• Nem Talált Eredményt

ON HEISENBERG AND LOCAL UNCERTAINTY PRINCIPLES FOR THE q-DUNKL TRANSFORM

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ON HEISENBERG AND LOCAL UNCERTAINTY PRINCIPLES FOR THE q-DUNKL TRANSFORM"

Copied!
22
0
0

Teljes szövegt

(1)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page

Contents

JJ II

J I

Page1of 22 Go Back Full Screen

Close

ON HEISENBERG AND LOCAL UNCERTAINTY PRINCIPLES FOR THE q-DUNKL TRANSFORM

AHMED FITOUHI FERJANI NOURI

Faculté des Sciences de Tunis Institut Préparatoire aux Études d’Ingénieur de Nabeul

1060 Tunis, Tunisia. Tunisia.

EMail:Ahmed.Fitouhi@fst.rnu.tn EMail:nouri.ferjani@yahoo.fr

SANA GUESMI

Faculté des Sciences de Tunis 1060 Tunis, Tunisia.

EMail:guesmisana@yahoo.fr

Received: 17 January, 2009

Accepted: 02 May, 2009

Communicated by: S.S. Dragomir

2000 AMS Sub. Class.: 33D15, 26D10, 26D20, 39A13, 42A38.

Key words: q-Dunkl transform, Heisenberg-Weyl inequality, Local uncertainty principles.

Abstract: In this paper, we provide, for theq-Dunkl transform studied in [2], a Heisen- berg uncertainty principle and two local uncertainty principles leading to a new Heisenberg-Weyl type inequality.

(2)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page2of 22 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Notations and Preliminaries 5

3 Theq-Dunkl Operator and theq-Dunkl Transform 8

4 q-Analogue of the Heisenberg Inequality 11

5 Local Uncertainty Principles 14

(3)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page3of 22 Go Back Full Screen

Close

1. Introduction

In harmonic analysis, the uncertainty principle states that a function and its Fourier transform cannot be simultaneously sharply localized. A quantitative formulation of this fact is provided by the Heisenberg uncertainty principle, which asserts that every square integrable functionf onRverifies the following inequality

(1.1)

Z +∞

−∞

x2|f(x)|2dx

Z +∞

−∞

λ2|fb(λ)|2

≥ 1 4

Z +∞

−∞

x2|f(x)|2dx 2

, where

fb(λ) = 1

√2π Z +∞

−∞

f(x)e−iλxdx is the classical Fourier transform.

Generalizations of this result in both classical and quantum analysis have been treated and many versions of Heisenberg-Weyl type uncertainty inequalities were obtained for several generalized Fourier transforms (see [1], [14], [10]).

In [2], by the use of theq2-analogue differential operator studied in [11], Bettaibi et al. introduced a new q-analogue of the classical Dunkl operator and studied its related Fourier transform, which is a q-analogue of the classical Bessel-Dunkl one and called theq-Dunkl transform.

The aim of this paper is twofold: first, we prove a Heisenberg uncertainty princi- ple for theq-Dunkl transform and next, we state for this transform two local uncer- tainty principles leading to a newq-Heisenberg-Weyl type inequality.

This paper is organized as follows: in Section 2, we present some preliminary notions and notations useful in the sequel. In Section3, we recall some results and properties from the theory of the q-Dunkl operator and theq-Dunkl transform (see [2]). Section4 is devoted to proving a Heisenberg uncertainty principle for theq- Dunkl transform and as consequences, we obtain Heisenberg uncertainty principles

(4)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page4of 22 Go Back Full Screen

Close

for the q2-analogue Fourier transform [12, 11] and for theq-Bessel transform [2].

Finally, in Section5, we state, for theq-Dunkl transform, two local uncertainty prin- ciples, which give a new Heisenberg-Weyl type inequality for theq-Dunkl transform.

(5)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page5of 22 Go Back Full Screen

Close

2. Notations and Preliminaries

Throughout this paper, we assume q ∈]0,1[, and refer to the general reference [6]

for the definitions, notations and properties of the q-shifted factorials and the q- hypergeometric functions.

