• Nem Talált Eredményt

PETER PAZMANY CATHOLIC UNIVERSITY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PETER PAZMANY CATHOLIC UNIVERSITY"

Copied!
47
0
0

Teljes szövegt

(1)

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader

PETER PAZMANY CATHOLIC UNIVERSITY

Consortium members

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

(2)

BIOCHEMISTRY

Metabolism of nucleotides

(Nukleotidok metabolizmusa)

Raymund Machovich

(3)

Lecture objectives

To learn:

1) Importance of nucleotide synthesis

2) Synthesis of purine ring, formation of AMP and GMP 3) Significance of phosphoribosyl-pyrophosphate synthetase 4) Regulation of ATPand GTP synthesis

5) Salvage ways of purine nucleotide synthesis 6) Pyrimidine synthesis

7) Synthesis of deoxyribonucleotides and its control

8) Origins of deoxythymidilate: Thymidylate synthase, thymidine kinase 9) Some anticancer drugs

10) Degradation of purine bases – urate formation and its importance

(4)

Nucleotide structures

N N NH

2

N N

O

-

– P – O – CH

2

O O

-

O

OH OH

ester bond

Nucleotide: Adenosine –5'-monophosphate (AMP, adenylate, adenyl acid)

Nucleoside:

ribose (R) -base (B)

R B Adenosine DNS RNS

ATP cAMP NAD 180° ‘Anti”

„Syn”

N-glicoside bond

(5)

Diet

Resynthesis

Nucleotides

Biosynthetic Intermediers:

UDP-glucose

CDP-diacilglicerol

Redox systems Coenzymes

CoA, NAD, FAD

Regulation Adenosine ADP

cAMP cGMP

Energy ATP

Informations: RNA DNA

Various cells

(6)

DNS, RNS

Ribose – (R)

Deoxyribose (dR)- nucleases

Mono-(oligo-)nucleotides

Phosphatases

Nucleosides* Pi

Nucleosidases

Reuse R

dR Purine-

B (d)R

Diet:

* Thymidine C

14

Uridine H

3

(7)

C

N C

C C

N

N

C N

1

2

3 4 5 6

7

8 9

Asp

6

CO

2

5

Gly

2

N

10

– Formyl-THF

3

Gln

4 1

N

10

– Formyl- THF

7

Synthesis of purine ring

(8)

P R ATP AMP

P R PP

IMP AMP GMP

Catalytic subunit

Regulator subunit

PRPP-synthetase

\

(9)

Purine ring is synthesized on ribose-phosphate

O

-

– P – O – CH

2

O O

O

¯

OH OH

5

4

3 2

1

H

OH

O

-

– P – O – CH

2

O

O

¯

OH OH H

α

O – P – O – P – O

¯

ATP

AMP

PRPP - synthetase

H H

H O

H H H

O O O¯ O¯

Ribose- 5 - phosphate

5–Phosphoribosyl–1–pyrophosphate (PRPP)

AMP

GMP IMP

= =

(10)

Gln Glu

PPi Azaszerin

(tumor chemotherapy)

O

-

– P – O – CH

2

O

O

O

¯

OH OH NH

2

H H OH H

5 – Phosphoribosyl – 1 – amine

β COOH

C – NH2 CH2 O

C CH2 N N+ H

O

(Gln analog)

Gln-PRPP-amido-

transferase

(11)

NH2

Ribose - P

ATP ADP Gly

Phosphoribosyl – glycinamide synthetase

Pi NH2

CH2 O C

NH

Ribose - P

Glycinamide ribonucleotide

N10– Formyl–THF Phosphoribozyl –glycinamide transferase

THF

Formylglycinamide ribonucleotide

(12)

H – C ═ O NH2 CH2 O ═C

NH

Ribose - P NH

CH2 C ═ O

H HN ═ C

NH Ribose – P

ADP ATP

H2O

Glu Gln synthetase

Formylglycin –amidine ribonucleotide

ATP

Formylglycinamide ribonucleotide

Aminoimidazole

(13)

synthetase

ADP

HC C

H

2

N N N

CH

R ibose- P

5 – aminoimidazole

ribonucleotide

HOOC

C

H

2

N N N

CH

Ribose- P

C

5 – Aminoimidazole – 4 – carboxy ribonucleotide

Asp ATP

synthetase CO2

carboxylase

ADP

Succinylocarboxamide ribonucleotide

(14)

