• Nem Talált Eredményt

AlassiationofSPNmodels,basedonthe nature of the assoiated marking proess, has been proposedbyCiardoet al

N/A
N/A
Protected

Academic year: 2023

Ossza meg "AlassiationofSPNmodels,basedonthe nature of the assoiated marking proess, has been proposedbyCiardoet al"

Copied!
12
0
0

Teljes szövegt

(1)

Andrea Bobbio Miklos Telek

Dipartimentodi Elettronia Departmentof Teleommuniations

Universitadi Bresia TehnialUniversity of Budapest

25123 Bresia, Italy Budapest, Hungary

email: bobbioiil64.ilea.it email: telekplan.hit.bme.hu

Abstrat

The paper disusses a lass of Markov Regenera-

tive Stohasti Petri Nets(MRSPN) haraterized by

the fatthatthe stohastiproesssubordinatedtotwo

onseutiveregenerationtimepointsisasemi-Markov

reward proess. This lass of SPN's an aommo-

date transitions with generally distributedring time

andassoiatedmemorypoliyofbothenablingandage

type,thusgeneralizingandenompassingalltheprevi-

ous denitionsof MRSPN.An uniedanalytial pro-

edure is developed for the derivation of losed form

expressions for the transient and steady state proba-

bilities.

Key words: Stohasti Petri Nets, semi-Markov

RewardModels,Markov regenerativeproesses.

1 Introdution

In the usual denition of Stohasti Petri Nets

(SPN) all the timed transitions have assoiated an

exponential random variable, so that their modeling

poweris onnedto Markoviansystems. The analy-

sis ofstohastisystemswithnon-exponentialtiming

is of inreasinginterestin the literatureand requires

thedevelopmentofsuitablemodelingtools. Reently,

someeorthasbeendevotedtogeneralizetheonept

of SPN, by allowing the ring times to be generally

distributed.

An extensivedisussion ofthe semantisof SPN's

withgenerallydistributedringtimesisin[1℄,whereit

is shown that eah non-exponentialtransitionshould

be assigned a memory poliy hosen among three

proposed alternatives: resampling, enabling and age

memory. We refer to this model as Generally Dis-

tributed TransitionSPN (GDTSPN).Ingeneral,the

stohastiproessunderlyingaGDT SPNistooom-

plex to be analytially tratable, while a simulative

solutionhasbeeninvestigatedin[16℄.

With the aim of providing a modeler's represen-

representation [17℄, variousrestritionsofthegeneral

GDT SPN model have been disussed in the litera-

ture[5℄. AlassiationofSPNmodels,basedonthe

nature of the assoiated marking proess, has been

proposedbyCiardoet al. [9℄.

A partiular ase of non-Markovian SPN, is the

lass of Deterministi and SPN (DSPN) dened in

[3℄. A DSPNis anon-MarkovianSPN,where allthe

transitions are exponential, but in eah marking, at

mostonetransitionisallowedtohaveassoiatedade-

terministi ring time with enabling memory poliy.

Onlythe steady stateanalysis waselaborated in [3℄.

Animprovedsteadystatealgorithmwaspresentedin

[20℄,andsomestruturalextensionswereinvestigated

in[10℄. Choietal. [7℄havereognizedthatthemark-

ing proess underlying a DSPN is a Markov Regen-

erativeProess[11℄ forwhihalosedform transient

solutionis available. This observation has opened a

veryfertileline ofresearh aimedat thedenition of

solvable lassesof models whose underlying marking

proessisaMarkov RegenerativeProess(MRP),and

thereforereferredtoasMarkov RegenerativeStohas-

tiPetri Nets(MRSPN).

Following this line, Choi et al. [8℄ have investi-

gatedalassofmodelsinwhihonetransitionwitha

generallydistributedringtimeandenablingmemory

poliyisallowedto beenabledineahmarking. Ger-

man and Lindemann [15℄ haveproposed anumerial

solution of the same model based on the method of

supplementaryvariables[12℄.

In the mentioned referenes, the generally dis-

tributed (or deterministi) transitions must be as-

signedaringpoliyofenablingmemorytype 1

. The

enablingmemorypoliy means[1℄that wheneverthe

transition beomes enabled anew, its ring distribu-

1

Theenablingmemoryassumptionisrelaxedin[10℄forvan-

ishingmarkingsonly.Sinevanishingmarkingsaretransversed

inzerotime,thisassumptiondoesnot modifythebehaviorof

(2)

outringinpriorenablingperiodsislost. Inthelan-

guage of queueing systems the above mehanism is

referredto aspreemptive repeat dierent (prd)poliy

[14,19℄.