We writeRq ={±qn :n∈Z},Rq,+ ={qn:n ∈Z}, [x]q = 1−qx

1−q , x∈C and [n]q! = (q;q)n

(1−q)n, n∈N. Theq2-analogue differential operator is (see [11,12])

(2.1) ∂q(f)(z) =





f(q−1z)+f(−q−1z)−f(qz)+f(−qz)−2f(−z)

2(1−q)z if z 6= 0

x→0lim∂q(f)(x) (in Rq) if z = 0.

We remark that iff is differentiable atz, thenlimq→1q(f)(z) = f0(z).

A repeated application of theq2-analogue differential operator is denoted by:

q0f =f, ∂qn+1f =∂q(∂nqf).

The following lemma lists some useful computational properties of∂q. Lemma 2.1.

1. For all functionsf onRq,

qf(z) = fe(q−1z)−fe(z)

(1−q)z + fo(z)−fo(qz) (1−q)z , where,feandfoare, respectively, the even and the odd parts off.

(6)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page6of 22 Go Back Full Screen

Close

2. For two functionsf andgonRq, we have

iff is even andg is odd,

q(f g)(z) = q∂q(f)(qz)g(z) +f(qz)∂q(g)(z)

=∂q(g)(z)f(z) +qg(qz)∂q(f)(qz);

iff andgare even,

q(f g)(z) = ∂q(f)(z)g(q−1z) +f(z)∂q(g)(z).

The operator ∂q induces a q-analogue of the classical exponential function (see [11,12])

(2.2) e(z;q2) =

X

n=0

an zn

[n]q!, with a2n=a2n+1 =qn(n+1). Theq-Jackson integrals are defined by (see [8])

Z a 0

f(x)dqx= (1−q)a

X

n=0

qnf(aqn), Z b

a

f(x)dqx= Z b

0

f(x)dqx− Z a

0

f(x)dqx, Z

0

f(x)dqx= (1−q)

X

n=−∞

qnf(qn),

and

Z

−∞

f(x)dqx= (1−q)

X

n=−∞

qnf(qn) + (1−q)

X

n=−∞

qnf(−qn),

(7)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page7of 22 Go Back Full Screen

Close

provided the sums converge absolutely.

Theq-Gamma function is given by (see [8]) Γq(x) = (q;q)

(qx;q)

(1−q)1−x, x6= 0,−1,−2, ...

• Sq(Rq)the space of functionsf defined onRqsatisfying

∀n, m∈N, Pn,m,q(f) = sup

x∈Rq

xmqnf(x)

<+∞

and

limx→0qnf(x) (in Rq) exists;

• Lq (Rq) = n

f :kfk∞,q = supx∈Rq|f(x)|<∞o

;

• Lpα,q(Rq) =

f :kfkp,α,q = R

−∞|f(x)|p|x|2α+1dqx1p

<∞

;

• Lpα,q([−a, a]) =

f :kfkp,α,q = Ra

−a|f(x)|p|x|2α+1dqx1p

<∞

.

For the particular casep= 2, we denote byh·;·ithe inner product of the Hilbert spaceL2α,q(Rq).

(8)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page8of 22 Go Back Full Screen

Close

3. The q-Dunkl Operator and the q-Dunkl Transform

In this section, we collect some basic properties of the q-Dunkl operator and the q-Dunkl transform introduced in [2] which will useful in the sequel.

Forα ≥ −12, theq-Dunkl operator is defined by

Λα,q(f)(x) =∂q[Hα,q(f)] (x) + [2α+ 1]qf(x)−f(−x)

2x ,

where

Hα,q :f =fe+fo7−→fe+q2α+1fo. It satisfies the following relations:

• Forα =−12α,q =∂q.

• Λα,q livesSq(Rq)invariant.

• Iff is odd thenΛα,q(f)(x) =q2α+1qf(x) + [2α+ 1]qf(x)x and iff is even then Λα,q(f)(x) =∂qf(x).

