• Nem Talált Eredményt

ON THE TRIANGLE INEQUALITY IN QUASI-BANACH SPACES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON THE TRIANGLE INEQUALITY IN QUASI-BANACH SPACES"

Copied!
9
0
0

Teljes szövegt

(1)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page

Contents

JJ II

J I

Page1of 9 Go Back Full Screen

Close

ON THE TRIANGLE INEQUALITY IN QUASI-BANACH SPACES

CONG WU AND YONGJIN LI

Department of Mathematics Sun Yat-Sen University Guangzhou, 510275, P. R. China

EMail:congwu@hotmail.com stslyj@mail.sysu.edu.cn

Received: 11 May, 2007

Accepted: 10 June, 2008

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 26D15.

Key words: Triangle inequality, Quasi-Banach spaces.

Abstract: In this paper, we show the triangle inequality and its reverse inequality in quasi- Banach spaces.

(2)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page2of 9 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Main Results 4

(3)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page3of 9 Go Back Full Screen

Close

1. Introduction

The triangle inequality is one of the most fundamental inequalities in analysis. The following sharp triangle inequality was given earlier in H. Hudzik and T. R. Landes [2] and also found in a recent paper of L. Maligranda [5].

Theorem 1.1. For all nonzero elementsx, yin a normed linear spaceXwithkxk ≥ kyk,

kx+yk+

2−

x

kxk+ y kyk

kyk

≤ kxk+kyk

≤ kx+yk+

2−

x

kxk + y kyk

kxk.

We recall that a quasi-norm k · k defined on a vector space X (over a real or complex fieldK) is a mapX →R+such that:

(i) kxk>0forx6= 0;

(ii) kαxk=|α|kxkforα∈K, x∈X;

(iii) kx+yk ≤ C(kxk+kyk)for allx, y ∈X, whereCis a constant independent ofx, y.

Ifk · kis a quasi-norm onX defining a complete metrizable topology, thenX is called a quasi-Banach space.

In the present paper we will present the triangle inequality in quasi-normed spaces.

(4)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page4of 9 Go Back Full Screen

Close

2. Main Results

Theorem 2.1. For all nonzero elementsx, yin a quasi-Banach spaceXwithkxk ≥ kyk

kx+yk+C

2−

x

kxk + y kyk

kyk

≤C(kxk+kyk) (2.1)

≤ kx+yk+

2C2

x

kxk + y kyk

kxk, (2.2)

whereC ≥1.

Proof. Letkxk ≥ kyk. We first show the inequality (2.1).

kx+yk=

kyk x

kxk+ y kyk

+kxk x

kxk − kyk x kxk

≤C

kyk x

kxk+ y kyk

+C

kxk x

kxk − kyk x kxk

=Ckyk

x

kxk + y kyk

+C(kxk − kyk)

=Ckyk

x

kxk + y kyk

+C(kxk+kyk −2kyk)

=Ckyk

x

kxk + y kyk

−2

+C(kxk+kyk).

(5)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page5of 9 Go Back Full Screen

Close

Since

kx+yk=

kxk x

kxk + y kyk

kxk y

kyk− kyk y kyk

≥ 1 C

kxk x

kxk + y kyk

kxk x

kxk − kyk x kxk

= 1 Ckxk

x

kxk+ y kyk

−(kxk − kyk)

= 1 Ckxk

x

kxk+ y kyk

+ (kxk+kyk −2kxk)

=kxk 1

C

x

kxk + y kyk

−2

+ (kxk+kyk).

we have

C(kxk+kyk)≤Ckx+yk+

2C−

x

kxk + y kyk

kxk

=kx+yk+ (C−1)kx+yk+

2C−

x

kxk + y kyk

kxk

≤ kx+yk+ (C−1)C(kxk+kyk) +

2C−

x

kxk + y kyk

kxk

≤ kx+yk+ (C−1)C(2kxk) +

2C−

x

kxk + y kyk

kxk

=kx+yk+

2C2

x

kxk + y kyk

kxk.

Thus the inequality (2.2) holds.

(6)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page6of 9 Go Back Full Screen

Close

T. Aoki [1] and S. Rolewicz [6] characterized quasi-Banach spaces as follows:

Theorem 2.2 (Aoki-Rolewicz Theorem). Let X be a quasi-Banach space. Then there exists0 < p ≤ 1and an equivalent quasi-normk| · k|onX that satisfies for everyx, y ∈X

k|x+yk|p ≤ k|xk|p+k|yk|p.