The possibility of inorporating non-exponential

transitions with assoiated age memory poliy has

been rst explored in [6℄. The age memory is able

to apture preemptive mehanisms of resume (prs)

type, where an interrupted ativity is reovered by

keepingmemory of theworkalready performed, and

upon restart, only the residual servie needs to be

ompleted. Thismodelingextensionisruialinon-

netionwithfaulttolerantanddependableomputing

systems, where aninterruptedtaskmust be resumed

from thepointitwasinterrupted.

The paper investigates the nature of GDT SPN

withombinedmemorypoliiessuhthattheunderly-

ingmarkingproessisaMRP.Thetimed transitions

oftheGDT SPNarepartitionedintotwosubsets: the

EXPtransitionshaveanexponentiallydistributedr-

ingtime,whilefortheGENtransitionstheringtime

is anyrandom variable(inluding thedeterministi).

TheativityyleofaGENtransitionistheintervalof

time in whih thetransition has a non-nullmemory.

Westudy the ase of MRSPN with non overlapping

ativityyles, suhthat the markingproesssubor-

dinatedtotwoonseutiveregenerationtimepointsis

a semi-Markovreward proess. The proposed model

generalizesandenompassesallthepreviousformula-

tionsofMRSPN.

InSetion2,theonditionsunderwhihthemark-

ing proess underlying aGDT SPN isa MarkovRe-

generativeproess are set in verygeneral terms. In

Setion 3, theinuene of thememory poliy onthe

ativity yle ofa transition is disussed. InSetion

4, the subordinated proess in a MRSPN with non-

overlappingativityylesisharaterized,andauni-

ed analytial solution for the transient and steady

statetransitionprobabilitymatrixisproposedinSe-

tion5.

2 Markov Regenerative Stohasti

Petri Nets

A marked Petri Net is a tuple PN = (P;T;I;O;

H;M); where: P = fp

1

;p

2

;:::;p

np

g is the set of

plaes,T =ft

1

;t

2

;:::;t

nt

gisthesetoftransitionsand

I,OandHaretheinput,theoutputandtheinhibitor

funtions,respetively. M=fm

1

;m

2

;:::;m

np gisthe

marking. Thegenerientrym

i

isthenumberoftokens

in plaep

i

,inmarkingM.

Input andoutputarshaveanarrowheadontheir

destination,inhibitorarshaveasmallirle. Atran-

inputplaes ontainsat least as manytokens asthe

multipliity of the input funtion I and eah of its

inhibitorinputplaes ontainsfewertokens thanthe

multipliity of theinhibitorfuntion H. An enabled

transition res by removing as many tokens as the

multipliity of the input funtion I from eah ordi-

naryinput plae, and adding asmany tokens asthe

multipliity ofthe output funtion O toeah output

plae. The number of tokens in an inhibitor input

plaeisnotaeted.

AmarkingM 0

is saidto beimmediately reahable

from M, when is generated from M by ring an en-

abledtransition. ThereahabilitysetR(M

0

)istheset

ofallthemarkingsthatanbegeneratedfromanini-

tialmarkingM

0

byrepeatedappliationoftheabove

rules. If the set T omprisesboth timed and imme-

diate transitions, R(M

0

) is partitioned into tangible

(noimmediatetransitionsareenabled)andvanishing

markings. Sinetheeet of vanishingmarkingsan

be inorporatedinto the tangible ones, aording to

[2℄, wedo notaountin this paperfor thepresene

ofimmediatetransitions. LetN betheardinalityof

thetangible subsetofR(M

0 ).

Denition 1 - A stohasti GDT SPN is amarked

SPNinwhih [1 ℄:

To any timed transition t

k

2 T is assoiated a

random variable

k

,with umulativedistribution

funtion G

k

(x), modeling the time neededby the

ativityrepresentedbyt

k

toomplete, whenon-

sideredin isolation.

Eah timed transition t

k

is attahed a memory

variable a

k

and a memory poliy; the memory

poliy speies the funtional dependene of the

memoryvariable onthe pastenablingtimeofthe

transition.

Ainitial probability isgiven onR(M

0 ).