• For alla∈C,Λα,q[f(ax)] =aΛα,q(f)(ax).

• For allf andg such thatR+∞

−∞ Λα,q(f)(x)g(x)|x|2α+1dqxexists, we have (3.1)

Z +∞

−∞

Λα,q(f)(x)g(x)|x|2α+1dqx

=− Z +∞

−∞

Λα,q(g)(x)f(x)|x|2α+1dqx.

It was shown in [2] that for eachλ∈C, the function

(9)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page9of 22 Go Back Full Screen

Close

(3.2) ψα,qλ :x7−→jα(λx;q2) + iλx

[2α+ 2]qjα+1(λx;q2) is the unique solution of theq-differential-difference equation:

( Λα,q(f) =iλf f(0) = 1,

wherejα(·;q2)is the normalized third Jackson’sq-Bessel function given by (3.3) jα(x;q2) =

X

n=0

(−1)n qn(n+1)

(q2;q2)n(q2(α+1);q2)n

((1−q)x)2n.

The functionψα,qλ (x),has a unique extension to C×C and verifies the following properties.

• ψα,q(x) =ψλα,q(ax) =ψaxα,q(λ), ∀a, x, λ∈C.

• For allx, λ∈Rq,

(3.4) |ψλα,q(x)| ≤ 4

(q;q).

Theq-Dunkl transformFDα,q is defined onL1α,q(Rq)(see [2]) by FDα,q(f)(λ) = cα,q

2

Z +∞

−∞

f(x)ψ−λα,q(x)|x|2α+1dqx, where

cα,q = (1 +q)−α Γq2(α+ 1). It satisfies the following properties:

(10)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page10of 22 Go Back Full Screen

Close

• Forα = −12, FDα,q is the q2-analogue Fourier transformfb(·;q2)given by (see [12,11])

fb(λ;q2) = (1 +q)1/2q2 12

Z +∞

−∞

f(x)e(−iλx;q2)dqx.

• On the even functions space,FDα,q coincides with theq-Bessel transform given by (see [2])

Fα,q(f)(λ) = cα,q Z +∞

0

f(x)jα(λx;q2)x2α+1dqx.

• For allf ∈L1α,q(Rq), we have:

(3.5) kFDα,q(f)k∞,q ≤ 2cα,q (q;q)

kfk1,α,q.

• For allf ∈L1α,q(Rq), such thatxf ∈L1α,q(Rq),

(3.6) FDα,qα,qf)(λ) =iλFDα,q(f)(λ) and

(3.7) Λα,q(FDα,q(f)) = −iFDα,q(xf).

• Theq-Dunkl transformFDα,q is an isomorphism from L2α,q(Rq)(resp. Sq(Rq)) onto itself and satisfies the following Plancherel formula:

(3.8) kFDα,q(f)k2,α,q =kfk2,α,q, f ∈L2α,q(Rq).

(11)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page11of 22 Go Back Full Screen

Close

4. q -Analogue of the Heisenberg Inequality

In this section, we provide a Heisenberg uncertainty principle for theq-Dunkl trans- form. For this purpose, inspired by the approach given in [10], we follow the steps of [1], using the operatorΛα,q instead of the operator∂q, and consider the operators

Lα,q(f)(x) = fe(x) +q2α+2fo(qx) and Qf(x) =xf(x), and theq-commutator:

[Dα,q, Q]q =Dα,qQ−qQDα,q, where

Dα,q =Lα,qΛα,q.

The following theorem gives a Heisenberg uncertainty principle for theq-Dunkl transformFDα,q.

Theorem 4.1. Forf ∈ Sq(Rq), we have

(4.1) q2α+1 1 +q+qα−1+qα

qkfk22,α,q+

1−q− [2α+ 1]q q

kfok22,α,q

≤ kxfk2,α,qkxFDα,q(f)(x)k2,α,q. Proof. By Lemma2.1and simple calculus, we obtain

[Dα,q, Q]qf =q2α+2fe+q2α+1

1− [2α+ 1]q q

fo.

