• Nem Talált Eredményt

StdNum: 11; DE, Teszt 1, Majus 9.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "StdNum: 11; DE, Teszt 1, Majus 9."

Copied!
6
0
0

Teljes szövegt

(1)

StdNum: 11; DE, Teszt 1, Majus 9.

Exercise (2). Time-independent DE, one dimension. Qualitative behaviour, linearization.

Let d

dty=−(y−5)(y−2)y2, y(0) = 0.5.

Subexercise (A). Find the sum of the fixedpoints of the DE!

MCQ. A: 5 B: 6 C: 7 D: 8 E: 9

Subexercise (B). Write down the linear approximation of the DE around the smallestyf ix fixedpoint as dtd∆y= a∆y ! How much isa?

MCQ. A: -2 B: -1 C: 0 D: 1 E: 2

Subexercise (C). With the given initial condition fory(0), how much is limt→∞y(t) ? (If limt→tcy(t) =±∞for sometc>0, then answer±∞.)

MCQ. A: 0 B: 5 C: ∞ D:−∞ E: 2

Subexercise (D). With the given initial condition for y(0), how much is limt→−∞y(t) ? (If limt→tcy(t) =±∞

for sometc<0, then answer±∞.) MCQ. A:−∞ B: ∞C: 2 D: 5 E: 0

Subexercise (E). Plot the t→y(t) solutions of the DE!

MCQ.

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

(2)

Exercise (2). Time-independent DE, one dimension. Qualitative behaviour, linearization.

Let d

dty=−(y−5)(y−2)y2, y(0) = 0.5.

Subexercise (A). Find the sum of the fixedpoints of the DE!

MCQ. A: 5 B: 6 C: 7 D: 8 E: 9

Subexercise (B). Write down the linear approximation of the DE around the smallestyf ix fixedpoint as dtd∆y= a∆y ! How much isa?

MCQ. A: -2 B: -1 C: 0 D: 1 E: 2

Subexercise (C). With the given initial condition fory(0), how much is limt→∞y(t) ? (If limt→tcy(t) =±∞for sometc>0, then answer±∞.)

MCQ. A: 0 B: 5 C: ∞ D:−∞ E: 2

Subexercise (D). With the given initial condition for y(0), how much is limt→−∞y(t) ? (If limt→tcy(t) =±∞

for sometc<0, then answer±∞.) MCQ. A:−∞ B: ∞C: 2 D: 5 E: 0

Subexercise (E). Plot the t→y(t) solutions of the DE!

MCQ.

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

-0.2 0.0 0.2 0.4 0.6 -1

0 1 2 3 4 5 6

Exercise (3). Time-independent DE, two dimensions. Qualitative behaviour, linearization.

Let

d dt~y =

f1 f2

=

(y1+ 2) (y2+ 1) y1+ 1

.

(3)

Subexercise (B). Write down the linear approximation of the DE around the~yf ix as dtd∆~y=A∆~y ! How much is the sum of the elements ofA ?

MCQ. A: 0 B: 1 C: 2 D: 3 E: 4

Exercise (4). Hom.Lin. DE. Radioactiv decay: I →II →. . . Let

A=

−3 0 3 −7

, d

dt~y =A~y, ~y(0) = 1

3

.

Subexercise (A). Find the smallest eigenvalue ofA ! MCQ. A: -8 B: -7 C: -6 D: -5 E: -4

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)2 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the elements ofS ?

MCQ. A: 53 B: 73 C: 83 D: 103 E: 133

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A: 74 B: 94 C: 114 D: 134 E: 154

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: 0.0112051 B: 0.0125878 C: 0.0141411 D: 0.0158862 E: 0.0178465

Exercise (5). Hom.Lin. DE. Overdamped oscillator Let

¨

y+ay˙+by= 0, A=

0 1

−21 −10

, d

dt~y=A~y, ~y(0) = 1

3

.

Subexercise (A). Find the smallest eigenvalue ofA ! MCQ. A: -8 B: -7 C: -6 D: -5 E: -4

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)1 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the elements ofS ?

MCQ. A:−12 B: −11 C: −10 D:−8 E: −6

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A:−52 B:−32 C: −12 D: 12 E: 32

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: -0.0784357 B: -0.0881146 C: -0.098988 D: -0.111203 E: -0.124926

(4)

Exercise (6). Hom.Lin. DE. Jordan decomposition.

