• Nem Talált Eredményt

J´ozsef Wildt International Mathematical Competition

N/A
N/A
Protected

Academic year: 2022

Ossza meg "J´ozsef Wildt International Mathematical Competition"

Copied!
9
0
0

Teljes szövegt

(1)

Vol. 23, No.1, April 2015, pp 184-192

Print: ISSN 1222-5657, Online: ISSN 2248-1893 http://www.uni-miskolc.hu/∼matsefi/Octogon/

184

J´ ozsef Wildt International Mathematical Competition

The Edition XXVIth , 201622

The solution of the problems W.1 - W.50 must be mailed before 10.

September 2016, to Mih´aly Bencze, str. H˘armanului 6, 505600 S˘acele - N´egyfalu, Jud. Bra¸sov, Romania, E-mail: benczemihaly@yahoo.com;

benczemihaly@gmail.com W1. Show that H =�

q odd, squarefreeq≤Q

p|q 2

p−2 ≫(logQ)2.

Michael Rassias W2. Let D be afixed squarefree integer withD≥1. Let also

πD(x) =�

p≤x

−D p

=1

1.

Prove thatπD(x)∼ 12π(x), when x→+∞

Michael Rassias W3. Let (Fk)k≥0, F0= 0, F1 = 1, Fk+2=Fk+Fk+1, (∀)k∈N and

A= (aij)1≤i≤m

1≤j≤n , B= (bjk)1≤j≤n

1≤k≤m, C= (crs)1≤r,s≤m, aij =Fj, bjk =Fj, crs=Fm−r+12 ,(∀)i, k= 1, m, (∀) 1, n. Forp, q positive integers compute (AB)pCq.

D.M.B˘atinet¸u-Giurgiu and Neculai Stanciu W4. Let a, b∈(−∞,+∞). Find lim

n→∞

(n+3)n+2+a

(n+2)n+1+b(n+2)(n+1)n+1+an+b

� .

D.M.B˘atinet¸u-Giurgiu and Neculai Stanciu

22Received 15.03.2016

2000Mathematics Subject Classification. 11-06.

Key words and phrases. Contest.

(2)

W5. Let f :R+→R+be a continue function such that lim

x→∞

f(x)

xm =a∈R+, wherem∈[1,+∞). Calculate lim

n→∞

n+1

n+1

k=1

f(k)− n

��n

k=1

f(k)

� .

D.M.B˘atinet¸u-Giurgiu and Neculai Stanciu W6. Ifa, b, c are the sides of a triangle, demonstrate the inequality

b+ca + c+ab +a+bc + Rr ≤2.

St˘anescu Florin W7. If all triangle ABC holds

�sinA−�

sinA≥�

sin3A≥�

sinA+ 4�

cosA(� sinA).

St˘anescu Florin W8. Let f, g: [0,1]→(0,+∞), f(0) =g(0) = 0 two continuous functions such thatf it’s convex , and gconcave. Ifh: [0,1]→R is an increasing function, show that

1 0

h(x)g(x)dx

1 0

f(x)dx≤

1 0

g(x)dx

1 0

h(x)f(x)dx.

St˘anescu Florin W9. Let nbe a positive integer. Prove that

n

k=1

F2k

(F2k+1−1)2 <2,

whereFn is thenthFibonacci number. That is, F0= 0, F1= 1 and Fn+2=Fn+1+Fn forn≥1.

Jos´e Luis D´ıaz-Barrero W10. Let a, b,andcbe positive real numbers. Prove that

�(6n+ 1)a−b n(b+c)

2 +

�(6n+ 1)b−c n(c+a)

2 +

�(6n+ 1)c−a n(a+b)

2

≥27 for any positive integern≥1.

Jos´e Luis D´ıaz-Barrero

(3)

W11. Let x > y > z > tbe four positive integers such that (x2−y2) + (xz−yt)−(z2−t2) = 0.