ADP

C

C

NH

2

N

N

CH

R ibose- P

C

HOOC – C – N – HOOC – CH

2

H

H ═O

Adenylosuccinate lyase

5 – Aminoimidazole– 4 – N –

succinylcarboxamide ribonucleotide

Aminoimidasole carboxamide

(15)

Fumarate

NH

2

N

N

CH

Ribóz- P

NH2 C

O═

C C

N N H

N

CH

Ribose- P

NH2 C

O═

C C

O ═ C H N10 –Formyl – THF THF

Transferase

5 – Aminoimidazole – 4 – carboxamide–

ribonucleotide 5 – Formylaminoimidazole –

carboxamide – ribonucleotide H2O

IMP – synthase

(16)

N N

N

CH

Ribose- P

NH C

O═

C C

HC

IMP – synthase

PRPP – kinase

}

Purine ring

Hypoxantine

Inozinate (IMP)

AMP GMP

N

(17)

N N N

CH

R - P

NH C

O═ C

C

HC

IMP

Adenylosuccinate synthetase

GDP GTP Pi

Asp

IMP dehydrogenase

NAD NADH H2O

AMP GMP

Adenylosuccinate

Xanthylate

(18)

N N N

CH

R - P

C

N NH

C

C

HC

N N

N

CH

H R - P

NH C

O═ C

C

O ═ C HOOC – CH2– C – COOH

H

Adenylosuccinate Xanthylate

(19)

Adenylosucccinate lyase Fumarate

N N N

CH

R - P

N C

NH2 C

C

HC

Adenylate AMP

N N N

=

CH

H R - P

NH C

O═ C

C

H2N – C Gln

Glu ATP

AMP PPi

H2O

GMP synthetase

Guanylate

GMP

ATP GTP

Gln analogous

=

(20)

Feedback controls of

biosynthesis of purine nucleotides

IMP

GTP

ATP

ATP ATP

ATP

Synthetase Dehydrogenase

Adenylo

succinate Xanthylate

Transferase

PRPP

Ribose – 5 -P

PR-amine

Synthetase

(21)

Purine nucleotides can be re-used („Salvage ways”)

O - P – O – CH

2

O

-

H

O

H H OH OH

H

O – P – O – P - O- O O

O- O-

=

PRPP

Adenine

Adenosine-phosphoribosyl transferase

PPi

HN C HC C

CH NH

2

N N N

CH

R - P

Adenylate

(AMP)

Ө

(22)

Hypoxantine + PRPP

phosphoribosyl transferase

PPi

Guanine + PRPP

PPi

HN C

HC C C O

N N N

CH

R - P

IMP

HN C C C

C N

CH O

H

2

N

AMP , GMP, IMP

inhibit their own syntheses

(23)

A – R

+ (G – R)

ATP ADP AMP

(GMP) Adenosine kinase

A: adenine

G: guanine

R: ribose

(24)

C

N C

C C

N

3

2

1 6 5 4

Pyrimidine syntheses

Carbamoyl phosphate Asp

H

2

N – C – O - P – O

-

O O

O

-

Glu 2ADP

Carbamoyl-phosphate synthetase (kDa 240)

Different carbamoylphosphate synthetases.

For pyrimidine: Gln in cytosol

For urea: NH

+4

in mitochondria

(25)

H

2

N – C – O - P – O

-

O

-

H

2

N – C – COOH CH

2

COOH H

Asp

Aspartate -

transcarbamoylase

Pi

HO – C ═ O NH2

O ═ C CH2 N C – COOH H H

N – carbamoyl-aspartate

CAD

Mr ≈ 240 000

Dihydroorotase Aspartate trans-

carbamylase

O C

HN CH

2

O ═ C C – COOH N H

H

Dihydroorotate

NAD

Dihydroorotate dehydrogenase

NADH

Dihydroorotase

H2O

Orotate

(26)

