• Nem Talált Eredményt

Dry CH reforming on Co/Al of O catalysts reduced at differenttemperatures Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Dry CH reforming on Co/Al of O catalysts reduced at differenttemperatures Catalysis Today"

Copied!
8
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Catalysis Today

jo u rn al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

Dry reforming of CH 4 on Co/Al 2 O 3 catalysts reduced at different temperatures

É. Horváth

a

, K. Baán

a

, E. Varga

a

, A. Oszkó

a

, Á. Vágó

b

, M. Tör ˝o

b

, A. Erd ˝ohelyi

a,∗

aDepartmentofPhysicalChemistryandMaterialsScience,UniversityofSzeged,Aradivértanúktere1.,SzegedH-6720,Hungary

bExploration&BusinessDevelopment,R&D,MOLPlc,Hungary

a r t i c l e i n f o

Articlehistory:

Received30October2015

Receivedinrevisedform1April2016 Accepted11April2016

Availableonline30April2016

Keywords:

DryreformingofCH4

Co/Al2O3catalyst XPSofCo/Al2O3

Surfacecarbon

a b s t r a c t

Thereformingofmethanewithcarbondioxidehasbeeninvestigatedat773Kon10%Co/Al2O3reducedat differenttemperaturesupto1173K.ThecatalystswerecharacterizedbyBET,TPR,XRDandXPSmethods.

TPRandXPSresultsrevealedthatduringthepre-treatmentofthecatalyststheCoonlypartiallyreduced.

Thereductiondegreeandtheamountofthestructuredmetalliccobaltincreasedwiththereduction temperature.Theconversionofthereactantswasthehighestonthesamplereducedat973K,butthe turnoverfrequenciesofCOandH2formationincreasedasthereductiontemperatureincreased.

Theamountofsurfacecarbonsignificantlydependedonthepre-treatmenttemperatureofthecatalysts.

TheIRspectraregisteredatthebeginningofthereactionindicatethattiltedCOwasformed,butthe positionoftheabsorptionbandsdependsonthereductiontemperatureofthecatalysts.Similarly,the pre-treatmenttemperatureinfluencedthetypeofthesurfacecarbondeterminedbyXPS.Weassume thatthedifferentstructuresofthemetallicCoformedinpretreatmentresultedinthedifferentcatalytic behaviors.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

TheconversionofCH4andCO2–thetwomaincomponentsof biogasandthemajorgreenhousegases–intosynthesisgasisinthe focusofacademicandindustrialresearch.Oneofthepossibilities toachievethisgoalistoreactCH4andCO2witheachother.

AlloftheGroupVIIImetalsonavarietyofsupportshavebeen studiedasdryreformingcatalysts[1–3].Weshowedinourprevi- ousstudiesthatsupportednoblemetalsareactiveinthisreaction [4–7].SupportedCocatalystshavebeenalsoextensivelyinvesti- gatedinthedryreformingofmethaneduetotheirlowercostand availabilityinlargerscale.Theresultsobtainedonthesecatalysts aresummarizedindifferentreviews[1,2,8,9].

Ferreira-Aparicioetal.[10]comparedtheactivitiesofdifferent aluminasupportedcatalysts,andthoughtheCocontainingsample wasnotthebestonebutitshowedgoodstabilityinthewholetem- peraturerange.RuckensteinandWang[11]foundthatCo/Al2O3

exhibitedaverygoodactivityamongCocatalystssupportedondif- ferentoxides.ThestabilityofCo/Al2O3catalyststronglydepends ontheColoadingandthecalcinationtemperature[12].Overthe catalystwithhighCoconcentration (>12wt%)notable amounts of carbon were accumulated during reforming, and deactiva- tionwasobserved.It wasfoundthatnotonlythedepositionof

Correspondingauthor.

surfacecarbonbutalsotheoxidationofmetallicsitescouldresult inthedecreaseofactivity.Itwasstablewhenthebalancebetween theformationandoxidationofcarbon wasachieved.Thestruc- turalcharacteristicsoftheAl2O3 supportedCo(24wt%)catalyst werestronglyaffectedbythecalcinationtemperatureandsowas theirreducibility[13].The catalystslosttheiractivitiesin time independentlyofthecalcinationtemperature[11].Characteriza- tionof Co/␣-Al2O3 indicatedthat thesurfacespecies ofCo, the reformingactivityandtherateofcokeformationdependonthecal- cinationtemperatureandthereductiontime[14].Similarresults werefoundon␥-Al2O3supportedCocatalyst;theamountandthe reactivityofsurfacecarbonsignificantlydependedonthecalcina- tiontemperature[15].SanJosé-Alonsoetal.studiedthereaction onCo/Al2O3 withlow Cocontent[16].1%Co/Al2O3 deactivated duringthefirstminutesofthereactionat973KbecauseCoAl2O4 wasformed,whileon2.5%Co/Al2O3highstabilityandlowcarbon depositionwasobserved.Theeffectsofthepreparationmethods ontheefficiencyofCo/Al2O3werealsostudied[17,18].Thegood cokingresistivityofthecatalystswasattributedtothehighsur- faceconcentrationofOHspecies,tothesmallmetallicCoparticles andtothestronginteractionbetweenCoandthesupport.Itwas statedthatCoAl2O4playsanimportantroleinthepreventionof cokeformation[17].Co/Al2O3preparedbycontrolledadsorption methodshowedhigherCO2andCH4conversionthanthesample preparedbydryimpregnation;itwasattributedtothehigherdis- persionofCo.Onthissamplemorenon-deactivatingcokedeposit http://dx.doi.org/10.1016/j.cattod.2016.04.007

0920-5861/©2016ElsevierB.V.Allrightsreserved.

