• Nem Talált Eredményt

PETER PAZMANY CATHOLIC UNIVERSITY

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PETER PAZMANY CATHOLIC UNIVERSITY"

Copied!
50
0
0

Teljes szövegt

(1)

Development of Complex Curricula for Molecular Bionics and Infobionics Programs within a consortial* framework**

Consortium leader

PETER PAZMANY CATHOLIC UNIVERSITY

Consortium members

SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

The Project has been realised with the support of the European Union and has been co-financed by the European Social Fund ***

**Molekuláris bionika és Infobionika Szakok tananyagának komplex fejlesztése konzorciumi keretben

***A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósul meg.

(2)

Faculty of Information Technology

BEVEZETÉS A FUNKCIONÁLIS NEUROBIOLÓGIÁBA

INTRODUCTION TO FUNCTIONAL NEUROBIOLOGY

THE NEUROENDOCRINE HYPOTHALAMUS

www.itk.ppke.hu

(A neuroendokrin hypothalamus)

ZSOLT LIPOSITS

(3)

Hypothalamo-hypophyseal regulation

(4)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Hypothalamo-pituitary unit

(5)

HPG- system HPT- system HPA-system HPP-system

Endocrine pancreas

Reproduction Metabolism

Adaptation Water, salt balance Carbohydrate metabolism

Sterility Graves disease

Addison disease Diabetes insipidus Diabetes mellitus

Significance of the endocrine system

MILIEU INTERIEUR

(6)

The neuroendocrine hypothalamus

www.itk.ppke.hu

HYPOTHALAMUS

P AP P

REPRODUCTION STRESS, ADAPTATION

GROWTH FEEDING

ENERGY EXPENDITURE THERMOREGULATION WATER AND SALT BALANCE

MILK EJECTION SEXUAL BEHAVIOR

BRAIN STEM

SPINAL CORD

AUTONOMIC NERVOUS SYSTEM

REGULATION OF VISCERAL FUNCTIONS

TARGET ORGANS

HOMEOSTASIS

HYPOTHALAMUS

P AP P

REPRODUCTION STRESS, ADAPTATION

GROWTH FEEDING

ENERGY EXPENDITURE THERMOREGULATION WATER AND SALT BALANCE

MILK EJECTION SEXUAL BEHAVIOR

BRAIN STEM

SPINAL CORD

AUTONOMIC NERVOUS SYSTEM

REGULATION OF VISCERAL FUNCTIONS

TARGET ORGANS

HOMEOSTASIS

(7)

NEUROSECRETION

CONSTITUENTS, BLOOD SUPPLY, NEUROSECRETION

(8)

10/15/2011. TÁMOP – 4.1.2-08/2/A/KMR-2009-0006

The neuroendocrine hypothalamus

www.itk.ppke.hu

HYPOTHALAMO-HYPOPHYSEAL UNIT

HYPOTHALAMUS

A

ADENOHYPOPHYSIS

SHA PV

NEUROHYPOPHYSIS

STALK

N E U R A L

V A S C U L A R

(9)

PORTAL VEINS TO ADENOHYPOPHYSIS

DISSEMINATION OF RELEASING AND RELEASE-INHIBITING HORMONES TO HYPOPHYSEAL TROPH CELLS

PORTAL CAPILLARIES FROM SUPERIOR HYPOPHYSEAL ARTERY

DISCHARGE OF HYPOTHALAMIC RELEASING AND RELEASE-INHIBITING NEUROSECRETORY HORMONES INTO PORTAL CIRCULATION

DISCHARGE OF HYPOPHYSEAL TROPH HORMONES

A P PP

MAGNOCELLULAR parvicellular

(10)

The neuroendocrine hypothalamus

www.itk.ppke.hu

AP PP

PI

(11)
(12)

The neuroendocrine hypothalamus

PITUITARY

G. Harris

A. Schally

J. Szentágothai

B. Halász

M. Palkovits O

B. Flerkó POA

W. Bargmann E. Scharrer

A. Schally, R. Guillemin, W. Vale, J. Rivier

(13)

PÉCS

From: Szentágothai, J., Flerkó, B., Mess, B., Halász, B., : Hypothalamic

Control of the Anterior Pituitary, Akadémiai Kiadó, Budapest, 1962

(14)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Anterior

Rat

Thalamus

POA SCN

DM VM

ARC CM

PVN

CHO LH

PG

PS ME

(15)

O V L

T

CA

OCH

GONAD REGULATION THERMOREGULATION CORTICAL ACTIVATION

SEXUAL BEHAVIOUR

(16)

The neuroendocrine hypothalamus

www.itk.ppke.hu

M

P O

A

SEXUAL BEHAVIOUR MATERNAL BEHAVIOUR

GONAD REGULATION THERMOREGULATION

(17)

P V N

ADRENAL REGULATION THYROID REGULATION

METABOLISM ADAPTATION

AUTONOMIC REGULATION GROWTH INHIBITION WATER BALANCE

ELECTROLYTE BALANCE MILK EJECTION UTERUS CONTRACTION

(18)

The neuroendocrine hypothalamus

www.itk.ppke.hu

DM VM ARC

LH ME

GROWTH REGULATION FEEDING REGULATION

SEXUAL BEHAVIOUR INHIBITION OF LACTATION

HORMONE DISCHARGE

(19)

