• Nem Talált Eredményt

REVERSE TRIANGLE INEQUALITY IN HILBERT C∗-MODULES

N/A
N/A
Protected

Academic year: 2022

Ossza meg "REVERSE TRIANGLE INEQUALITY IN HILBERT C∗-MODULES"

Copied!
21
0
0

Teljes szövegt

(1)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page

Contents

JJ II

J I

Page1of 21 Go Back Full Screen

Close

REVERSE TRIANGLE INEQUALITY IN HILBERT C

-MODULES

MARYAM KHOSRAVI, HAKIMEH MAHYAR

Department of Mathematics Tarbiat Moallem University Tahran, Iran.

EMail:{khosravi_m,mahyar}@saba.tmu.ac.ir

MOHAMMAD SAL MOSLEHIAN

Department of Pure Mathematics

Centre of Excellence in Analysis on Algebraic Structures (CEAAS) Ferdowsi University of Mashhad

P.O. Box 1159, Mashhad 91775, Iran.

EMail:moslehian@ferdowsi.um.ac.ir

Received: 16 October, 2009

Accepted: 13 November, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: Primary 46L08; Secondary 15A39, 26D15, 46L05, 51M16.

Key words: Triangle inequality, Reverse inequality, HilbertC-module,C-algebra.

(2)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page2of 21 Go Back Full Screen

Close Abstract: We prove several versions of reverse triangle inequality in Hilbert C-

modules. We show that ife1, . . . , emare vectors in a Hilbert moduleX over aC-algebraAwith unit 1 such thathei, eji= 0 (1i6=j m) andkeik = 1 (1 i m), and alsork, ρk R(1 k m)and x1, . . . , xnXsatisfy

0rk2kxjk ≤Rehrkek, xji, 0ρ2kkxjk ≤Imhρkek, xji,

then

"m X

k=1

r2k+ρ2k

#12 n X

j=1

kxjk ≤

n

X

j=1

xj

,

and the equality holds if and only if

n

X

j=1

xj=

n

X

j=1

kxjk

m

X

k=1

(rk+k)ek.

(3)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page3of 21 Go Back Full Screen

Close

Contents

1 Introduction and Preliminaries 4

2 Multiplicative Reverse of the Triangle Inequality 6

3 Additive Reverse of the Triangle Inequality 16

(4)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page4of 21 Go Back Full Screen

Close

1. Introduction and Preliminaries

The triangle inequality is one of the most fundamental inequalities in mathematics.

Several mathematicians have investigated its generalizations and its reverses.

In 1917, Petrovitch [17] proved that for complex numbersz1, . . . , zn, (1.1)

n

X

j=1

zj

≥cosθ

n

X

j=1

|zj|,

where0< θ < π2 andα−θ <arg zj < α+θ (1≤j ≤n)for a given real number α.

The first generalization of the reverse triangle inequality in Hilbert spaces was given by Diaz and Metcalf [5]. They proved that for x1, . . . , xn in a Hilbert space H, if eis a unit vector of H such that 0 ≤ r ≤ Rehxkxj,ei

jk for somer ∈ Rand each 1≤j ≤n, then

(1.2) r

n

X

j=1

kxjk ≤

n

X

j=1

xj . Moreover, the equality holds if and only ifPn

j=1xj =rPn

j=1kxjke.

Recently, a number of mathematicians have presented several refinements of the reverse triangle inequality in Hilbert spaces and normed spaces (see [1, 2, 4, 7, 8, 10,13,16]). Recently a discussion ofC-valued triangle inequalities in HilbertC- modules was given in [3]. Our aim is to generalize some of the results of Dragomir in Hilbert spaces to the framework of HilbertC-modules. For this purpose, we first recall some fundamental definitions in the theory of HilbertC-modules.