Prove thatxy+zt is a composite number.

Jos´e Luis D´ıaz-Barrero W12. Let n∈N and letOn = 1 +13 +...+2n−11 . Calculate

n→∞lim

1n

�1 +2Onnn

.

Ovidiu Furdui W13. Let (an)n∈N be a sequence of real numbers such that

n→∞lim n(an−1) =l∈(−∞,∞) and letp≥1 be a natural number. Calculate

n→∞lim

n k=1

an+ p1

kn

� .

Ovidiu Furdui W14. 1). Let f, g: [a, b]→Rbe two nonnegative continuous functions.

Assume that f attains its maximum at a unique point on [a, b] andg attains its maximum at the same point asf and possibly at other points. Prove that

n→∞lim

b a

fn+1(x)g(x)dx

b a

fn(x)dx

=�f��g�

2). Does the result hold under no assumption on f andg?

Ovidiu Furdui W15. Let a, b, c be positive real numbers. Prove that

cyc

� 2a2

a+b+ a3 b2+c2

≥ 9 2

a2+b2+c2 a+b+c

Paolo Perfetti W16. Prove that sint�

cos3t+√ sint�

≥�2t

π

cos2t

when 0≤t≤ π2.

Paolo Perfetti

(4)

W17. Let pa positive real number and let{an}n≥1 be a sequence defined by a1 = 1, an+1= 1+aanp

n.Find those real valuesq�= 0 such that the following series converges �

n=1

��

�(pn)1p−an

��

q.

Paolo Perfetti W18. In 3-dimensional Euclidean space, let S be a sphere with centreO and radius R. Three pairwaise orthogonal rays originating in O intersectS atA, B, C. LetP be a point of S and leta, b, cdenote the areas of triangles OP A, OP B, OP C,respectively. Prove

2a(+b+c)�

a3+b3+c3

≥R4(ab+bc+ca).

Michael Battaille W19. Let a, b, c, x, y, z be real numbers such that a, b, c >0 and

a+b+c=x+y+z= 1. Letu=xy−bz, v =az−cx, w=bx−ay and M =

2y

b+c z−c b−y c−z c+a2v x−a y−b a−x a+b2w

. Prove that det (M) = 0 if and only if u+v+w = 0.

Michael Battaille W20. Let Γbe a circle and let A∈Γ, B∈Γ, C /∈Γ be such thatCAand CB intersectΓagain at diametrically opposite points. Ifl is the radial axis ofΓand the circle with centre A, radius AC, show that d(C, l) = CA·CBAB . (d(C, l) denotes the distance fromC to l).

Michael Battaille W21. Let ABC be a triangle and we noteAB=c, BC=a, CA=b and ma, mb, mc the medians lengths corresponding to the vertexesA, B respectiveC.Prove the inequality �(b2+c2)2

m3a3293(a+b+c).

Ovidiu Pop W22. Let ABCD be a convex quadrilateral, O∈[AC], OM �BC,

M ∈AB, ON �AB, N ∈BC, OP �AD, P ∈CDandOQ�CD, Q∈DA.

Prove the inequalities min{Area[ABD], Area[BCD]}≤Area[M N P Q]≤

(5)

≤max{Area[ABD], Area[BCD]}.

Ovidiu Pop W23. Let n∈N, for k integer, 1≤k≤n,euclidean division nbyk gives n=qk+nk,and denote pn the probability that nkk2. Calculate pn and find lim

n→∞pn.

Moubinol Omarjee W24. Let f ∈C3(Rn, R) with f(0) =f(0) = 0. Prove that there exist h∈C3(Rm, Sn(R)), such thatf(x) =xth(x)x, when Sn(R), is the set of symmetric matrix, and xt is the transpose ofx.

Moubinol Omarjee W25. Find the nature of the series �

n≥1 eiln(pn)

pn when (pn)n≥1 is the prime number increasing order, andi imaginary complex number.