(2)

wasformed,whileontheothercatalystdeactivatingcokebuiltup whichdrasticallyhinderedthecatalyticactivity[18].

Rareearthoxideadditivesimprovedtheanti-cokeperformance ofthe20%Co/Al2O3catalyst[19]intheCO2+CH4reaction.Rhaddi- tivesenhancedthereducibilityofCoandtheactivityofthecatalyst [15].KdopingofCo/Al2O3alsoreducesthecarbondepositionbut thecatalyticactivityaswell;itwasexplainedbyitsabilitytocat- alyzethecarbongasificationandbypartialcoverageofcobaltactive sitesforCH4decomposition[20].

Takanabeetal.[21,22]studiedtheinfluenceofthereduction temperatureonthecatalyticbehaviorofCo/TiO2inthedryreform- ing of methane.The great difference in the initialactivities of 10%Co/TiO2reducedatdifferenttemperaturescorrespondstothe differentcrystalstructuresofTiO2 afterthereduction[21].0.5%

Co/TiO2reducedbelow1123Kshowedrapidandcompletedeac- tivationatthebeginningofthereaction;thedeactivationwould becorrelatedtothecokingontheactivesites.Ontheotherhand, theCo/TiO2reducedatandabove1123Kshowedrelativelystable activity[22].

Thepresentpapergivesanaccountoftheeffectofthereduction temperatureonthestructureandcatalyticefficiencyofCo/Al2O3in theCO2+CH4reaction.Earlierwefoundthatwhenthereducibility ofCoonaluminaincreased,soincreasedtheactivityofthecatalysts [15].Thechangesofthereductiontemperaturealsoinfluencedthe ratioofoxidizedandreducedCoonthesurfaceofthesupport.With thepresentcontribution,wewouldliketoshowtheeffectofthe above-mentionedratioontheactivity,thestabilityofthecatalyst andonthecokeformation.

2. Experimental

2.1. Preparationofthecatalysts

Thesupport(Al2O3,DegussaP110C)wasimpregnatedwiththe aqueoussolutionofCo(NO3)2toyieldanominal10wt%metalcon- tent.The samplesweredriedat 383K and calcinedat 973K in air.

Beforethemeasurements,thecatalystswereoxidizedat673K inO2flowfor30minandreducedatdifferenttemperaturesfrom 773Kto1173KinflowingH2for60mininsitu.Afterwardsthecat- alystwasflushedwithN2atthereductiontemperaturefor15min, andcooleddowntothereactiontemperature.

2.2. Kineticmeasurements

Catalyticreactionswerecarriedoutinafixedbedcontinuous- flowreactor.TheratioofCH4/CO2inthereactinggasmixturewas 1:1.Theamountofcatalystusedwasusually0.15g.Theflowrate ofthereactantswas60ml/minatroomtemperatureandpressure.

Analysesof thegaseswereperformedwithgaschromatograph (Agilent6890N)using HP-PLOT Q column. TC and FI detectors detectedthegasessimultaneously.ToincreasethesensitivityofCO andCO2detectionamethanizerwasappliedbeforethedetectors.

Infraredspectra wererecorded during thecatalytic reaction withanAgilentCary670typeFTIRspectrometerequippedwith diffusereflectanceattachment(Harrick)withBaF2windowswith awavenumberaccuracyof±4cm−1.Typically,32scanswerereg- istered.Thecatalystswerepre-treatedasmentionedabove,and thentheCH4+CO2gasmixturewasintroducedintothecellatthe reactiontemperatureandtheIRspectrawererecorded.Allspec- trawereratedtothespectraofthecatalystspre-treatedbeforethe measurements.Whenthesampleshadtobereducedabove873K (thecellisheatableonlyto873K),thecatalystsweretreatedwith H2exsituatthegiventemperatureandcooleddowninN2stream toroomtemperature.Beforethemeasurementsthecatalystwas reducedagaininsituat773K.SeparateTPRmeasurementsrevealed

thatthistreatmentissufficienttoremovetheadsorbedoxygenor oxidizedspecieswhileonlyonereductionstagewasdetectableat about600K.

2.3. Characterizationofthecatalysts

Theamountofsurfacemetalwasdeterminedafterpretreatment byH2adsorptionusinganimpulsemethod.

TemperatureprogrammedreductionandtheBETsurfacemea- surements of the catalysts were carried out by a BELCAT-A instrument.TheBETsurfacewasmeasuredusingN2adsorptionat thetemperatureofliquidnitrogen.BeforeTPRmeasurements,the catalystsweretreatedinoxygenat673Kfor30minandflushed withArfor15min.AfterwardsthesamplewascooledinflowingAr toroomtemperature.ThepureArflowwaschangedto10%H2con- tainingAr,andthereactorwasheatedlinearlyatarateof20K/min upto1373KandtheH2consumptionwasdetected.

Theamountandthereactivityofsurfacecarbonformedinthe catalyticreactionsweredeterminedbytemperature-programmed hydrogenation.Afterthecatalyticrun(2h)thereactorwasflushed withN2atthereactiontemperature,andthesamplewascooled downto373K.ThentheN2flowwaschangedtoH2andthesam- plewasheatedupto1173Kandtheforminghydrocarbonswere determinedbygaschromatograph.