Suppose that A is a C-algebra and X is a linear space, which is an algebraic rightA-module. The space Xis called a pre-HilbertA-module (or an inner product A-module) if there exists anA-valued inner product h·,·i : X×X → A with the following properties:

(5)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page5of 21 Go Back Full Screen

Close

(i) hx, xi ≥0andhx, xi= 0if and only ifx= 0;

(ii) hx, λy+zi=λhx, yi+hx, zi;

(iii) hx, yai=hx, yia;

(iv) hx, yi =hy, xi

for all x, y, z ∈ X, a ∈ A, λ ∈ C. By (ii) and (iv), h·,·i is conjugate lin- ear in the first variable. Using the Cauchy–Schwartz inequalityhy, xihx, yi ≤ khx, xikhy, yi [11, Page 5] (see also [14]), it follows that kxk = khx, xik12 is a norm on Xmaking it a right normed module. The pre-Hilbert module X is called a Hilbert A-module if it is complete with respect to this norm. Notice that the inner structure of a C-algebra is essentially more complicated than that for complex numbers. For instance, properties such as orthogonality and theorems such as Riesz’ representation in complex Hilbert space theory cannot simply be generalized or transferred to the theory of HilbertC-modules.

One may define an “A-valued norm”|·|by|x|=hx, xi1/2. Clearly,k |x| k=kxk for eachx∈X. It is known that|·|does not satisfy the triangle inequality in general.

See [11,12] for more information on HilbertC-modules.

We also use elementary C-algebra theory, in particular we utilize the property that ifa ≤ b thena1/2 ≤ b1/2, wherea, bare positive elements of aC-algebraA.

We also repeatedly apply the following known relation:

(1.3) 1

2(aa+aa) = (Rea)2 + (Ima)2,

where a is an arbitrary element of A. For details on C-algebra theory, we refer readers to [15].

Throughout the paper, we assume thatA is a unital C-algebra with unit1 and for everyλ∈C, we writeλforλ1.

(6)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page6of 21 Go Back Full Screen

Close

2. Multiplicative Reverse of the Triangle Inequality

Utilizing someC-algebraic techniques we present our first result as a generalization of [7, Theorem 2.3].

Theorem 2.1. LetAbe aC-algebra, letXbe a HilbertA-module and letx1, . . . , xn∈ X. If there exist real numbersk1, k2 ≥0with

0≤k1kxjk ≤Rehe, xji, 0≤k2kxjk ≤Imhe, xji, for somee∈Xwith|e| ≤1and all1≤j ≤n, then

(2.1) (k21+k22)12

n

X

j=1

kxjk ≤

n

X

j=1

xj .

Proof. Applying the Cauchy–Schwarz inequality, we get

* e,

n

X

j=1

xj +

2

≤ kek2

n

X

j=1

xj

2

n

X

j=1

xj

2

, and

* n X

j=1

xj, e +

2

n

X

j=1

xj

2

|e|2

n

X

j=1

xj

2

,

whence

n

X

j=1

xj

2

≥ 1 2

* e,

n

X

j=1

xj +

2

+

* n X

j=1

xj, e +

2

= 1 2

* e,

n

X

j=1

xj +*

e,

n

X

j=1

xj +

+

* n X

j=1

xj, e

+* n X

j=1

xj, e +!

(7)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page7of 21 Go Back Full Screen

Close

= Re

* e,

n

X

j=1

xj +!2

+ Im

* e,

n

X

j=1

xj +!2

by(1.3)

= Re

n

X

j=1

he, xji

!2

+ Im

n

X

j=1

he, xji

!2

≥k12

n

X

j=1

kxjk

!2

+k22

n

X

j=1

kxjk

!2

= (k21+k22)

n

X

j=1

kxjk

!2

.

Using the same argument as in the proof of Theorem 2.1, one can obtain the following result, wherek1, k2are hermitian elements ofA.

Theorem 2.2. If the vectorsx1, . . . , xn ∈Xsatisfy the conditions

0≤k21kxjk2 ≤(Rehe, xji)2, 0≤k22kxjk2 ≤(Imhe, xji)2,

for some hermitian elementsk1, k2inA, somee∈Xwith|e| ≤1and all1≤j ≤n then the inequality (2.1) holds.