Moubinol Omarjee W26. Let M be a point in the interior of triangle ABC andRa, Rb, Rc the radii of circumcircle ofM BC, M CA, M AB.Show that

1 Ra + R1

b +R1

cM A1 +M B1 +M C1

Nicu¸sor Minculete W27. Let aj >0, (j= 1,2, . . . , k) such that �

cyclic k−1

j=1

aj =k, and n >1.

Prove that �

cyclic

n

a1+ 1

k

j=1aj ≥k√n 2.

Angel Plaza´ W28. Let (xn)n≥0 be the sequence defined recurrently by

xn+2=xn+112xn with initial terms x0= 2 andx1 = 1. Find

n=1

xn

n+ 2. Angel Plaza´

(6)

W29. Let x, y, z be positive real numbers such thatx+y+z= 1. Prove that

x3+ 1 x2+y+z +

y3+ 1 y2+z+x+

z3+ 1

z2+x+y ≤3√ 2.

Angel Plaza´ W30. Let be x0=x1= 1 andxn+2= 5xn+1−xn−1 for all n≥0. Prove xnxmxpxm+1xm+2xp+2

3

x2n+1xm+1+ 3

x2m+1xp+1+�3

x2p+1xn+1

3 for alln, m, p∈N.

Mih´aly Bencze W31. Ifak >1 (k= 1,2, ..., n) then � �

loga1a1a2λ

≥n2λ for all λ∈(−∞,0]∪[1,+∞).

Mih´aly Bencze W32. Ifx, y, z >0 and x+y+z= 1 then

8 (1−x)x(1−y)y(1−z)z≤3 (2−x−y)x+y(2−y−z)y+z(2−z−x)z+x. Mih´aly Bencze W33. 1). Let f :R→R be a bijective and continuous function such that f(a) =λaandf(b) =λbwhen a, b∈Randλ∈R. Prove that exist x0∈(a, b) such thatf(x0) +λf−1(λx0) = 2λx0.

2). Letf :R→Rbe a bijective and continuous function such that f(a) =λbandf(b) =λa when a, b∈Randλ∈R. Prove that exist x0∈(a, b) such thatf

f(x0) λ

=λx0.

Mih´aly Bencze W34. Prove �n

k=1

2(k+1)(k+2)2 ((k+2)!)3

k1

3(n+2)(n+3)n(n+5) .

Mih´aly Bencze W35. Prove that exist infinitely manyn∈N for whichn! is divisible by n5+n−1.

Mih´aly Bencze

(7)

W36. Let △(x, y, z) = 2 (xy+yz+zx)−�

x2+y2+z2

and leta, b, cbe sidelengths of a triangle with areaF. Prove that△�

a3, b3, c3

64F33. Arkady Alt W37. Let E be a inner Product Space with dot product −·−andF be proper nonzero subspace. LetP :E→E be orthogonal proiection E on F.

a). Prove that for any x, y∈E, holds inequality

|x·y−xP(y)−yP(x)|≤ �x�·�y�

b). Determine all cases when equality occours

Arkady Alt W38. Prove that 0<�4x+2x+1

x

x

−2x<1 for all x∈� 0,2e1

.

Ionel Tudor W39. Let n≥2 be a natural number andai>0, i= 1, n. If S=�n

i=1ai andxi=S−ai, then the following inequality holds:

n

i=1

√ai

(n1)��

1≤i<j≤n(ai+aj) ≤

n

i=1

√xi

(n1)��

1≤i<j≤n(xi+xj).

Ovidiu Bagdasar W40. Prove that ifxi>0, i= 1, n,then the next inequality holds:

n

i=1

Sα+β−xα+βi

Sα−xαi ≤n· Sα+β

Sα , (33)

provided thatαβ ≥0 and Sp =�n

i=1xpi,for any real number p.

