• Nem Talált Eredményt

StdNum: 12; DE, Teszt 1, Majus 9.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "StdNum: 12; DE, Teszt 1, Majus 9."

Copied!
4
0
0

Teljes szövegt

(1)

StdNum: 12; DE, Teszt 1, Majus 9.

Exercise (1). Time-independent DE, one dimension. Qualitative behaviour, linearization.

Let d

dty= (y−4)(y−1)2, y(0) = 3.5.

Subexercise (A). Find the sum of the fixedpoints of the DE!

MCQ. A: 2 B: 3 C: 4 D: 5 E: 6

Subexercise (B). Write down the linear approximation of the DE around the smallestyf ix fixedpoint as dtd∆y= a∆y ! How much isa?

MCQ. A: -2 B: -1 C: 0 D: 1 E: 2

Subexercise (C). With the given initial condition fory(0), how much is limt→∞y(t) ? (If limt→tcy(t) =±∞for sometc>0, then answer±∞.)

MCQ. A:−∞ B: 4 C: 1 D:∞

Subexercise (D). With the given initial condition for y(0), how much is limt→−∞y(t) ? (If limt→tcy(t) =±∞

for sometc<0, then answer±∞.) MCQ. A:−∞ B: 4 C:∞ D: 1

Subexercise (E). Plot the t→y(t) solutions of the DE!

MCQ.

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1

2 3 4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1

2 3 4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1

2 3 4

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1

2 3 4

1

(2)

Exercise (2). Time-independent DE, two dimensions. Qualitative behaviour, linearization.

Let

d dt~y =

f1 f2

=

(y1−1) (y2−2) (y1−2) (y2−1)

.

Subexercise (A). Find the sum of the coordinates of the smallest~yf ix fixed point!

MCQ. A: 2 B: 3 C: 4 D: 5 E: 6

Subexercise (B). Write down the linear approximation of the DE around the smallest ~yf ix as dtd∆~y = A∆~y ! How much is the sum of the elements ofA ?

MCQ. A: -5 B: -4 C: -3 D: -2 E: -1

Exercise (3). Hom.Lin. DE. Radioactiv decay: I →II →. . . Let

A=

−1 0 1 −4

, d

dt~y =A~y, ~y(0) = 4

1

.

Subexercise (A). Find the smallest eigenvalue ofA ! MCQ. A: -7 B: -6 C: -5 D: -4 E: -3

Subexercise (B). Find the~v1 and~v2 eigenvectors corresponding to the λ1< λ2 eigenvalues. Normalize them by the condition (~vi)2 = 1, i= 1,2.Assemble them into a matrixS = (~v1, ~v2) matrixot. How much is the sum of the elements ofS ?

MCQ. A: 2 B: 3 C: 5 D: 7 E: 8

Subexercise (C). The solution of the DE can be written as

~ y(t) =

2

X

i=1

Cieλit~vi.

How much isC1, if~y(0) satisfies the given initial condition?

MCQ. A:−73 B:−53 C: −43 D: −13 E: 13

Subexercise (D). Compute the matrix exponentialetA ! How much is e1.4·A

21 ? MCQ. A: 0.0508355 B: 0.0571086 C: 0.0641558 D: 0.0720726 E: 0.0809664

Exercise (4). Hom.Lin. DE. Jordan decomposition.

Theorem: For any complex square A matrix there exists an S such that SAS−1 is block diagonal with blocks choosen from the following list

J1 = λ

, J2 = λ 1

0 λ

, J3=

λ 1 0

0 λ 1 0 0 λ

, . . . .

Subexercise (B). Constant accerelation.

d3y

d3 = 0, d dt~y =

0 1 0 0 0 1 0 0 0

~y=A~y.

(Here~y= (y,y,˙ y)¨T.) How much is (exp(1.469A))13 ?

MCQ. A: 0.854958 B: 0.96046 C: 1.07898 D: 1.21213 E: 1.3617 Subexercise (C). Radioactive decay, I →II →. . ..

d dt~y=

−3 0 3 −3

~ y=A~y.

(Itt~y= (yI, yII)T.) How much is (exp(1.469A))21 ?

MCQ. A: 0.0378969 B: 0.0425734 C: 0.047827 D: 0.0537288 E: 0.060359 2

(3)

Exercise (5). Impulse response, distributions.

Dirac-delta: δ(t) = 0, hat6= 0, Z

−∞

δ(t)dt= 1.

Heaviside theta: θ(t) =

(0, hat <0, 1, hat >0,

????: K(t) =

(0, hat <0, t, hat >0., hf(t), φ(t)i=

Z −∞

f(t)φ(t)dt hf0(t), φ(t)i=

Z −∞

f0(t)φ(t)dt=− Z −∞

f(t)φ0(t)dt=−hf(t), φ0(t)i Then

θ0(t) =δ(t),

K0(t) =θ(t), K00(t) =θ0(t) =δ(t).

Subexercise (C).

G0(t) + 6G(t) =δ(t), G(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.165299 B: 0.185697 C: 0.208612 D: 0.234354 E: 0.263274 Subexercise (E).

G00(t) + 6G(t) =δ(t), G(−1) = 0, G0(−1) = 0.

How much isG(0.3) ?

MCQ. A: 0.243653 B: 0.27372 C: 0.307497 D: 0.345442 E: 0.388069 Exercise (6). Laplace transform

Subexercise (A). Let

y0(t) + 5y(t) = 3t, y(0) = 6.

How much isY(1.2) ?

MCQ. A: 1.30376 B: 1.46465 C: 1.64539 D: 1.84843 E: 2.07652 Subexercise (B). Let

y0(t) + 5y(t) = 3t, y(0) = 6.

If

Y(s) =X

k,n

Ak,n

(s−αk)n, Ak,n6= 0, α1> α2 >· · · , then how much isA1,1 ?

MCQ. A:−253 B: −251 C: 251 D: 252 E: 253 Subexercise (C). Let

d dt~y =

−5 0 5 −4

~ y+

1 t

, ~y(0) = 5

6

.

How much isY1(1.2) ?

MCQ. A:{0.745515} B: {0.837511}C: {0.94086} D:{1.05696} E:{1.18739}

3

(4)

Exercise (7). Fourier transform, heat equation.

Subexercise (A). Letχ[a,b](x) = 1, if x∈[a, b], otherwise it is zero. If χ[0.4,1.2](x) =

X

n=−∞

ˆ

χnen(x), ahol en(x) = einx

√2π on the (−π, π) interval, then how much is|ˆχ2|?

MCQ. A: 0.254748 B: 0.286184 C: 0.321499 D: 0.361172 E: 0.40574 Subexercise (B). Let

φt(t, x) = 3φxx(t, x), φ(t, x) =φ(t, x+ 2π), φ(0, x) =χ[0.4,1.2](x), ha x∈[−π, π].

If

φ(t, x) =

X

n=−∞

cn(t)en(x), Then how much is |c2(0.2)|?

MCQ. A: 0.0205717 B: 0.0231102 C: 0.025962 D: 0.0291657 E: 0.0327648 Exercise (8). Euler-Lagrange equation, numerical methods.

Subexercise (D). (Heun’s method) Let

f(t, y) = (2 + 4t)(4 + 2y) t0 = 2,∆t= 0.01.

d

dty(t) =f(t, y(t)), y(t0) =y0 = 4.

What is Heun’s prediction for y(t0+ ∆t)-re?

MCQ. A: 4.73819 B: 5.32288 C: 5.97972 D: 6.71762 E: 7.54658

4

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..

Fourier transform, heat equation..