One may observe an integral version of inequality (2.1) as follows:

Corollary 2.3. Suppose thatXis a HilbertA-module andf : [a, b]→Xis strongly measurable such that the Lebesgue integralRb

a kf(t)kdt exists and is finite. If there exist self-adjoint elementsa1, a2inAwith

a21kf(t)k2 ≤Rehf(t), ei2, a22kf(t)k2 ≤Imhf(t), ei2 (a.e. t∈[a, b]),

(8)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page8of 21 Go Back Full Screen

Close

wheree ∈Xwith|e| ≤1, then (a21 +a22)12

Z b a

kf(t)kdt≤

Z b a

f(t)dt .

Now we prove a useful lemma, which is frequently applied in the next theorems (see also [3]).

Lemma 2.4. LetXbe a HilbertA-module and let x, y ∈ X. If |hx, yi| = kxkkyk, then

y= xhx, yi kxk2 . Proof. Forx, y ∈Xwe have

0≤

y− xhx, yi kxk2

2

=

y− xhx, yi

kxk2 , y−xhx, yi kxk2

=hy, yi − 1

kxk2hy, xihx, yi+ 1

kxk4hy, xihx, xihx, yi − 1

kxk2hy, xihx, yi

≤ |y|2− 1

kxk2|hx, yi|2 =|y|2− 1

kxk2kxk2kyk2

=|y|2− kyk2 ≤0, whence

y− xhx,yikxk2

= 0. Hencey= xhx,yikxk2 .

Using the Cauchy–Schwarz inequality, we have the following theorem for Hilbert modules, which is similar to [1, Theorem 2.5].

(9)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page9of 21 Go Back Full Screen

Close

Theorem 2.5. Let e1, . . . , em be a family of vectors in a Hilbert module Xover a C-algebraAsuch thathei, eji = 0 (1≤ i 6=j ≤ m)andkeik = 1 (1 ≤i ≤ m).

Suppose thatrk, ρk ∈R(1≤k ≤m)and that the vectorsx1, . . . , xn∈Xsatisfy 0≤rk2kxjk ≤Rehrkek, xji, 0≤ρ2kkxjk ≤Imhρkek, xji,

Then

(2.2)

" m X

k=1

(r2k2k)

#12 n X

j=1

kxjk ≤

n

X

j=1

xj ,

and the equality holds if and only if (2.3)

n

X

j=1

xj =

n

X

j=1

kxjk

m

X

k=1

(rk+iρk)ek.

Proof. There is nothing to prove ifPm

k=1(r2k2k) = 0. Assume thatPm

k=1(r2k+ ρ2k)6= 0. From the hypothesis, byIm(a) = Re(ia),Re(a) = Re(a) (a ∈A),we have

m

X

k=1

(r2k2k)

!2 n

X

j=1

kxjk

!2

≤ Re

* m X

k=1

rkek,

n

X

j=1

xj

+ + Im

* m X

k=1

ρkek,

n

X

j=1

xj

+!2

= Re

* n X

j=1

xj,

m

X

k=1

(rk+iρk)ek +!2

.

(10)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page10of 21 Go Back Full Screen

Close

By (1.3),

Re

* n X

j=1

xj,

m

X

k=1

(rk+iρk)ek +!2

≤ 1 2

* n X

j=1

xj,

m

X

k=1

(rk+iρk)ek +

2

+

* m X

k=1

(rk+iρk)ek,

n

X

j=1

xj +

2

≤ 1 2

n

X

j=1

xj

2

m

X

k=1

(rk+iρk)ek

2

+

m

X

k=1

(rk+iρk)ek

2

n

X

j=1

xj

2

n

X

j=1

xj

2

m

X

k=1

(rk+iρk)ek

2

and since|a| ≤ kak (a∈A),

n

X

j=1

xj

2

m

X

k=1

(rk+iρk)ek

2

n

X

j=1

xj

2

* m X

k=1

(rk+iρk)ek,

m

X

k=1

(rk+iρk)ek +

=

n

X

j=1

xj

2 m

X

k=1

|rk+iρk|2kekk2

=

n

X

j=1

xj

2 m

X

k=1

(rk22k).