Thememory variable a

k

, assoiated to transition t

k ,

isafuntionalthatdependsonthetimeduringwhih

t

k

hasbeenenabled. Thememoryvariables together

withtheir memorypoliy univoally speifyhowthe

underlying stohasti proessis onditioned upon its

pasthistory. Thesemantisofdierentmemorypoli-

ieshasbeendisussedin [1℄wherethreealternatives

havebeenproposedandexamined.

Resampling poliy - The memory variable a

k is

resetto zeroatanyhangeofmarking.

Enabling memory poliy - The memory variable

a aounts for the elapsed time sine the last

(3)

k

sitiont

k

isdisabled(evenwithoutring)theor-

respondingenablingmemoryvariableisreset.

Age memory poliy - The memory variable a

k

aountsfortheelapsedtimesinethelastepoh

in whiht

k

hasbeenenabledwithoutring. The

memory variableis resetonlywhen t

k

res(and

notwhenitissimplydisabled).

Attheentraneinanewtangiblemarking,theresid-

ual ring time is omputed for eah enabled timed

transition givenitsmemoryvariable,sothat thenext

marking isdeterminedby theminimal residualring

time among the enabled transitions (rae poliy [1℄).

Beause ofthememorylessproperty, thevalueofthe

memoryvariableisirrelevantindeterminingtheresid-

ualringtimeforexponentialtransitions, sothatthe

three mentionedpoliiesare ompletelyequivalentin

this ase. Hene,for anexponentialtransitiont

k , we

assume, onventionally,that theorrespondingmem-

ory variableis alwaysidentiallyzero. Weanthere-

forepartitionthesetofthetransitionsintoEXPtran-

sitionswithassoiatedanexponentialr.v. andidenti-

ally zeromemoryvariable,andGENtransition with

assoiatedany r.v. (inludingthedeterministiase)

andmemoryvariableinreasingintheenablingmark-

ings.

Denition 2 - The stohasti proess underlying a

GDT SPN is alled the marking proess M(x) (x

0). M(x) isthe markingof the GDT SPNattimex.

A singlerealizationofthemarkingproessM(x)an

bewrittenas:

R = f(

0

;M

0 );(

1

;M

1

);:::;(

i

;M

i );:::g

whereM

i+1

isamarkingimmediatelyreahablefrom

M

i ,and

i+1

i

isthesojourntimein markingM

i .

With theabovenotation, M(x)=M

i for

i

x <

i+1 .

Assertion 1 - If at time +

i

of entrane in a tan-

gible marking M

i

all the memory variables a

k (k =

1;2;:::;n

t

) are equal to zero,

i

is a regeneration

time pointfor the markingproess M(x).

Infat,ifallthememoryvariablesareequalto0,the

future ofthemarkingproessisnotonditionedupon

thepastanddependsonlyonthepresentstate;hene,

theMarkovpropertyholds.

Let us denote by

n

thesequene ofthe regenera-

(n)

point

n

is alled a regeneration marking. The se-

quene (

n

;M

(n)

)is aMarkovrenewalsequene and

the markingproess M(x) is aMarkov regenerative

proess[11,8, 9℄. FromAssertion1followsthat:

i) ifallthetransitionsareEXPallthememoryvari-

ablesare identially zero so that any instant of

timeisaregenerationtimepoint,andtheorre-

spondingproessisaCTMC;

ii) if at any ring all the memory variables of the

GENtransitionsarereset,theorrespondingpro-

essreduestoasemi-Markovproess.

iii) only GEN transitions are relevant to determine

theourreneofregenerationtimepoints.

Denition3 -AGDT SPN,for whih anembedded

Markovrenewalsequene(

n

;M

(n)

)exists,isalleda

Markov Regenerative Stohasti Petri Net (MRSPN)

[8℄.