(12)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page12of 22 Go Back Full Screen

Close

Then, using the Cauchy-Schwarz inequality and the properties of theq-Dunkl oper- ator, one can write

q2α+2kfek22,α,q+q2α+1

1− [2α+ 1]q q

kfok22,α,q

=|h[Dα,q, Q]qf;fi|

=|hDα,qQf−qQDα,qf;fi| ≤ |hDα,qQf;fi|+q|hQDα,qf;fi|

=|hDα,q(xfe+xfo);fi|+q|hDα,qf;xfi|

=

α,q(xfe) +q2α+2Λα,q(xfo)(qx);fi +q

hq2α+2Λα,q(fe)(qx) + Λα,q(fo)(x);xfi

≤ |hΛα,q(xfe);fi|+q2α+2|hΛα,q(xfo)(qx);fi|

+q2α+3|hΛα,q(fe)(qx);xfi|+q|hΛα,q(fo)(x);xfi|

=|hΛα,q(xfe);fi|+q2α+1|hΛα,q(xfo(q.));fi|

+q2α+2|hΛα,q(fe(q.));xfi|+q|hΛα,q(fo)(x);xfi|

≤ kxfek2,α,qkxFDα,q(f)k2,α,q+qα−1kxfok2,α,qkxFDα,q(f)k2,α,q

+qαkxfek2,α,qkxFDα,q(f)k2,α,q+qkxfok2,α,qkxFDα,q(f)k2,α,q

≤(1 +q+qα−1+qα)kxfk2,α,qkxFDα,q(f)k2,α,q, which achieves the proof.

As a consequence, we obtain a Heisenberg-Weyl uncertainty principle for theq2- analogue Fourier transform (by takingα =−1/2) and theq-Bessel transform (in the even case).

(13)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page13of 22 Go Back Full Screen

Close

Corollary 4.2.

1. Forf ∈ Sq(Rq), we have

(4.2) q

1 +q+q−3/2+q−1/2kfk22,q ≤ kxfk2,qkλfb(λ;q2)k2,q. 2. For an even functionf ∈ Sq(Rq), we have

(4.3) q2α+2

1 +q+qα−1+qαkfk22,α,q ≤ kxfk2,α,qkλFα,q(f)(λ)k2,α,q.

We remark that whenq tends to1, (4.2) tends at least formally to the classical Heisenberg uncertainty principle given by (1.1).

(14)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page14of 22 Go Back Full Screen

Close

5. Local Uncertainty Principles

In this section, we will state, for theq-Dunkl transform, two local uncertainty prin- ciples leading to a new Heisenberg-Weyl type inequality.

Notations: ForE ⊂Rqandf defined onRq, we write Z

E

f(t)dqt = Z

−∞

f(t)χE(t)dqt and |E|α = Z

E

|t|2α+1dqt,

whereχE is the characteristic function ofE.

Theorem 5.1. If 0 < a < α+ 1, then for all bounded subsets E of Rq and all f ∈L2α,q(Rq), we have

(5.1)

Z

E

|FDα,q(f)(λ)|2|λ|2α+1dqλ≤Ka,α|E|α+1a kxafk22,α,q, where

Ka,α = 2ecα,q

p[2(α+ 1−a)]q

α+ 1−a a

!α+12a

α+ 1 α+ 1−a

2

and ecα,q = (q;q)2cα,q

.

Proof. For r > 0, letχr = χ[−r,r] the characteristic function of [−r, r] andχer = 1−χr.

Then forr >0, we have, sincef ·χr ∈L1q(Rq), Z

E

|FDα,q(f)(λ;q2)|2|λ|2α+1dqλ 1/2

(15)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page15of 22 Go Back Full Screen

Close

=kFDα,q(f)·χEk2,α,q

≤ kFDα,q(f ·χrEk2,α,q+kFDα,q(f ·χerEk2,α,q

≤ |E|1/2α kFDα,q(f·χr)k∞,q+kFDα,q(f·χer)k2,α,q.