ForXPSstudies,thepowdersampleswerepressedintotablets withca.1cmdiameterandafewtenthofmmthicknessandplaced intotheloadlockofthespectrometer.Sampletreatmentswere carried out in a high-pressure cell (catalysis chamber) directly attachedtotheanalysischamberand isolatedfromthatwitha gatevalve.Withthehelpofthesamplemanipulatorsitwaspos- sibletotransferthesamplesfromtheanalysischamberintothe highpressurecellinhighvacuum,withoutthereachofair.The sampleswerepre-treatedinthesamewayasdescribedabove.The high-pressurecellisheatablealsoonlyto873K;sowhenthesam- pleshadtobereducedabovethistemperaturetheyweretreated aswrittenabove.Afterthepre-treatment,thesampleswerecooled toroomtemperatureinflowingnitrogengasandthesamplewas takenbacktotheanalysischamber.Afterspectrumacquisition,the samplewasmovedbackintothecatalyticchamber andtreated withthereactinggasmixtureatthereactiontemperatureunderthe sameexperimentalconditionsasthecatalyticreaction.Theexper- imentwasinterruptedafterthe5th,30thand120thminutesofthe reactionandtheXPspectrawererecorded.

XPspectraweretakenwithaSPECSinstrumentequippedwitha PHOIBOS150MCD9hemisphericalelectronenergyanalyzeroper- atedintheFATmode.TheexcitationsourcewastheK␣radiationof analuminumanode(h=1486.6eV).TheX-raygunwasoperated at210Wpower(14kV,15mA).Thepassenergywassetto20eV, thestepsizewas50meV.Typically,fivescanswereaddedtogeta singlespectrum.ThebindingenergyoftheAl2plineinAl2O3was usedasenergyreference:itwastaken74.7eV.Fordataacquisition andevaluationbothmanufacturers’(SpecsLab2)andcommercial (CasaXPS)softwarewereused.

TheXRDstudywascarriedoutona RigakuMiniflexIIpow- derX-raydiffractometerequippedwithaCuK␣radiationsource (=0.15418nm)byapplyingascanningrateof4/mininthe2 rangeof3–80.

3. Resultsanddiscussion 3.1. Characterizationofthecatalysts

TheBETsurfacearea,theamountofH2–adsorbedat373K– andthedispersionoftheCoontheCo/Al2O3reducedatdifferent temperaturesaresummarizedinTable1.

(3)

Table1

Somecharacteristicdataofthe10%Co/Al2O3catalystsreducedatdifferenttemperature.

Reductiontemperature BETsurface AdsorbedH2at373K Dispersion Averageparticlesizea (Co0Co+Co02+) b

K m2/g ␮mol/g % nm reduced usedinthereactionfor

10min30min120min

773 95 227 24 12.6 0.37 0.37 0.31 0.30

973 94 211 22 21.5 0.39 0.35 0.35 0.31

1173 96 129 14 26.1 0.57 0.57 0.57 0.41

aDeterminedfromXRDdatausingtheScherrerequation.

bDeterminedfromXPSresults.

0 20 40 60 80 100 120

0 2 4 6 8 10

CH4 conversion (%)

Reaction time (min) 1

2

3

A

0 20 40 60 80 100 120

0 2 4 6 8 10 12 14 16

3

CO2 conversion (%)

Reaction time (min) 1

2

B

Fig.1. TheconversionofCH4(A)andCO2(B)intheCH4+CO2reactionat773KonCo/Al2O3reducedat773(1),973K(2)and1173K(3).

The BET surfaces of thesamples were practically thesame, 94–96m2/g,irrespectiveofthereductiontemperature(Table1).

The Co dispersion calculated from the amount of adsorbed hydrogendecreasedasthereductiontemperatureincreased.Itwas thehighest(24%)onthecatalystreducedat773K,andthelow- est(14%)whentheCo/Al2O3wastreatedwithhydrogenat1173K (Table1).

TheXRDprofileoftheCo/Al2O3calcinedat973Kshowsdiffrac- tionpeaksat31.5,37.1,59.5,and65.5 [15]correspondingto CoAl2O4 (JCPDScardNo.82-2248)orCo3O4 (JCPDScardNo.78- 1970)[23–25].Bothhavespinelstructurewithalmostidentical diffractionpatterns[25].Onthereducedsamplesthediffractions characteristicforthespinelstructuresdisappearedandnewpeaks weredetectedat44.2 and51.5 correspondingtoCo(111) and Co(200)(JCPDScardNo.15-0806)facets.Theintensitiesofthese featuresincreasedasthereductiontemperatureincreased.

FromtheXRD datausingthe Scherrerequationthe average crystalsizeofthereducedcatalystswasdetermined(Table1).We foundthattheparticlesizeincreasedasthereductiontempera- tureincreased.Itwas12.6nmonthecatalystreducedat773Kand 26.1nmwhenthesamplewastreatedwithhydrogenat1173K.

TheTPRprofileofthecatalystconsistsofabroadpeakbetween 580and980Kwiththreedifferentmaximaat767,823,and885K, andahightemperaturereductionstage(Tmax=1103K)wasalso observed[15].Thepeak atlowtemperaturecorresponds tothe reductionoflargecrystallineCo3O4particles.Thehightempera- turereductionstagecanbeattributedtothereductionofCoOand CoAl2O4.Someauthorssuggestthatthepeakatlowtemperatureis inconnectionwiththereductionoflargecrystallineCo3O4particles toCo0viaCoOformation[23],othersproposethatthislowtemper- aturepeakcanbeascribedtothereductionofCo3O4toCoO[26].