C

HN CH

O ═ C C – COOH N

H

Orotate

Orotate aciduria

O C

HN CH

O ═ C C – COOH N

H

O-- P – O – CH2

O

O-

=

H

O H H OH OH PRPP PPi

Orotate-phosphorybosyl- transferase

Orotidylate

Transferase

Decarboxylase

Hereditary breakdown or azauridine (anticancer)

Orotidylate decarboxylase

(27)

decarboxylase

CO2

C

HN CH O ═ C C H

N Ribose – P

O C

HN CH O ═ C C H

N Ribose P

ADP ATP ADP ATP UDP

Nucleoside UMP- diphosphate kinase kináse

UTP

(uridine- triphosphate) ATP

ADP

Gln H2O

CTP synthetase Glu

NH2

C

N CH O ═ C CH

N

CTP

(cytidine triphosphate)

Uridylate UMP

Uridine monophosphate

Ribose –P – P – P

(28)

Deoxyribonucleotide synthesis

P - P – O – CH

2

H

O H H

OH

OH

H

Base

P - P – O – CH

2

H

O H H

OH

H

H

NADPH NADP Base

H

2

O

5

4

3 2

1

Ribonucleotide reductase:

Its substrate: ribonucleotide diphosphate (BDP)

SH enzime:

SH

BDP + ε dBDP + H

2

O

S SH

ε

(29)

B

1

B

1

Regulation

ATP ⊕ dATP

SH SH

B

2

B

2

Fe 3+ - O - Fe 3+

Substrates:

ADP CDP UDP GDP

OH

O ·

\

(30)

\

dCDP dCTP

dUDP dTTP

dGDP dGTP CDP

UDP

GDP ATP

\ ⊕

Regulation of ribonucleotide reductase

(31)

„Uridine-way”

HN CH O = C CH

C

N

HN C – CH

3

C CH C

N O =

P dR P

N 5 N 10 - methylene - dR

THF

DHF

THF Gly

Ser

NADP

NADPH

Dihydrofolate reductase

dUMP

dTMP

Thymidylate synthase

(32)

HN C – CH

3

C CH C

N O

O = HN C – CH

3

C CH C

N O

O =

Deoxythimidylate (dTMP) synthesis:

„Thymidine-way”

H

O H H OH H

H

H

O

H H OH H

H

HO – CH

2 O - P - O –

CH

2

Thymidine

O

kinase

ATP ADP

dT

(deoxythimidine)

dTMP

(Deoxythymidine-monophosphate)

DNA-degradation dT

3

H,

14

C

O

(33)

into RNA F- UDP, F - dUDP

Fluoro –deoxyuridylate (F – dUMP) O

C

HN C - F O ═ C C H

N P -dR

O C

HN C - F O ═ C C H

N

THF

CH2

S - enzym Thymidine

kinase dT

N,5N10Methylene THF

DHF Gly Ser

NADP

Dihydrofolate reductase NADPH

Compatitive inhibitors (Ki≈ 10-9M)

Aminopterin Methotrexate

dTDP dTTP DNA

ATP ATP NTP

Pi Pi Polymerase

Kinases and phosphatases

Thymidilate - synthase

UDP

Ribonucleotide reductase

dUMP

dUMP

dTMP

(34)

N

N

NH2

HO – CH

2

O

OH H H H OH

O═

Pyrimidine and purine analogues

N

N N H SH

N

6 –mercaptopurine („Immurán”)

Hypoxantine + PRPP

S – IMP Cytosine arabinose

(35)

Degradation of purines

N N N

CH

Ribose - P

C

N

NH2 C

C

HC

N N N

C

CH

N

O C

C

HC

PRPP Gln

IMP

Adenylate deaminase

H2O

Phosphomono

esterase

PRPP

Hypoxanthine phosphoribosyl transferase

- NH

2

AMP

Asp

Gln

Ribose Pi

Hypoxanthine

GMP

Xanthine

(36)

N N N

C

CH

H N

O C

C

H2N – C

N N H H

N

C

CH

HN

O C

C

O ═ C

GMP

Phosphomonoesterase Ribose

Pi

Guanine

PRPP

H2O

Guanine

deaminase

- NH2

H

2

O

O2

Xanthine oxidase H

2

O

2

Catalase

H

2

O

Xanthine

Guanine phosphoribsyl transferase

IMP

Hypoxanthine

(37)