(11)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page11of 21 Go Back Full Screen

Close

Hence

" m X

k=1

(r2k2k)

# n X

j=1

kxjk

!2

n

X

j=1

xj

2

. By taking square roots the desired result follows.

Clearly we have equality in (2.2) if condition (2.3) holds. To see the converse, first note that if equality holds in (2.2), then all inequalities in the relations above should be equality. Therefore

rk2kxjk= Rehrkek, xji, ρ2kkxjk= Imhρkek, xji, Re

* n X

j=1

xj,

m

X

k=1

(rk+iρk)ek +

=

* n X

j=1

xj,

m

X

k=1

(rk+iρk)ek +

,

and

* m X

k=1

(rk+iρk)ek,

n

X

j=1

xj +

=

n

X

j=1

xj

m

X

k=1

(rk+iρk)ek .

From Lemma2.4and the above equalities we have

n

X

j=1

xj = Pm

k=1(rk+iρk)ek kPm

k=1(rk+iρk)ekk2

* m X

k=1

(rk+iρk)ek,

n

X

j=1

xj +

= Pm

k=1(rk+iρk)ek Pm

k=1(r2k2k) Re

* m X

k=1

(rk+iρk)ek,

n

X

j=1

xj +

= Pm

k=1(rk+iρk)ek Pm

k=1(r2k2k)

m

X

k=1 n

X

j=1

(r2kkxjk+ρ2kkxjk)

(12)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page12of 21 Go Back Full Screen

Close

=

n

X

j=1

kxjk

m

X

k=1

(rk+iρk)ek,

which is the desired result.

In the next results of this section, we assume thatXis a right HilbertA-module, which is an algebraic leftA-module subject to

hx, ayi=ahx, yi (x, y ∈X, a∈A). (†) For example ifAis a unitalC-algebra andIis a commutative right ideal ofA, then Iis a right Hilbert module overAand

hx, ayi=x(ay) = axy=ahx, yi (x, y ∈I, a∈A).

The next theorem is a refinement of [7, Theorem 2.1]. To prove it we need the following lemma.

Lemma 2.6. LetXbe a HilbertA-module ande1, . . . , en ∈Xbe a family of vectors such thathei, eji= 0 (i6=j)andkeik= 1. Ifx∈X, then

|x|2

n

X

k=1

|hek, xi|2 and |x|2

n

X

k=1

|hx, eki|2. Proof. The first result follows from the following inequality:

0≤

x−

n

X

k=1

ekhek, xi

2

=

* x−

n

X

k=1

ekhek, xi, x−

n

X

j=1

ejhej, xi +

=hx, xi+

n

X

k=1 n

X

j=1

hek, xihek, ejihej, xi −2

n

X

k=1

|hek, xi|2

(13)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page13of 21 Go Back Full Screen

Close

=hx, xi+

n

X

k=1

hek, xihek, ekihek, xi −2

n

X

k=1

|hek, xi|2

≤ |x|2+

n

X

k=1

hek, xihek, xi −2

n

X

k=1

|hek, xi|2

=|x|2

n

X

k=1

|hek, xi|2. By considering|x−Pn

k=1hek, xiek|2, we similarly obtain the second one.

Now we will prove the next theorem without using the Cauchy–Schwarz inequal- ity.

Theorem 2.7. Let e1, . . . , em ∈ X be a family of vectors with hei, eji = 0 (1 ≤ i 6= j ≤ m)andkeik = 1 (1 ≤ i ≤ m). If the vectors x1, . . . , xn ∈ X satisfy the conditions

(2.4) 0≤rkkxjk ≤Rehek, xji, 0≤ρkkxjk ≤Imhek, xji, for1≤j ≤n,1≤k ≤m, whererk, ρk ∈[0,∞) (1 ≤k≤m), then

(2.5)

" m X

k=1

(r2k2k)

#12 n X

j=1

kxjk ≤

n

X

j=1

xj .