Thereisanagreementthatthehightemperaturepeakcorresponds

tothereductionofCo3+andCo2+species[23,26],butEwbanketal.

[18]suggestedthatCoAl2O4reducedatthishightemperature.

TheCo2pXPspectraofthe10%Co/Al2O3 sampleshowsthe characteristicdoublet(Co2p3/2at781.4eV)withshakeupsatellite peaksbothintheasreceivedandtheoxidizedstate,corresponding toCo2+.Thisvalueagreedwellwiththeearlierfindings[27]usually citedintheliteratureforcobalt-oxides.

Afterreductionastrongshoulder,morepreciselyanearlydis- tinctpeakappearedatthelowbindingenergysideoftheCo2p3/2 component at 778.0eV, which can be attributed to themetal- liccobaltstate[28,29].Theintensityofthispeakincreasedwith increasingthereductiontemperature,butde-convolutingtheCo 2p3/2 envelopeafterthetreatmentofthesampleat1173K,the peakandthesatellitecharacteristicofCo2+arestillunequivocally detectable.TheratioofCo0/(Co0+Co2+)calculatedfromtheXPS peakareashowsthattheratioofmetalliccobaltishardlymore than50%evenafterthehightemperaturereduction(Table1).

3.2. Reactionofmethanewithcarbondioxide

ThereactionofCO2andCH4wasstudiedunderisothermcondi- tionsat773K.Theactivitiesofthesamples,theconversionofCH4 andCO2 increasedintimeinallcasesduring2hofthereaction (Fig.1).

OnlyCO, H2 and a smallamountof water weredetected.It shouldbementionedthatwhenthecatalystswereusedforlonger time(atleast100h)theactivityofthecatalystsslowlydecreased.It wasfoundthattheCO2conversionwashigherthanthatofmethane inallcasesandtheCO/H2ratiowashigherthan1(Table2).These observationsindicatedthatthereaction

CH4+CO22CO+2H2

(4)

Table2

SomecharacteristicdatafortheCH4+CO2reactionat773Kon10%Co/Al2O3reducedtdifferenttemperature.

Reduction temperature

Formationrate(␮mol/gs) Conversion(%) CO/H2 Turnoverfrequency(1/s) Surface

carbonaceous deposit␮mol/g

CO H2 CO2 CH4 H2 CO

5min 115min 5min 115min 5min 115min 5min 115min 5min 115min 5min 115min 5min 115min

773K 9 12.7 2 3 4.3 6.1 2.2 3.1 4.4 4.2 0.005 0.01 0.025 0.036 884.8

973K 24.7 28.9 8.6 11.9 14.3 16.6 7 8.9 2.9 2.4 0.023 0.032 0.066 0.077 7984.7

1173K 17.1 22.2 5.2 8.7 9.8 12.5 4.7 6.7 3.3 2.5 0.022 0.037 0.072 0.093 6285.3

wasfollowedbyseveralsecondaryprocesses,includingthehydro- genationofCO,CO2andthewatergasshiftreaction.Itisknown thatintheequilibriumat773KtheCO2conversionishigherthan thatofmethanebyabout25%andtheCO/H2ratioisabout1.6[9], butinourcasesthedifferenceintheconversionswasnear100%

andtheCO/H2 ratioswerehigher.Comparingtheconversionof CH4andCO2obtainedondifferentcatalysts,wecanconcludethat theactivitywasthehighestonthesamplereducedat973Kand thelowestonthecatalysthydrogenatedat773K.Theorderofthe hydrogenandCOformationratewasthesameaswasobservedin theCH4andCO2(Table2).

Adifferentorderresultedwhenwecalculatedtheturnoverfre- quenciesforCOandH2formation.Thehighestvaluewasfoundin bothcasesonthesamplereducedat1173K(Fig.2andTable2)after twohoursofthereaction.

Howcouldweexplainthedifferencesintheactivityofthecat- alystsreducedatdifferenttemperatures?Earlierweassumed[5]

inthecaseofsupportedRhcatalyststhatthefirststepofthereac- tionisthemethanedecompositiontohydrogenandperhapstoCHx fragments.ThesespeciescouldpromotetheCO2dissociationand theadsorbedoxygenfacilitatedthedissociationofCH4.Recentlya theoreticalcalculationshowedthatCO2couldbeactivatedonthe CosurfaceandCO2couldbeformed,butthisinteractionisstructure sensitive[30].Takingintoaccountthatwithincreasingthereduc- tiontemperatureincreasedtheareaofaspeciallyorientedsurface ofCo(fcc)particles,wecouldsupposethatthevaryingstructureof Co0resultedinthedifferentactivitiesofthesamples.

TheCO/H2ratiochangedinawiderange.Itwas4.2–4.4onthe samplereducedat773Kand2.4–2.5ontheothersamples(Table2).

Itmeansthat oneofthesecondary reactionstookplace, which consumesH2and/orproducesCO,suchasreversewatergasshift reaction

CO2+H2CO+H2O, orthemethanationofCO2 CO2+4H2CH4+2H2O

Onthecatalystspre-treatedat973and1173KtheCO/H2ratio decreasedintime.ItispossiblethattheH2formationrateincreased morerapidlythanthatofCO,butmoreprobably,therateofasec- ondaryprocesschangedandresultedinthedecreaseoftheCO/H2 ratio.