Now, on the one hand, we have by the relation (3.5) and the Cauchy-Schwartz in- equality,

kFDα,q(f.χr)k∞,q ≤ecα,qkf·χrk1,α,q

=ecα,qkx−aχr·xafk1,α,q

≤ecα,qkx−aχrk2,α,qkxafk2,α,q

≤ 2ecα,q p[2(α+ 1−a)]q

r(α+1)−akxafk2,α,q.

On the other hand, since f ∈ L2α,q(Rq), we have f ·χer ∈ L2α,q(Rq) and by the Plancherel formula, we obtain

kFDα,q(f.χer)k2,α,q =kf·χerk2,α,q

=kx−aχer·xafk2,α,q

≤ kx−aχerk∞,qkxafk2,α,q

≤r−akxafk2,α,q. So,

Z

E

|FDα,q(f)(λ)|2|λ|2α+1dqλ 12

≤ 2ecα,q

p[2(α+ 1−a)]q|E|α12rα+1−a+r−a

!

kxafk2,α,q.

(16)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page16of 22 Go Back Full Screen

Close

The desired result is obtained by minimizing the right hand side of the previous inequality overr >0.

Corollary 5.2. For α ≥ −12, 0 < a < α+ 1 and b > 0, we have for all f ∈ L2α,q(Rq),

(5.2) kfk(a+b)2,α,q ≤Ka,b,αkxafkb2,α,qbFDα,q(f)ka2,α,q, with

Ka,b,α =

"

b a

a+ba +a

b a+bb

#a+b2

(2Ka,α)b2 q−(2α+1)(a+b)

([2α+ 2]q)2(α+1)ab whereKa,α is the constant given in Theorem5.1.

Proof. Forr >0, we putEr =]−r, r[∩RqandEerthe supplementary ofErinRq. We have Er is a bounded subset of Rq and |Er|α ≤ 2[2α+2]r2α+2

q. Then the Plancherel formula and the previous theorem lead to

kfk22,α,q =kFDα,q(f)k22,α,q

= Z

Er

|FDα,q(f)|2(λ)|λ|2α+1dqλ+ Z

Eer

|FDα,q(f)|2(λ)|λ|2α+1dqλ

≤2Ka,α|Er|

a

αα+1kxafk22,α,q+r−2bbFDα,q(f)k22,α,q

≤2 Ka,α [2α+ 2]

a

qα+1

r2akxafk22,α,q+r−2bbFDα,q(f)k22,α,q.

The desired result follows by minimizing the right expressions overr >0.

(17)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page17of 22 Go Back Full Screen

Close

Theorem 5.3. Forα ≥ −12 anda > α+ 1, there exists a constant Ka,α,q0 such that for all bounded subsetsE of Rqand allf inL2α,q(Rq), we have

(5.3) Z

E

|FDα,q(f)(λ)|2|λ|2α+1dqλ≤Ka,α,q0 |E|α kfk2(1−

α+1 a )

2,α,q kxafk2

α+1 a

2,α,q. The proof of this result needs the following lemmas.

Lemma 5.4. Supposea > α+1, then for allf ∈L2α,q(Rq)such thatxaf ∈L2α,q(Rq),

(5.4) kfk21,α,q ≤K2

kfk22,α,q+kxa fk22,α,q , where

K2 = 2(1−q)(q2a, q2a,−q2α+2,−q2(a−α−1);q2a) (q2α+2, q2(a−α−1),−q2a,−1;q2a)

. Proof. From ([4, Example 1]) and Hölder’s inequality, we have

kfk21,α,q =

Z +∞

−∞

(1 +|x|2a)12|f(x)|(1 +|x|2a)12|x|2α+1dqx 2

≤K2

kfk22,α,q+kxa fk22,α,q , where

K2 = 2 Z +∞

0

x2α+1 1 +x2adqx

= 2(1−q)(q2a, q2a,−q2α+2,−q2(a−α−1);q2a)

(q2α+2, q2(a−α−1),−q2a,−1;q2a) .