Proof. Applying the previous lemma forx=Pn

j=1xj, we obtain

n

X

j=1

xj

2

≥ 1 2

m

X

k=1

* ek,

n

X

j=1

xj +

2

+

m

X

k=1

* n X

j=1

xj, ek +

2

(14)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page14of 21 Go Back Full Screen

Close

=

m

X

k=1

1 2

* ek,

n

X

j=1

xj +*

ek,

n

X

j=1

xj +

+

* n X

j=1

xj, ek

+* n X

j=1

xj, ek +!

=

m

X

k=1

Re

* ek,

n

X

j=1

xj +!2

+ Im

* ek,

n

X

j=1

xj +!2

(by (1.3))

=

m

X

k=1

Re

n

X

j=1

hek, xji

!2

+ Im

n

X

j=1

hek, xji

!2

m

X

k=1

r2k

n

X

j=1

kxjk

!2

2k

n

X

j=1

kxjk

!2

 (by (2.4))

=

m

X

k=1

(r2k2k)

n

X

j=1

kxjk

!2

.

Proposition 2.8. In Theorem2.7, ifhek, eki = 1, then the equality holds in (2.5) if and only if

(2.6)

n

X

j=1

xj =

n

X

j=1

kxjk

! m X

k=1

(rk+iρk)ek.

Proof. If (2.6) holds, then the inequality in (2.5) turns trivially into equality.

Next, assume that equality holds in (2.5). Then the two inequalities in the proof

(15)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page15of 21 Go Back Full Screen

Close

of Theorem2.7should be equalities. Hence

n

X

j=1

xj

2

=

m

X

k=1

* ek,

n

X

j=1

xj +

2

and

n

X

j=1

xj

2

=

m

X

k=1

* n X

j=1

xj, ek +

2

,

which is equivalent to

n

X

j=1

xj =

m

X

k=1 n

X

j=1

ekhek, xji=

m

X

k=1 n

X

j=1

hek, xjiek,

and

rkkxjk= Rehek, xji, ρkkxjk= Imhek, xji. So

n

X

j=1

xj =

m

X

k=1 n

X

j=1

ekhek, xji

=

m

X

k=1 n

X

j=1

ek(rk+iρk)kxjk

=

n

X

j=1

kxjk

! m X

k=1

(rk+iρk)ek.

(16)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page16of 21 Go Back Full Screen

Close

3. Additive Reverse of the Triangle Inequality

We now present some versions of the additive reverse of the triangle inequality. In [6], Dragomir established the following theorem:

Theorem 3.1. Let{ek}mk=1 be a family of orthonormal vectors in a Hilbert spaceH andMjk ≥0 (1≤j ≤n,1≤k ≤m)such that

kxjk −Rehek, xji ≤Mjk, for each1≤j ≤nand1≤k ≤m. Then

n

X

j=1

kxjk ≤ 1

√m

n

X

j=1

xj

+ 1 m

n

X

j=1 m

X

k=1

Mjk;

and the equality holds if and only if

n

X

j=1

kxjk ≥ 1 m

n

X

j=1 m

X

k=1

Mjk,

and n

X

j=1

xj =

n

X

j=1

kxjk − 1 m

n

X

j=1 m

X

k=1

Mjk

! m X

k=1

ek.

We can prove this theorem for Hilbert C-modules using some different tech- niques.

Theorem 3.2. Let{ek}mk=1 be a family of vectors in a Hilbert moduleXover a C- algebraA with unit1, |ek| ≤ 1 (1 ≤ k ≤ m), hei, eji = 0 (1 ≤ i 6= j ≤ m)and xj ∈X (1≤j ≤n). If for some scalarsMjk ≥0 (1≤j ≤n,1≤k ≤m),

(3.1) kxjk −Rehek, xji ≤Mjk (1≤j ≤n,1≤k≤m),

(17)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page17of 21 Go Back Full Screen

Close

then (3.2)

n

X

j=1

kxjk ≤ 1

√m

n

X

j=1

xj

+ 1 m

n

X

j=1 m

X

k=1

Mjk.