After2hofthereaction,theamountandthereactivityofsur- facecarbon formedduringthe dryreforming of methanewere determinedbyhydrogenTPR.Thereactivityofthecarbondeposit wasnearly thesame in all cases; the TPR peak maxima were about820Kindependentlyofthereductiontemperature(Fig.3).

Onthecontrary,theamountofsurfacecarbondeterminedwith temperature-programmedhydrogenationwasnearly8timesless onthesamplereducedat773Kthanontheothercatalysts(Table2).

Ifwerelatedtheamountofsurface carbonformedinthereac- tiontotheconverted CH4+CO2 wefoundthatlessthan3.5%of thetransformedgasaccumulatedonthesurfaceintheworstcase.

3.3. Hydrogenationofcarbondioxide

TounderstandthedifferencesintheCO/H2ratiomeasuredon thesamplesreducedatdifferenttemperatures,thehydrogenation ofCO2wasalsostudiedonthesamplesreducedat773and973K.

Atlowtemperature,at548K,theconversionofCO2wasbelow3%

andtheCH4 selectivitywasabout90%inbothcases.Whenthe reactionwascarriedoutat773K,theCO2 conversionincreased withincreasingthereductiontemperature(63and85%),butthe selectivityofCH4formationwas99%inbothcases.Thesefindings donotsupporttheideathatthedifferencesintheCO/H2ratioare theresultsofsecondaryreactions.WhentheCO2+H2reactionwas carriedoutonacatalystwhichwasusedearlierintheCH4+CO2

reaction,theamountofCOformedintheCO2+H2 reactionwas threetimeshigheronthesamplereducedat773Kthanintheother case.Fromtheseresultswemayassumethatthesurfaceofthe catalystschangedduringtheCO2+CH4reactionanditresultedin thedifferentCOselectivityinthereversewatergasshiftreaction andsointhedifferentCO/H2ratiosinthedryreforming.

3.4. Characterizationofthecatalystsafterthecatalyticreaction TheinfraredspectrawereregisteredintheDRIFTcellduringthe catalyticreactionofCH4+CO2at773Kon10%Co/Al2O3reducedat 773K.Theyshowedthatbeyondthecarbonatebandsatthebegin- ningofthereactionaweakabsorptionwaspresentat1984cm−1 attributedtoadsorbedCO.Featuresat1592and1353cm1could beassignedtotheasymmetricandsymmetricstretchingvibrations ofO C Ogroupsofformatespecies.Theintensitiesoftheformate bandsslightlyincreasedinthefirst10minofthereactionandthen remainedconstant.Betweenthesepeaks,somenotwell-resolved absorbancescouldbeattributedtodifferentcarbonatesandC H groups(Fig.4).TheCObandwasobservedonlyinthefirstminutes ofthereaction.

Similarspectrawererecordedwhenthecatalystswerereduced athighertemperature,onlytheCObandshiftedtohigherwave number(2015cm1).Khassinetal.[29]foundalsothesamediffer- encesinthepositionofCOabsorptionbandsonCo/Al2O3reducedat 753and923K;thosefeatureswereattributedtotiltedCObonded toCo0 [29].Itwassupposedthattheappearanceofthistypeof adsorbedCOcouldbeanindicationofthesecondaryinteraction of COwitha neighboring cobalt atom,which shouldcausethe lateraltiltoftheCO.Theoccurrenceofthisinteractionresultsin thesignificantlengtheningofC Obond[31].Itmeansthatinour casesthedistancebetweentheneighboringcobaltatomsisdif- ferentwhenthecatalystswerereducedatdifferenttemperatures.

AnotherexplanationfortheappearanceofthetiltedCOistheelec- tronicchangesinthemetalatomsonthesurface[32,33].

Earlierwefoundthattheformatespecieslocatedonthealumina support[34].Cobaltformatedecomposesat470–490Kproducing Co3O4[35,36]sointhepresentcaseswecouldalsoacceptthatthe formategroupsarelocatedonthesupport,butinspiteofthelower decompositiontemperaturewecannotruleoutthattheybondedto cobaltoxides.TheCObandwasdetectableonlyinthefirstminutes

(5)

0 20 40 60 80 100 120 0,000

0,005 0,010 0,015 0,020 0,025 0,030 0,035 0,040

3 2

Turnocer frequency (1/sec)

Reaction time (min) 1

A

0 20 40 60 80 100 120

0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10

3

1 2

Turnover frequency (1/sec)

Reaction time (min)

B

Fig.2. TurnoverrateofH2(A)andCO(B)formationintheCH4+CO2reactionat773KonCo/Al2O3reducedat773(1),973K(2)and1173K(3).

400 500 600 700 800 900 1000 1100 1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W ( nm ol /g s)

Tempe rature (K) 1 2 3

Fig.3.TemperatureprogrammedhydrogenationofsurfacecarbonaceousdepositformedintheCH4+CO2reactionon10%Co/Al2O3catalystsreducedat773K(1),973K(2) and1173K(3).

ofthereactionandtheintensityofitwasveryweak.Bandsinthe C Hregion(2800–2900cm1)werealsoobserved,butthesefea- turesarenotcharacteristic,whilethespectrawereregisteredinthe presenceofmethaneinCH4+CO2flow.WhentheDRIFTcellwas flushedwithHeafterthecatalyticreactionallbandsdisappeared immediatelyfromthespectra.Itissurprisingtodetectadsorbed COandformategroupswellabovetheirdesorptiontemperature.It meansthattheformationrateofthesespeciesishigherthantheir desorption,decompositionorfurtherreactionrates.