(18)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page18of 22 Go Back Full Screen

Close

Lemma 5.5. Supposea > α+1, then for allf ∈L2α,q(Rq)such thatxaf ∈L2α,q(Rq), we have

(5.5) kfk1,α,q ≤K3kfk(1−

α+1 a )

2,α,q kxa fk

α+1 a

2,α,q, where

K3 =K3(a, α, q) =

"

q2(α+1)( a

α+ 1 −1) α+1a

q−2(α+1)(1 + α+ 1

a−α−1) K2

#12 .

Proof. Fors∈Rq,define the functionfsbyfs(x) = f(sx), x∈Rq. We have

kfsk1,α,q =s−2(α+1)kfk1,α,q, kxa fsk22,α,q =s−2(α+a+1)kxa fk22,α,q. Replacement off byfs in Lemma5.4gives:

kfk21,α,q ≤K2

s2(α+1)kfk22,α,q+s2(α−a+1)kxa fk22,α,q . Now, for allr > 0,putα(r) = Log(r)Log(q) −E

Log(r) Log(q)

.We haves = qα(r)r ∈ Rq and r≤s < rq.Then, for allr >0,

kfk21,α,q ≤K2

"

r q

2(α+1)

kfk22,α,q+r2(α−a+1)kxa fk22,α,q

# .

The right hand side of this inequality is minimized by choosing r =

a α+ 1 −1

2a1

qα+1a kfk

1 a

2,α,q kxa fk

1 a

2,α,q. When this is done we obtain the result.

(19)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page19of 22 Go Back Full Screen

Close

Proof of Theorem5.3. LetE be a bounded subset of Rq. When the right hand side of the inequality is finite, Lemma5.4implies thatf ∈L1q(Rq), so,FDα,q(f)is defined and bounded onRq. Using Lemma5.5, the relation (3.5) and the fact that

Z

E

|FDα,q(f)(λ)|2|λ|2α+1dqλ≤|E |α kFDα,q(f)k2∞,q, we obtain the result with

Ka,α,q0 = 4(1 +q)−2α Γ2q2(α+ 1)(q;q)2K32

= 8(1−q)(1 +q)−2α Γ2q2(α+ 1)(q;q)2

q2(α+1)

a α+ 1 −1

α+1a

q−2(α+1)

1 + α+ 1 a−α−1

× (q2a, q2a,−q2α+2,−q2(a−α−1);q2a) (q2α+2, q2(a−α−1),−q2a,−1;q2a)

.

Corollary 5.6. Forα≥ −12,a > α+ 1andb >0, we have for allf ∈L2α,q(Rq), (5.6) kfk(a+b)2,α,q ≤Ka,b,α0 kxafkb2,α,qbFDα,q(f)ka2,α,q,

with

Ka,b,α0 =

Ka,α,q0 [2α+ 2]q

2α+2ab

q−(4α+2)

"

b α+ 1

α+b+1α+1 +

b α+ 1

b

α+b+1

#!

a(α+b+1) 2(α+1)

,

whereKa,α,q0 is the constant given in the previous theorem.

(20)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page20of 22 Go Back Full Screen

Close

Proof. The same techniques as in Corollary5.2give the result.

The following result gives a new Heisenberg-Weyl type inequality for theq-Dunkl transform.

Theorem 5.7. Forα≥ −12, α6= 0, we have for allf ∈L2α,q(Rq), (5.7) kfk22,α,q ≤Kαkxfk2,α,qkλFDα,q(f)k2,α,q, with

Kα =

( K1,1,α if α >0 K1,1,α0 if α <0.

Proof. The result follows from Corollaries5.2and5.6, by takinga=b= 1.

Remark 1. Note that Theorem4.1and Theorem5.7are both Heisenberg-Weyl type inequalities for theq-Dunkl transform. However, the constants in the two theorems are different, the first one seems to be more optimal. Moreover, Theorem4.1is true for everyα > −12 and uses bothf andf0, in contrast to Theorem5.7, which is true only forα6= 0and uses onlyf.