Ovidiu Bagdasar W41. Let n≥2 a natural number and the numbersai>1, i= 1, n. Prove that

n

i=1

logaian−1i+1

S−ai ≥ n2

n

i=1ai.

(8)

We consider thatan+1=a1, andS= �n

i=1

ai.

Ovidiu Bagdasar W42. Let ABC be an acute triangle. The angle bisectors fromA, B, C meet the opposite sides inA1, B1, C1, respectively. LetRandr be the circumradius and the inradius of the triangleABC,respectively. Let RA, RB,andRC the circumradii of the triangles AC1B1, BA1C1, andCB1A1, respectively. Prove that

RA+RB +RC≥R+r.

P´al P´eter D´alyay W43. Let f be a continuous real function defined on the set of the

nonnegative real numbers for which the following integrals are convergent:

S=�

0 f2(x)dx, T =�

0 xf2(x)dx, U =�

0 x2f2(x)dx. Prove that

��

0 |f(x)|dx

2

≤2

�√

SU+T

� .

P´al P´eter D´alyay W44. Ifζ is the Riemann zeta-function, ands is a real number greater than 3/2, then:

ζ2(s)≤π√ 2

i,j=1

1 is−1js−1(i+j)

k,l=1

1 ks−1ls−1(k+l)3

1/2

≤ π 2√

2ζ(s−1/2)ζ(s+ 1/2).

P´al P´eter D´alyay W45. Let x∈P oisson(2) be a random variable

i). Find the setM of all the valuesn∈N so that P��

ω/|x(ω)−2|≥ 2n��

128n2

ii). From the set M we extract 2 numbers one, after the other. Find the probability that the second extracted number could be the greatest, in the following two situation: with return in the set, and without return in M.

Laurent¸iu Modan

(9)

W46. i). For any n >3 natural numbers, prove that 2n! + (2n)!>3·2n+2 ii). Study the convergence of the series �

n>3 1 2n!+(2n)!

Laurent¸iu Modan W47. Let a, b, c, d∈(0,1) and f : (0,1)→Ra convex and decreasing function. Prove that�

f� 1−a3

≥� f�

1−a2b� .

Marius Dr˘agan W48. Let I be an interval andf :I→Ra convex function and

x1, x2, ..., xn∈I.Prove that �n

k=1

f(xk)−nf

1 n

n k=1

xk

1≤i<...<imaxk≤n

f(xi1) +...+f(xik)−kf�x

i1+...+xik k

��

Marius Dr˘agan and Mih´aly Bencze W49. Find all the functionsf :R→[−1,1] such that

f(x+y) (1−f(x)f(y)) =f(x) +f(y) for each x, y∈R.

Marius Dr˘agan and Sorin R˘adulescu W50. Find all the function f :R→Rwhich are continuous in a real point x0 such that f(x+y) =f(x)�

1 +f2(y) +f(y)�

1 +f2(x) for each x, y∈R.

Sorin R˘adulescu

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

So far, Prime Minister Fico has proved tactically astute in navigating such contradictions without alienating any of the principal players (Germany, France, and the

a) The Maastricht convergence criterion on the exchange rate stability could be modified or at least flexibly interpreted in view of changed circumstances at that time (newly

Because of these changes in American immigration restrictions, Russians came to this country in large numbers in 1950-51.. No large scale exodus occurred until the late 1980s from

Let Φ and Ψ denote the Euler totient and Dedekind‘s

Nicu¸sor Minculete, Dimitrie Cantemir University, Brasov, Romania 8.. Gy¨ orgy Sz¨ oll˜ osy,

suppose that the quadrilateral is Heron (having all sides integers, and area integer too). Prove that is a such quadrilateral, the perimeter is even sides; and the area is divisible

Prove that if an arithmetical progression defined in N contain a perfect k power, then contain infinitely many perfect k powers. Mih´ aly

The fluctuations of the crude birth rates in Hungary do not follow exactly the trends in fertility, because besides the level of fertility the age-composition of the female