TheCo2pXPspectraof10%Co/Al2O3reducedatdifferenttem- peraturesareshown beforeandafterthereactionin Fig.5.The samplesweretreatedinthecatalysischamber(HPC)oftheinstru- mentunderthesameexperimentalconditionsasinthecatalytic tests.Theexperimentwasinterruptedafterthe10th,30th, and 120thminutesofthereactionandXPspectraweretaken.

TheCo2pspectraofthe10%Co/Al2O3sampleshowsthechar- acteristicdoublet(Co2p3/2at781.4eV)withsatellitepeaksinthe oxidizedstateas wasmentioned above,correspondingtoCo2+. Theseresultsagreedwellwiththeearlierfindings[27].

Afterreduction andduring thereactiona strongshoulder, a nearlydistinctpeakappearedatthelowbindingenergysideofthe Co2p3/2componentat778.0eV.ItsCo2p1/2counterpartcouldalso bedetectedonthespectra.Therefore,thisfeaturecanbeattributed tothemetalliccobaltstate.Thebindingenergyofthisfeatureisin agreementwiththeliteraturedata[28,29].Theintensityofthis peakincreasedwithincreasingthereductiontemperature,butthe surfaceCoconcentrationsignificantlydecreasedduringthereduc- tion(Fig.5).DeconvolutingtheCo2p3/2envelopeobtainedafter thereductionthepeakandthesatellitecharacteristicforCo2+is unequivocallydetectableevenwhenthecatalystwasreducedat 1173K(Fig.5).Table1showsthattheratioofmetalliccobalton thesurfacetothewholecobaltcontentdeterminedbyXPSwas hardlymorethan50%,andthesevaluesdecreasedfurtherduring thereaction; itseemsthatthecatalystsslightlyoxidizedduring thereaction.TherearesomeobservationsthatthesupportedCo catalystsarenotoxidized[37]butreduced[38]underthecatalytic test,probablyduetothereducingnatureoftheevolvedproducts (H2 and CO).It hastobenotedthat inboth casesthereaction

(6)

2000 1800 1600 1400 0,0

0,1 0,2 0,3 0,4 0,5

1984

1533

1503 10

9

8.

7

6

5

4 3

2

Absorbance (a.u.)

Wavenumber (cm-1) 1

1592

Fig.4. Infraredspectrarecordedon10%Co/Al2O3reducedat773Kinthefirst(1), 2nd(2),3rd(3),5th(4),10th(5),15th(6),30th(7),60th(8),90th(9)120th(10) minutesoftheCO2+CH4reactionat773K.

temperaturewashigher(1073K)thanthereductiontemperature.

Inourcasesthecatalytictestswerecarriedoutonlyat773K,but probablythereisasensitiveequilibriumbetweenthereductiveand oxidativeprocesses.Ourresultsdemonstratedthatat773Ktherate oftheoxidativereactionssuchastheCO2[39]dissociationorthe

formatedecomposition[35,36]onCosurfaceishigherthanthatof reduction.

Ithastobenotedthattheactivityofthecatalystsincreased intimewhilsttheratioofmetalliccobaltdecreased,althoughthe activityoftheunreducedsamplewasrelativelylowinthereac- tion.Inspiteofthistheoxidationofmetalhasbeenreportedasa deactivationmechanismofcobalt-basedcatalysts[12,21].

TheC1speakontheXPspectrawaslocatedinthereducedsam- plesat285.0eVinallcases,originatedfromadventitiouscarbon.

Theintensityofthispeakdecreasedasthereductiontemperature increased(Fig.6).

Therewerenochangesinthepeakpositioninthisregionwhen thesamplereducedat773Kwasusedinthecatalyticreactionbut theintensityofitincreasedsignificantlyespeciallyinthesecond hourofthereaction(Fig.6A).

VerydifferentC1sspectraweredetectedwhenthecatalysts werereducedat973or1173K.Alreadyafter10minofthereac- tionnewpeaksweredetectedat282.8eVandlateranotherone wasobservedat281.5eV(Fig.6B)onthesamplereducedat973K;

thissignalbecamemoreandmoredominant.Similarspectrawere detectedonthesamplereducedat1173K.

Ewbanketal.[18]alsofoundaC1sXPSpeakat281.7eVafterthe dryreformingofmethaneonCo/Al2O3,whichwasattributedtothe presenceofcarbidiccarbon.Inanotherwork,thebindingenergy ofC1sinCoC2isreportedat283.2eV[40,41].Bulkcobaltcarbide decomposedtoformgraphiticcarbonabove700K[41].Fengetal.

[42]alsodetectedanunusuallylow bindingenergyfor C1s,at 281.4eV,intheconversionofethanoltoacetonitrileonalumina supportedNiorCocatalysts.Theysupposedthatthecarbonhad combinedwithCoorNiinthecatalyticruns.Takingintoaccount theseobservations,thelowbindingenergyC1sspeciescouldbe assignedasCoCxcarbidelikeform,ratherthanasastructuredcar- bonlayer.Thedifferencesinthestructureofthecarbonformed duringthereactiononthecatalystsreducedatdifferenttemper- aturescouldbealsoexplainedbythedifferentsurfacestructures ofmetallicCoproducedinthereductionat773Kandat973Kor highertemperatures.