(21)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page21of 22 Go Back Full Screen

Close

References

[1] N. BETTAIBI, Uncertainty principles in q2-analogue Fourier analysis, Math.

Sci. Res. J., 11(11) (2007), 590–602.

[2] N. BETTAIBIANDR.H. BETTAIEB,q-Aanalogue of the Dunkl transform on the real line, to appear in Tamsui Oxford J. Mathematical Sciences.

[3] M.G. COWLING AND J.F. PRICE, Generalisation of Heisenberg inequality, Lecture Notes in Math., 992, Springer, Berlin, (1983), 443-449.

[4] A. FITOUHI, N. BETTAIBI ANDK. BRAHIM, Mellin transform in quantum calculus, Constructive Approximation, 23(3) (2006), 305–323.

[5] G.B. FOLLANDANDA. SITARAM, The uncertainty principle: A mathemat- ical survey, J. Fourier Anal. and Applics., 3(3) (1997), 207–238.

[6] G. GASPER AND M. RAHMAN, Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 35 (1990), Cambridge Univ. Press, Cam- bridge, UK.

[7] V. HAVIN AND B. JÖRICKE, Uncertainty Principle in Harmonic Analysis, Springer-Verlag, Berlin, (1994).

[8] F.H. JACKSON, On aq-definite integrals, Quart. J. Pure and Appl. Math., 41 (1910), 193–203.

[9] V.G. KAC AND P. CHEUNG, Quantum Calculus, Universitext, Springer- Verlag, New York, (2002).

[10] M. RÖSLERANDM. VOIT, Uncertainty principle for Hankel transforms, Proc.

Amer. Math. Soc., 127 (1999), 183–194.

(22)

Uncertainty Principles for theq-Dunkl Transform Ahmed Fitouhi, Ferjani Nouri

and Sana Guesmi vol. 10, iss. 2, art. 42, 2009

Title Page Contents

JJ II

J I

Page22of 22 Go Back Full Screen

Close

[11] R.L. RUBIN, Aq2-analogue operator forq2-analogue Fourier analysis, J. Math.

Analys. Appl., 212 (1997), 571–582.

[12] R.L. RUBIN, Duhamel solutions of non-homogenousq2-analogue wave equa- tions, Proc. Amer. Math. Soc., 13(3) (2007), 777–785.

[13] A. SITARAM, M. SUNDARI ANDS. THANGAVALU, Uncertainty principle on certain Lie groups, Proc. Indian Acad. Sci. (Math. Sci.), 105 (1995), 135–

151.

[14] R.S. STRICHARTZ, Uncertainty principle in harmonic analysis, J. Functional Analysis, 84 (1989), 97–114.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In particular, Trimèche [33] has shown this uncertainty principle for the Dunkl transform, Kamoun and Trimèche [21] have proved an analogue of the Beurling- Hörmander theorem for

In this paper, we provide, for the q-Dunkl transform studied in [2], a Heisenberg uncertainty principle and two local uncertainty principles leading to a new Heisenberg-Weyl

Abstract: In this paper, we give new Turán-type inequalities for some q-special functions, using a q- analogue of a generalization of the Schwarz inequality.... Turán-Type

In this paper, we will prove that similar to the classical theory, a non-zero function and its q 2 -analogue Fourier transform (see [7, 8]) cannot both be sharply localized.. For

In this paper, we will prove that similar to the classical theory, a non-zero function and its q 2 -analogue Fourier transform (see [7, 8]) cannot both be sharply localized. For

Recently, many works have been devoted to establishing the Heisenberg-Pauli- Weyl inequality for various Fourier transforms, Rösler [21] and Shimeno [22] have proved this inequality

Recently, many works have been devoted to establishing the Heisenberg-Pauli-Weyl inequal- ity for various Fourier transforms, Rösler [21] and Shimeno [22] have proved this

Abstract: In this paper, we give new inequalities involving some special (resp. q-special) functions, using their integral (resp... Inequalities for Special and q-Special