Moreover, if|ek|= 1 (1≤k≤m), then the equality in (3.2) holds if and only if (3.3)

n

X

j=1

kxjk ≥ 1 m

n

X

j=1 m

X

k=1

Mjk,

and (3.4)

n

X

j=1

xj =

n

X

j=1

kxjk − 1 m

n

X

j=1 m

X

k=1

Mjk

! m X

k=1

ek.

Proof. Taking the summation in (3.1) overj from 1 ton, we obtain

n

X

j=1

kxjk ≤Re

* ek,

n

X

j=1

xj +

+

n

X

j=1

Mjk,

for eachk ∈ {1, . . . , m}. Summing these inequalities overkfrom 1 tom, we deduce

(3.5)

n

X

j=1

kxjk ≤ 1 mRe

* m X

k=1

ek,

n

X

j=1

xj

+ + 1

m

m

X

k=1 n

X

j=1

Mjk.

(18)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page18of 21 Go Back Full Screen

Close

Using the Cauchy–Schwarz we obtain

Re

* m X

k=1

ek,

n

X

j=1

xj +!2

(3.6)

≤ 1 2

* m X

k=1

ek,

n

X

j=1

xj

+

2

+

* m X

k=1

ek,

n

X

j=1

xj

+

2

≤ 1 2

m

X

k=1

ek

2

n

X

j=1

xj

2

+

m

X

k=1

ek

2

n

X

j=1

xj

2

m

X

k=1

ek

2

n

X

j=1

xj

2

≤m

n

X

j=1

xj

2

,

since

m

X

k=1

ek

2

=

* m X

k=1

ek,

m

X

k=1

ek +

=

m

X

k=1 m

X

l=1

hek, eli

=

m

X

k=1

|ek|2

≤m .

Using (3.6) in (3.5), we deduce the desired inequality.

If (3.3) and (3.4) hold, then

√1 m

n

X

j=1

xj

= 1

√m

n

X

j=1

kxjk − 1 m

n

X

j=1 m

X

k=1

Mjk

!

m

X

k=1

ek

=

n

X

j=1

kxjk − 1 m

n

X

j=1 m

X

k=1

Mjk,

(19)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page19of 21 Go Back Full Screen

Close

and the equality in (3.2) holds true.

Conversely, if the equality holds in (3.2), then obviously (3.3) is valid and we have equalities throughout the proof above. This means that

kxjk −Rehek, xji=Mjk, Re

* m X

k=1

ek,

n

X

j=1

xj +

=

* m X

k=1

ek,

n

X

j=1

xj +

,

and

* m X

k=1

ek,

n

X

j=1

xj +

=

m

X

k=1

ek

n

X

j=1

xj .

It follows from Lemma2.4and the previous relations that

n

X

j=1

xj = Pm

k=1ek kPm

k=1ekk2

* m X

k=1

ek,

n

X

j=1

xj +

= Pm

k=1ek

m Re

* m X

k=1

ek,

n

X

j=1

xj +

= Pm

k=1ek m

m

X

k=1 n

X

j=1

(kxjk −Mjk)

=

n

X

j=1

kxjk − 1 m

n

X

j=1 m

X

k=1

Mjk

! m X

k=1

ek.

(20)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page20of 21 Go Back Full Screen

Close

References

[1] A.H. ANSARI AND M.S. MOSLEHIAN, Refinements of reverse triangle in- equality in inner product spaces, J. Inequal. Pure Appl. Math., 6(3) (2005), Art. 64. [ONLINE:http://jipam.vu.edu.au/article.php?sid=

537].

[2] A.H. ANSARI AND M.S. MOSLEHIAN, More on reverse triangle inequality in inner product spaces, Inter. J. Math. Math. Sci., 18 (2005), 2883–2893.