Comparingtheamountofsurfacecarbon,determinedbyTPR (Fig. 3 and Table 2), and the C 1speak intensitieson theXPS curvesobtainedonthesamplesreducedatdifferenttemperatures,

815 810 805 800 795 790 785 780 775 770

781.4 778.0

2000 cps

(a) (b) (c) (d) (e)

815 810 805 800 795 790 785 780 775 770

781.4 778.0

(a) (b) (c) (d) (e)

2000 cps

815 810 805 800 795 790 785 780 775 770

781.4 778.0

2000 cps

(e) (d) (c) (b)

(a)

Bind ing energy (eV)

A B C

Fig.5.XPspectraofCo2precordedaftertheCO2+CH4reactionat773KonCo/Al2O3reducedat773K(A),973K(B),1173K(C);oxidized(a),reducedsample(b),after5th (c),30th(d)and120th(e)minutesofthereaction.

(7)

292 290 288 286 284 282 280 278 292 290 288 286 284 282 280 278

281.5 282.8 285.0

(a) (b) (c) (d)

250 cps

Bind ing energy (eV) (e)

A B

(e) (d) (c)

(a) (b)

500 cps

285.0

Fig.6. XPspectraofC1srecordedaftertheCO2+CH4reactionat773KonCo/Al2O3reducedat773K(A),973K(B),oxidized(a),reducedsample(b),after5th(c),30th(d) and120th(e)minutesofthereaction.

itseemsthatthereisacontradiction.Onthesamplereducedat 773K,arelativelyintensivepeakwasdetectedafterthereactionon theXPSspectraat285eV.ItisassignedtosurfacecarbonfromC C orC Cgroups,butonlyasmallamountofcarbonwasdetectedby TPR.Onthesamplesreducedathighertemperatures,theamountof surfacecarbondeterminedbyTPRwasmorethanoneorderofmag- nitudehigher(Fig.3,Table2)buttheXPSpeakintensities,although atlowerenergies,weremuchless.Thesefeatureswereassignedto carbidelikestructures.Howcouldthisdiscrepancybeexplained?

Wehavetosupposethatthecarbononthesamplereducedat 773KisdirectlyonthesurfaceandsotheXPSsignalisnotshielded bythecobaltorbythesupport.Ontheothersamples,themain partofcarbondiffusesduringthereactionintothebulkandsonot detectablebyXPS,butsegregatestothesurfaceabove770Kduring theTPRandreactswithhydrogen.

WemayassumethattheratioofthemetallictooxidizedCo evolved in the pretreatment resulted in the different catalytic behaviors.

4. Conclusion

XRDresultsrevealedthat cobaltspinelstructures formedin thethermaltreatmentofCo/Al2O3.TPRandXPSresultsrevealed thatduringthepre-treatmentofthecatalyststheCoonlypartially reduced.Thereductiondegreeandtheamountofthestructured metalliccobaltincreasedwiththereductiontemperature,butthe ratioofmetallic cobaltonthesurfacetothewholecobalt con- tentdeterminedbyXPSwashardlymorethan50%evenafterthe reductionat1173K.

Theconversionof thereactantwasthehighest onthesam- plereducedat973K,buttheturnoverfrequenciesofCOandH2 formationincreasedasthereductiontemperatureincreased.

Theamountof surfacecarbonsignificantly dependedonthe pre-treatmenttemperatureofthecatalysts.Bymeansof insitu DRIFTspectroscopyinsomecasesadsorbedCOandformatespecies weredetectedduringthecatalyticrunfarabovetheirdesorption temperature;theformationrateofthemishigherthanthedes- orption,decompositionorfurtherreactionrates.Fromthespectra, wemaysupposethatatiltedCOwasformed,butthepositionof theabsorptionbandsdependsonthereductiontemperatureofthe catalysts.

Similarly,thepre-treatmenttemperatureinfluencedthetypeof thesurfacecarbondeterminedbyXPS.Onthecatalystsreducedat lowtemperature,theamountoftheadventitiouscarbonincreased, butontheothersamples,thecarbidictypecarbonwasdetected.We maysupposethatthedifferentstructuresofthecatalystsformedat differentreductiontemperaturesresultedinthedifferentcatalytic behavior.

References

[1]M.C.J.Bradford,M.A.Vannice,Catal.Rev.41(1999)1–42.

[2]M.-S.Fang,A.Z.Abdullah,S.Bhatia,Chem.Cat.Chem.1(2009)192–208.

[3]D.Pakhare,J.Spivey,Chem.Soc.Rev.43(2014)7813–7837.

[4]F.Solymosi,Gy.Kutsán,A.Erd"ohelyi,Catal.Lett.11(1991)149–156.

[5]A.Erd"ohelyi,J.Cserényi,F.Solymosi,J.Catal.141(1993)287–299.

[6]A.Erd"ohelyi,K.Fodor,T.Szailer,Appl.Catal.B:Environ.53(2004)153–160.

[7]I.Sarusi,K.Fodor,K.Baán,A.Oszkó,G.Pótári,A.Erd"ohelyi,Catal.Today171 (2011)132–139.

(8)

[8]A.W.Budiman,S.-H.Song,T.-S.Chang,C.-H.Shin,M.-J.Choi,Catal.Surv.Asia 16(2012)183–197.

[9]C.Papadopoulou,H.Matralis,X.Verykios,CatalysisforAlternativeEnergy Generation,in:L.Guczi,A.Erd"ohelyi(Eds.),Springer,2012,pp.57–127.