Theorem: For any complex square A matrix there exists an S such that SAS−1 is block diagonal with blocks choosen from the following list

J1 = λ

, J2 = λ 1

0 λ

, J3=

λ 1 0

0 λ 1 0 0 λ

, . . . .

Subexercise (B). Constant accerelation.

d3y

dt3 = 0, d dt~y =

0 1 0 0 0 1 0 0 0

~y=A~y.

(Here~y= (y,y,˙ y)¨T.) How much is (exp(0.879A))13 ?

MCQ. A: 0.242555 B: 0.272486 C: 0.306111 D: 0.343885 E: 0.386321 Subexercise (C). Radioactive decay, I →II →. . ..

d dt~y=

−2 0 2 −2

~ y=A~y.

(Itt~y= (yI, yII)T.) How much is (exp(0.879A))21 ?

MCQ. A: 0.30306 B: 0.340458 C: 0.382471 D: 0.429667 E: 0.482688 Exercise (7). Impulse response, distributions.

Dirac-delta: δ(t) = 0, hat6= 0, Z

−∞

δ(t)dt= 1.

Heaviside theta: θ(t) =

(0, hat <0, 1, hat >0,

????: K(t) =

(0, hat <0, t, hat >0., hf(t), φ(t)i=

Z −∞

f(t)φ(t)dt hf0(t), φ(t)i=

Z −∞

f0(t)φ(t)dt=− Z −∞

f(t)φ0(t)dt=−hf(t), φ0(t)i Then

θ0(t) =δ(t),

K0(t) =θ(t), K00(t) =θ0(t) =δ(t).

Subexercise (C).

G0(t) + 4G(t) =δ(t), G(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.301194 B: 0.338362 C: 0.380115 D: 0.427022 E: 0.479716 Subexercise (E).

G00(t) + 7G(t) =δ(t), G(−1) = 0, G0(−1) = 0.

How much isG(0.3) ?

(5)

Exercise (8). Laplace transform Subexercise (A). Let

y0(t) + 3y(t) = 5t−1, y(0) = 5.

How much isY(1.4) ?

MCQ. A: 1.38313 B: 1.5538 C: 1.74554 D: 1.96094 E: 2.20292 Subexercise (B). Let

y0(t) + 3y(t) = 5t−1, y(0) = 5.

If

Y(s) =X

k,n

Ak,n

(s−αk)n, Ak,n6= 0, α1> α2 >· · · , then how much isA1,1 ?

MCQ. A:−89 B:−59 C: −49 D: −29 E:−19 Subexercise (C). Let

d dt~y =

−2 0 2 −4

~ y+

1 t

, ~y(0) = 3

5

.

How much isY1(1.4) ?

MCQ. A:{0.770536} B: {0.865621}C: {0.972438} D:{1.09244} E:{1.22724}

Exercise (9). Fourier transform, heat equation.

Subexercise (A). Letχ[a,b](x) = 1, if x∈[a, b], otherwise it is zero. If χ[0.7,2.2](x) =

X

n=−∞

ˆ

χnen(x), ahol en(x) = einx

√2π on the (−π, π) interval, then how much is|ˆχ2|?

MCQ. A: 0.397943 B: 0.447049 C: 0.502215 D: 0.564188 E: 0.633809 Subexercise (B). Let

φt(t, x) = 3φxx(t, x), φ(t, x) =φ(t, x+ 2π), φ(0, x) =χ[0.7,2.2](x), ha x∈[−π, π].

If

φ(t, x) =

X

n=−∞

cn(t)en(x), Then how much is |c2(0.2)|?

MCQ. A: 0.0226661 B: 0.0254631 C: 0.0286052 D: 0.0321351 E: 0.0361006 Exercise (10). Euler-Lagrange equation, numerical methods.

Subexercise (D). (Heun’s method) Let

f(t, y) = (2 + 2t)(2 + 2y) t0 = 2,∆t= 0.01.

d

dty(t) =f(t, y(t)), y(t0) =y0 = 2.

What is Heun’s prediction for y(t0+ ∆t)-re?

MCQ. A: 1.49573 B: 1.6803 C: 1.88765 D: 2.12059 E: 2.38227

(6)

Subexercise (E). (Taylor series) Let

f(t, y) = (2 + 2t)(2 + 2y) t0 = 2, d

dty(t) =f(t, y(t)), y(t0) =y0 = 2,

y(t0+ ∆t) =y0+c1∆t+c2∆t2+c3∆t3+O(∆t4).

How much isc2 ?

MCQ. A: 222 B: 224 C: 225 D: 226 E: 227

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..