MB TM

LEARNING-MEMORY SLEEP REGULATION

(20)

The neuroendocrine hypothalamus

www.itk.ppke.hu

PVN ANTERIOR

POSTERIOR SUBNUCLEI

SON

(21)

III.

pc MC

(22)

The neuroendocrine hypothalamus

www.itk.ppke.hu

MC

(23)

Thalamus

OCH

PVN

PL PS

PSHT

(24)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Vasopressin (antidiuretic hormone, ADH)

Blood vessels: vasoconstriction via V1a receptors Anterior pituitary: ACTH release via V1b receptors

Kidney: sodium and water reabsorption via V2 receptors Brain: neuromodulation

Oxytocin

Lactating breast: milk ejection

Uterus: smooth muscle contraction

Brain: neuromodulation

(25)
(26)

The neuroendocrine hypothalamus

www.itk.ppke.hu

P

V

N

(27)
(28)

The neuroendocrine hypothalamus

www.itk.ppke.hu

(29)

Median eminence

Ependymal Hypependymal Internal

External

Basement membrane

(30)

The neuroendocrine hypothalamus

www.itk.ppke.hu

(31)

PS

(32)

The neuroendocrine hypothalamus

www.itk.ppke.hu

C

R

H

(33)

Hypothalamic neurosecretory hormones

1. Synthesized in neurons

2. Transported via axo-plasmic flow

3. Stored and released from axon terminals 4. Secreted into the blood stream

5. Have specific receptors

6. Influence target structures via receptor-coupled mechanisms

7. Biologically active

(34)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Retrograde labelling of neurosecretory cells

FLUORO-GOLD labelling

Hypophysiotrophic somatostain neurons

(35)

Nu rer

mRNA ISHH

protein ICC

(36)

The neuroendocrine hypothalamus

www.itk.ppke.hu

(37)

Luteinizing hormone-releasing hormone (LHRH) Thyrotropin-releasing hormone (TRH)

Somatostatin

Corticotropin-releasing hormone (CRH)

Growth hormone-releasing hormone (GHRH) Dopamine

Oxytocin Vasopressin

Neurophysin I-II

Galanin

CART

(38)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Thalamus

OCH

Medial preoptic area Paraventricular nucleus

Periventricular nucleus

Arcuate nucleus

(39)

Thalamus

OCH

MPOA

ME

LHRH

(40)

The neuroendocrine hypothalamus

www.itk.ppke.hu Pulsatile secretion of GnRH and LH

Positive estrogen trigger

GnRH and LH peaks induced

by estrogen

(41)
(42)

The neuroendocrine hypothalamus

www.itk.ppke.hu

LHRH neurons in the OVLT region of the rat

LHRH

GAL

(43)

Thalamus

OCH

PV

SOM

(44)

The neuroendocrine hypothalamus

www.itk.ppke.hu

CRH

PVN-X

(45)

Thalamus

OCH

PVN

TRH

(46)

The neuroendocrine hypothalamus

www.itk.ppke.hu

Thalamus

OCH

ARC

GH-RH

(47)

SOM

GHRH

(48)

The neuroendocrine hypothalamus

www.itk.ppke.hu

PNMT-CRH

(49)

Brain H

P

Target organs A

T G

Endocrine organs

GR

CRH

(50)

The neuroendocrine hypothalamus

www.itk.ppke.hu

„Discovery is seeing what everyone has seen and

thinking what no one else has thought”

A. Szent-Györgyi

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

DURING DEVELOPMENT THESE AXONS ESTABLISH CLOSE CONNECTIONS WITH SCHWANN CELLS, THE PRINCIPAL GLIAL CELLS OF THE PERIPHERAL NERVOUS SYSTEM. SCHWANN CELLS (LEMMOCYTES) APPEAR ALONG

THEIR PROCESSES FILL THE GAPS AMONG NEURONS, PROJECT TO BLOOD VESSELS TO FORM THE BLOOD-BRAIN BARRIER, SURROUND AND ISOLATE SYNAPSING. NEURONAL ELEMENTS AND FORM THE INTERNAL

POSTGANGLIONIC NERVE FIBERS OF THE SYMPATHETIC AND PARASYMPATHETIC BRANCHES OF AUTONOMIC NERVOUS SYSTEM INNERVATE THE CARDIAC MUSCLE, SMOOTH MUSCLE BUNDLES OF VISCERAL ORGANS

UPON ACTIVATION OF THE PRESYNAPTIC ELEMENT, THE NEUROTRANSMITTERS ARE RELEASED INTO THE SYNAPTIC CLEFT5. BINDING AND RECOGNITION OF NEUROMESSENGERS BY SPECIFIC RECEPTORS

stimulation of a single pyramidal cell in rat motor cortex can evoke whisker movement. The number of action potentials determines the latency to the onset of movement, and action

synaptic rate time constant, then we can replace the time-dependent synaptic current function ( I s (t) ) with the total steady-state current (wu):. In other words, it is assumed

• Inner plexiform layer – contains the synapse between the bipolar cell axons and the dendrites of the ganglion and amacrine cells.. • Inner nuclear layer – contains the nuclei

8) Biosynthesis of nonessential amino acids: Cys, homocystein, Tyr and Phenylketonuria (PKU) 9) Degradation of amino acids: fate of carbon skeleton and the nitrogen (the