[10]P.Ferreira-Aparicio,A.Guerrero-Ruiz,I.Rodrıguez-Ramos,Appl.Catal.A:Gen.

170(1998)177–187.

[11]E.Ruckenstein,H.Y.Wang,Appl.Catal.A:Gen.204(2000)257–263.

[12]E.Ruckenstein,H.Y.Wang,J.Catal.205(2002)289–293.

[13]H.Y.Wang,E.Ruckenstein,Catal.Lett.75(2001)13–18.

[14]Z.Hou,T.Yashima,React.Kinet.Catal.Lett.81(2004)153–159.

[15]Zs.Ferencz,K.Baán,A.Oszkó,Z.Kónya,T.Kecskés,A.Erd"ohelyi,Catal.Today 228(2014)123–130.

[16]D.SanJosé-Alonso,M.J.Illán-Gomez,M.C.Román-Martinez,Int.J.Hydrogen Energy38(2013)2230–2239.

[17]L.Ji,S.Tang,H.C.Zeng,J.Lin,K.L.Tan,Appl.Catal.A:Gen.207(2001)247–255.

[18]J.L.Ewbank,L.Kovarik,C.C.Kenvin,C.Sievers,GreenChem.16(2014) 885–896.

[19]S.Zeng,L.Zhang,X.Zhang,Y.Wang,H.Pan,H.Su,Int.HydrogenEnergy37 (2012)9994–10001.

[20]D.SanJosé-Alonso,M.J.Illián-Gomez,M.C.Román-Martinez,Catal.Today176 (2011)187–190.

[21]K.Takanabe,K.Nagaoka,K.Nariai,K.Aika,J.Catal.230(2005)75–85.

[22]K.Nagaoka,K.Takanabe,K.Aika,Appl.Catal.A:Gen.255(2003)13–21.

[23]B.Jongsomjit,J.Panpranot,J.G.GoodwinJr.,J.Catal.204(2001)98–109.

[24]L.P.R.Profeti,E.A.Ticianelli,E.M.Asaf,J.PowerSources175(2008)482–489.

[25]Y.Zhang,H.Xiong,K.Liew,J.Lin,J.Mol.Catal.A:Chem.237(2005)172–181.

[26]G.Jacobs,T.K.Das,P.M.Patterson,J.L.Li,L.Sanchez,B.H.Davis,Appl.Catal.A 247(2003)335–343.

[27]R.L.Chin,D.M.Hercules,J.Phys.Chem.86(1982)360–367.

[28]B.A.Sexton,A.E.Hughes,T.W.Turney,J.Catal.97(1986)390–406.

[29]A.A.Khassin,T.M.Yurieva,V.V.Kaichev,V.I.Bukhtiyarov,A.A.Budneva,E.A.

Paukshtis,V.N.Parmon,J.Mol.Catal.A:Chem.175(2001)189–204.

[30]V.A.delaPe ˜naO’shea,S.Gonzalez,F.Illas,J.L.G.Fierro,Chem.Phys.Lett.454 (2008)262–268.

[31]A.B.Anderson,D.Q.Dowd,J.Phys.Chem.91(1987)869–873.

[32]S.P.Mehandru,A.B.Anderson,Surf.Sci.201(1988)345–360.

[33]R.L.Toomes,D.A.King,Surf.Sci.349(1996)1–18.

[34]F.Solymosi,A.Erd"ohelyi,M.Kocsis,J.Catal.65(1980)428–436.

[35]X.Wang,L.Lu,P.Wu,Q.Song,X.Wang,Termochim.Acta165(1990)139–145.

[36]E.Ingier-Stocka,A.Grabowska,J.Therm.Anal.54(1998)115–123.

[37]J.Estephane,S.Aouad,S.Hany,B.ElKhoury,C.Gennequin,H.ElZakhem,J.El Nakat,A.Aboukais,E.AbiAad,Int.J.HydrogenEnergy40(2015)9201–9208.

[38]R.Bouarab,O.Akdim,A.Auroux,O.Cherifi,C.Mirodatos,Appl.Catal.A:Gen.

264(2004)161–168.

[39]J.Lahtinen,T.Anraku,G.A.Somorjai,Catal.Lett.25(1994)241–255.

[40]J.Xiong,Y.Ding,T.Wang,L.Yan,W.Chen,H.Zhu,Y.Lu,Catal.Lett.102(2005) 265–269.

[41]J.Nakamura,I.Toyoshima,K.Tanaka,Surf.Sci.201(1988)185–194.

[42]C.Feng,Y.Zhang,Y.Zhang,Y.Wen,J.ZhaoCatal.Lett.141(2011)168–177.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Malthusian counties, described as areas with low nupciality and high fertility, were situated at the geographical periphery in the Carpathian Basin, neomalthusian

A-B, Dose-response curves showing recruitment of β-arr1 to the plasma membrane by CB 1 R-WT (black circles), CB 1 R-DAY (white diamonds), CB 1 R-DRA (white circles), CB 1 R-DAA

11 In point III the equations of persistence were based on the metaphysical intuition that an ex- tended object can be conceived as the mereological sum of its local parts, each

Under a scrutiny of its “involvements” Iser’s interpretation turns out to be not so much an interpretation of “The Figure in the Carpet,” but more like an amplification

Looking at credit scoring processes from a knowledge management perspective we can say that some of them place a model on existing experience data, whereas others transform

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

In this essay Peyton's struggle illustrates the individual aspect of ethos, and in the light of all the other ethos categories I examine some aspects of the complex