Idea of the proof. Letk · kbe the original quasi-norm onX, denote byk = inf{K ≥ 1 : for anyx, y ∈X,kx+yk ≤K(kxk+kyk)}andpis such that21/p = 2k. It is shown [3] that the functionk| · k|defined onX by:

k|xk|= inf

n

X

i=1

kxikp

!p1 :x=

n

X

i=1

xi

 is an equivalent quasi-norm onXthat satisfies the required inequality.

Next, we will prove thep-triangle inequality in quasi-Banach spaces.

Theorem 2.3. For all nonzero elementsx, yin a quasi-Banach spaceXwithkxk ≥ kyk,

kx+ykp+

kxkp +kykp−(kxk − kyk)p− kykp

x

kxk + y kyk

p

≤ kxkp+kykp

≤ kx+ykp +

kxkp+kykp+ (kxk − kyk)p− kxkp

x

kxk + y kyk

p , where0< p ≤1.

(7)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page7of 9 Go Back Full Screen

Close

Proof. We have

kx+ykp =

kyk x

kxk + y kyk

+kxk x

kxk − kyk x kxk

p

kyk x

kxk + y kyk

p

+

kxk x

kxk − kyk x kxk

p

=kykp

x

kxk + y kyk

p

+ (kxk − kyk)p

=kykp

x

kxk + y kyk

p

+kxkp

+kykp−(kxkp +kykp) + (kxk − kyk)p. Thus

kx+ykp+

kxkp+kykp−(kxk − kyk)p− kykp

x

kxk + y kyk

p

≤ kxkp+kykp and

kx+ykp =

kxk x

kxk + y kyk

kxk y

kyk − kyk y kyk

p

kxk x

kxk + y kyk

p

kxk x

kxk − kyk x kxk

p

=kxkp

x

kxk + y kyk

p

−(kxk − kyk)p

=kxkp

x

kxk + y kyk

p

+kxkp+kykp−(kxkp +kykp)−(kxk − kyk)p.

(8)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page8of 9 Go Back Full Screen

Close

Hence

kxkp+kykp ≤ kx+ykp+

kxkp+kykp+ (kxk − kyk)p− kxkp

x

kxk + y kyk

p . This completes the proof.

(9)

Triangle Inequality in Quasi-Banach Spaces Cong Wu and Yongjin Li vol. 9, iss. 2, art. 41, 2008

Title Page Contents

JJ II

J I

Page9of 9 Go Back Full Screen

Close

References

[1] T. AOKI, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo, 18 (1942), 588–594.

[2] H. HUDZIKANDT.R. LANDES, Characteristic of convexity of Köthe function spaces, Math. Ann., 294 (1992), 117–124.

[3] N.J. KALTON, N.T. PECKANDJ.W. ROBERTS, An F-Space Sampler, London Math. Soc. Lecture Notes 89, Cambridge University Press, Cambridge, 1984.

[4] K.-I. MITANI, K.-S. SAITO, M.I. KATOANDT. TAMURA, On sharp triangle inequalities in Banach spaces, J. Math. Anal. Appl., 336 (2007), 1178–1186.

[5] L. MALIGRANDA, Simple norm inequalities, Amer. Math. Monthly, 113 (2006), 256–260.

[6] S. ROLEWICZ, On a certain class of linear metric spaces, Bull. Acad. Polon.

Sci. Sér. Sci. Math. Astrono. Phys., 5 (1957), 471–473.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

KHODAIE, Solution and stability of gener- alized mixed type cubic, quadratic and additive functional equation in quasi- Banach spaces, arxiv: 0812.. GAJDA, On the stability of

Under any other circumstance, the inequality given by (6) is strictly better that the standard reverse triangle inequality.... Hölder’s

In this paper, we study the weakly convergent sequence coefficient and obtain its estimates for some parameters in Banach spaces, which give some sufficient conditions for a

Some reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given.. Applications for complex- valued functions are

Some reverses of the continuous triangle inequality for Bochner integral of vector- valued functions in Hilbert spaces are given.. Applications for complex-valued functions are

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

Key words: Triangle inequality, Reverse inequality, Diaz-Metkalf inequality, Inner product