[3] Lj. ARAMBA ˇCI ´CAND R. RAJI ´C, On theC-valued triangle equality and in- equality in HilbertC-modules, Acta Math. Hungar., 119(4) (2008), 373–380.

[4] I. BRNETIC, S.S. DRAGOMIR, R. HOXHAANDJ. PE ˇCARI ´C, A reverse of the triangle inequality in inner product spaces and applications for polynomials, Aust. J. Math. Anal. Appl., 3(2) (2006), Art. 9.

[5] J.B. DIAZ AND F.T. METCALF, A complementary triangle inequality in Hilbert and Banach spaces, Proc. Amer. Math. Soc., 17(1) (1966), 88–97.

[6] S.S. DRAGOMIR, Reverses of the triangle inequality in inner product spaces, Linear Algebra Appl., 402 (2005), 245–254.

[7] S.S. DRAGOMIR, Some reverses of the generalized triangle inequality in com- plex inner product spaces, RGMIA Res. Rep. Coll., 7(E) (2004), Art. 7.

[8] S.S. DRAGOMIR, Reverse of the continuous triangle inequality for Bochner integral in complex Hilbert spaces, J. Math. Anal. Appl., 329 (2007), 65–76.

[9] J. KARAMATA, Teorijia i Praksa Stieltjesova Integrala (Sebro- Coratian)(Stieltjes Integral, Theory and Practice), SANU, Posebna izdanja, 154, Beograd, 1949.

(21)

Reverse Triangle Inequality Maryam Khosravi, Hakimeh Mahyar

and Mohammad Sal Moslehian vol. 10, iss. 4, art. 110, 2009

Title Page Contents

JJ II

J I

Page21of 21 Go Back Full Screen

Close

[10] M. KATO, K.S. SAITO AND T. TAMURA, Sharp triangle inequality and its reverse in Banach spaces, Math. Inequal. Appl., 10 (2007), 451–460.

[11] E.C. LANCE, Hilbert C-modules, London Mathematical Society Lecture Note Series, 210, Cambridge University Press, Cambridge, 1995.

[12] V.M. MANUILOVANDE.V. TROITSKY, HilbertC-Modules, Translations of Mathematical Monographs, 226. American Mathematical Society, Providence, RI, 2005.

[13] D.S. MITRINOVI ´C, J.E. PE ˇCARI ´C ANDA.M. FINK, Classical and New In- equalities in Analysis, Kluwer Academic, Dordrecht, 1993.

[14] M.S. MOSLEHIANANDL.-E. PERSSON, Reverse Cauchy–Schwarz inequal- ities for positive C*-valued sesquilinear forms, Math. Inequal. Appl. (to ap- pear).

[15] J.G. MURPHY,C-Algebras and Operator Theory, Academic Press, Boston, 1990.

[16] M. NAKAI AND T. TADA, The reverse triangle inequality in normed spaces, New Zealand J. Math., 25(2) (1996), 181–193.

[17] M. PETROVICH, Module d’une somme, L’ Ensignement Math., 19 (1917), 53–56.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

This paper deals with a reverse of the Hardy-Hilbert’s type inequality with a best constant factor.. The other reverse of the form

Some reverses of the continuous triangle inequality for Bochner integral of vector-valued functions in Hilbert spaces are given.. Applications for complex- valued functions are

Some reverses of the continuous triangle inequality for Bochner integral of vector- valued functions in Hilbert spaces are given.. Applications for complex-valued functions are

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

In this paper we obtain some new Schwarz related inequalities in inner product spaces over the real or complex number field.. Applications for the generalized triangle inequality

Key words: Triangle inequality, Reverse inequality, Diaz-Metkalf inequality, Inner product

DRAGOMIR, Some reverses of the generalized triangle inequality in complex inner product spaces, arXiv:math.FA/0405497.

THOMPSON, The case of equality in the matrix-valued triangle inequality, Pacific J.. ZENG, Young’s inequality in compact