N N H N

C –

OH C

HN OH C

C

HO– C

N N H H

N

C ═ O C

HN O C

C

O ═ C

H

2

O O

2

Xanthine oxidase

H

2

O

2

Catalase H

2

O

Uric acid (enol)

H

+

Urate (low solubility)

Gout,

Kidney stone

H

Uric acid (keto) Allantoin

urea

(38)

High level of urate results in deposition of sodium urate crystals

AMP

IMP

Hypo- xanthine

Xanthine

Guanine

Hypoxanthine – guanine- GMP

phosphoribozyl transferase

PRPP

ATP Ribose –5 –P

B PRPP-

synthetase

(regulator subunit defect)

Xanthine - oxidase

A

A

Genetic lack:

„Lesch Nyhan syndrome”

Bizarre reactions:

Self destructive tendencies (biting off their fingers, lip,

toes), bad coordination, mental retardardation

B or decreased A:

High level of uricacid results in its

Xanthine-

oxidase

(39)

Th: Allopurinol

Xanthine oxidase

Urate

joints kidney

N N H C C N N

OH C

C

H – C

N N

H N

C

C –H

N

OH C

C

H – C

H

Xanthine oxidases are inhibited (xanthine and hypoxanthine are more soluble than uric acid)

Allopurinol Hypoxanthine

Treatment of gout

Urate is decreased,

PRPP not

(40)

High urate level may be „useful”:

Urate level of the human is 10-fold higher than in monkey a factor for the longer life time.

Urate is an antioxaidant (like Vitamin E, bilirubin, etc).

(41)

Adenosine-deaminase

Its lack leads to a 100-fold increase in dATP, which inhibits ribonucleotide reductase.

The increase in dATP, thus results in decrease of other deoxinucleotides necessary for DNA synthesis

in T and B lymphocytes.

Its hereditary deficiency affects the immune system:

SCID-syndrome (sever combined immundeficiency).

It is also called „Non HIV AIDS”, because of similar symptoms.

(42)

Summary

Nucleotide metabolism is discussed from the viewpoint of their synthesis (because their amount is not enough in the diet) and they degradation (because they

incorrect elimination causes pathological conditions)

(43)

Recommended literature

Machovich R. A nucleotidok anyagcseréje

Orvosi Biokémia, Medicina kiadó,

pp. 269-296

(44)

What is the role of nucleotides?

1) Hydrolysis of PP bound of ATP to drive reactions that require an input of energy 2) Building blocks of DNA and RNA

3) Componenet of coenzymes 4) Second messengers

5) Allosteric effectors of metabolic procesess

(45)

Correct answere for test question:

„C”

(46)

Which of the compound(s) below is/are allosteric inhibitor(s) of PRPP amidotransferase?

1) ATP

2) IMP

3) PRPP

4) NADH

(47)

Correct answere for test question:

„C”

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

2.5.1 Stereocontrolled Synthesis of Functionalized Cispentacin and Transpentacin Derivatives through Ring-Opening Metathesis of Norbornene -Amino Acid Derivatives..

As an important player in the regulation of protein synthesis, mammalian target of rapamycin (mTOR), and participants of epigenetic regulation processes, namely

naturally occurring sulfate ester and glucoside metabolites of morphine and codeine derivatives, and by using or modifying these methods we aimed to synthesize known

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

N A D synthesis and, 2, 8 nicotinamide and formation of, 4 nicotinic acid adenine dinucleotide syn-. thesis

The residue is extracted with 25 ml of warm ( 4 0 - 4 5 ° ) absolute ethanol, the extract freed from inorganic phosphate by addition of about 60 ml of ether, filtered, and

bolite on the growth characteristics of the sensitive and dependent lines of leukemia L1210 and to determine the blocking effect of CF on (1) the antileukemic action of

sensitivity to drugs, conversion from drug-sensitive to drug-insensitive states, are manifestations of altered states of enzyme proteins. These altered states perpetuating in