlledtwistoftextureinanematicliquidcrystal.JPhys Lett(Paris)1982,43:L365-L369.

64. ValentiB,BertoniC,BarberoG,TavernaValabregaP,BartolinoR:

Flexoelectricityinthehybridalignednematiccell.MolCrystLiq Cryst1987,146:307-320.

65. WarrierS,MadhusudanaNV:AnACelectrooptictechniquefor measuringtheflexoelectriccoefficient(e1+e3)andanchoring energiesofnematics.JPhysII(France)1997,7:1789-1803.

66. BlinovLM,BarnikMI,OhokaH,OzakiM,YoshinoK:Separate measurementsoftheflexoelectricandsurfacepolarizationin amodelnematicliquidcrystalp-methoxybenzylidene-p0- butylaniline:validityofthequadrupolarapproach.PhysRevE 2001,64031707.

67. KirkmanNT,StirnerT,HagstonWE:Continuummodelingof hybrid-alignednematicliquidcrystalcells:opticalresponse andflexoelectricity-inducedvoltageshift.LiqCryst2003, 30:1115-1122.

68. PontiS,ZiherlP,FerreroC,ZumerS:Flexoelectro-opticeffectina hybridnematicliquidcrystalcell.LiqCryst1999,26:1171-1177.

69. TakahashiT,HashidateS,NishijouH,UsuiM,KimuraM, AkahaneT:Novelmeasurementmethodforflexoelectric coefficientsofnematicliquidcrystals.JpnJApplPhys1998, 37:1865-1869.

70. MarcerouJP,ProstJ:Onthemicroscopicinterpretationof flexoelectricity.JPhysFrance1977,38:315-324.

71. PassechnikVI,SokolovVS:Permeabilitychangeofmodified bimolecularphospholipidmembranesaccompanying periodicalexpansion.Biofizika(Moscow)1973,18:655-660.

72. PetrovAG,DerzhanskiA:Membranesandlyotropicphaseson someproblemsinthetheoryofelasticandflexoelectric effectsinbilayerlipidmembranesandbiomembranes.JPhys Colloques1976,37C3-155-160.

73. PetrovAG:Flexoelectricityoflyotropicsandbiomembranes.Il NuovoCimento1984,3D:174-192.

74. PetrovAG,SokolovVS:Curvature-electriceffectinblacklipid membranes.EurBiophysJ1986,133:139-155.

75. DerzhanskiA,PetrovAG,TodorovAT,HristovaK:Flexoelectricity oflipidbilayers.LiqCryst1990,7:439-449.

76. GaoL-T,FengX-Q,YinY-J,GaoH:Anelectromechanicalliquid crystalmodelofvesicles.JMechPhysSolids2008,

56:2844-2862.

77. RaphaelRM,PopelAS,BrownellWE:Amembranebending modelofouterhaircellelectromotility.BiophysJ2000, 78:2844-2862.

78. SpectorAA,DeoN,GroshK,RatnanatherJT,RaphaelRM:

Electromechanicalmodelsoftheouterhaircellcomposite membrane.JMembraneBiol2006,209:135-152.

79. PetrovAG:Flexoelectricmodelforactivetransport.InPhysical andChemicalBasesofBiologicalInformationTransferVassileva JNewYork:PlenumPress;1975:167.

80. TodorovAT,PetrovAG,FendlerJH:Firstobservationofthe converseflexoelectriceffectinbilayerlipidmembranes.J PhysChem1994,98:3077-3099.

81. HardenJ,MbangaB,E´berN,Fodor-CsorbaK,SpruntS, GleesonJT,Ja´kliA:Giantflexoelectricityofbent-corenematic liquidcrystals.PhysRevLett2006,97157802.

82. ChambersM,VerduzcoR,GleesonJT,SpruntS,Ja´kliA:

Flexoelectricityofacalamiticliquidcrystalelastomerswollen withabent-coreliquidcrystal.JMaterChem2009,

19:7909-7913.

83. BaileyC,Fodor-CsorbaK,GleesonJT,SpruntSN,JakliA:

Rheologicalpropertiesofbent-coreliquidcrystals.SoftMatter 2009,5:3618.

84. VaupoticN,SzydlowskaJ,SalamonczykM,KovarovaA, SvobodaJ,OsipovM,PociechaD,GoreckaE:Structurestudies ofthenematicphaseformedbybent-coremolecules.Phys RevE2009,80030701.

85. FrancesangeliO,StanicV,TorgovaSI,StrigazziA,ScaramuzzaN, FerreroC,DolbnyaIP,WeissTM,BerardiR,MuccioliLetal.:

Ferroelectricresponseandinducedbiaxialityinthenematic phaseofbent-coremesogens.AdvFunctMater2009,19:1.

86.

SalamonP,E´berN,BukaA´,GleesonJT,SpruntS,Ja´kliA:

Dielectricpropertiesofmixturesofabent-coreandacalamitic liquidcrystal.PhysRevE2010,81031711.

Dielectricspectroscopyofabent-corenematicliquidcrystalproved theexistenceofadielectricrelaxationatunusuallylowfrequencies.

Thedielectricspectraofmixturesofbent-coreandcalamiticnematics turned out to be superpositions of the spectra of the individual components.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Interactions at liquid crystal surfaces – Optically induced instabilities were observed in nematic liquid crystals sandwiched between a photosensitive layer and a

E ber (2002): Phase diagrams and physical properties of binary ferroelectric mixtures based on a series of chiral α -cyanocinnamate derivatives, Liquid Crystals, 29:10, 1347-1354..

The kinetics of the phase transitions in the studied binary system of 10DClPBBC and 6OO8 liquid crystals revealed that the crystallization transition has the lowest apparent

Namely, using nematic liquid crystals with positive dielectric anisotropy ε a = ε − ε ⊥ > 0 and applying an external electric field E perpendicular to the plane of the cell,

The two different mechanical testing methods demonstrated comparable yield stress measurements and showed that the nano-grained NCT91 and 14YWT alloys are signi fi cantly more

A´da´m Lovas-Kiss conceived and designed the experiments, performed the experiments, analysed the data, authored or reviewed drafts of the paper, approved the final draft..

The linear regression coefficients of the quadratic BBD- and linear FCCD-based models were positive, indicating a positive influence of temperature, solvent-to-seed ratio

The compressive strength of plasticized concretes is always higher than that of normal concretes of the same cement dosage, hence in final account, the effect