Sine (

n

; M

(n)

) is a Markov renewal sequene, the

followingequalitieshold:

PrfM

(n+1)

=j;(

n+1

n )xj

M

(n)

=i;

n

;M

(n 1)

;

n 1

;:::; M

(0)

;

0 g =

PrfM

(n+1)

=j;(

n+1

n

)xjM

(n)

=i;

n g =

PrfM

(1)

=j;

1

xjM

(0)

=ig

(1)

TherstequalityexpressestheMarkovproperty(i.e.

in any regeneration time point the ondition on the

past is ondensed in the present state). The se-

ondequalityexpressesthetimehomogeneity(i.e. the

probabilitymeasuresareindependentofatranslation

alongthe time axis). Aording to [8, 11℄, we dene

thefollowingmatrixvaluedfuntionsV (x)=[V

ij (x)℄,

K(x)=[K

ij

(x)℄andE(x)=[E

ij

(x)℄(allofdimension

NN),suhthat:

V

ij

(x)=PrfM(x)=jjM(

0 )=ig

K

ij

(x)=PrfM

(1)

=j;

1

xjM(

0 )=ig

E

ij

(x)=PrfM(x)=j;

1

>xjM(

0 )=ig

(2)

V (x)isthetransitionprobabilitymatrixandprovides

theprobabilitythatthestohastiproessM(x)isin

markingj at timex givenit wasin i at x =0. The

matrixK(x)istheglobal kerneloftheMRPandpro-

(4)

time point is

1

and the next regeneration marking

is M

(1)

= j given markingi at

0

=0. Finally, the

matrixE(x)istheloal kernelsinedesribesthebe-

haviorofthemarkingproessM(x)insidetwoonse-

utive regeneration time points. The generielement

E

ij

(x)providestheprobabilitythattheproessstays

in statej at time x startingfrom i at

0

=0before

thenextregenerationtimepoint. Fromtheabovedef-

initions:

X

j [K

ij

(x) +E

ij

(x)℄ = 1

The transient behavior ofthe MRSPN anbeevalu-

ated bysolving the following generalizedMarkovre-

newalequation(in matrixform)[11,8℄:

V (x) = E(x) + KV (x) (3)

whereKV (x)isaonvolutionmatrix,whose(i;j)-

th entryis:

[K V (x)℄

ij

= X

k Z

x

0 dK

ik (y)V

k j

(x y) (4)

BydenotingtheLaplaeStieltjestransform(LST)of

afuntionF(x)byF

(s)= R

1

0 e

sx

dF(x),Equation

(3) beomesintheLST domain:

V

(s) = E

(s)+ K

(s)V

(s) (5)

whose solutionis:

V

(s) =[I K

(s)℄

1

E

(s) (6)

Ifthesteadystatesolutionexists,itanbeevaluated

as lim

s!0 V

(s).

As speiedby(2), K(x) andE(x) depend onthe

evolution of the marking proess between two on-

seutive regeneration time points. By virtue of the

time homogeneity property (1), we an always de-

ne thetwosuessiveregenerationtimepointstobe

x=

0

=0andx=

1 .

Denition 4 - The stohasti proess subordinated

tostatei (denotedbyM i

(x)) istherestrition ofthe

marking proessM(x) for x

1

given M(

0 )=i:

M i

(x) = [M(x) : x

1

;M(

0 )=i℄

AordingtoDenition4,M i

(x)desribestheevolu-

tionofthePNstartingattheregenerationtimepoint

x=0intheregenerationmarkingi,uptothenextre-

generation time point

1

. Therefore, M i

(x)inludes

allthemarkingsthatanbereahedfromstateibe-

fore thenextregenerationtime point. Theentries of

thei-throwofthematriesK(x)andE(x)aredeter-

minedbyM i

(x).

3 Non-Overlapping AtivityCyles

The analytial tratability of themarking proess

depends on the struture of the subordinated pro-

esses whih, in turns, is related to the topology of

thePN andtothememorypoliiesof theGENtran-

sitions.

Denition5 -AGENtransitionisdormantinthose

markingsinwhih theorresponding memoryvariable

is equal to zero and is ative in those markings in

whih the memory variable isgreater thanzero. The

ativityyleofaGENtransitionistheperiodoftime

in whih a transition is ative between two dormant

periods.

Let us onsider a single generi GEN transition t

g .

The ativity yle of t

g

is inuened by its memory

poliy,and anbeharaterizedin thefollowingway.

ResamplingMemory - Ift

g

isaresamplingmem-

ory transition, its ativity yle starts as soon ast

g

beomesenabled,andendsattherstsubsequentr-

ingof anytransition (inludingt

g

itself). Therefore,

duringtheativityyleofaresamplingmemorytran-

sitionnohange ofmarkingispossible.

Enabling Memory - If t

g

is an enabling memory

transition its ativity yle starts as soon as t

g be-

omes enabledwhen dormant, and ends either when

t

g

res,orwhenitbeomesdisabledbytheringofa

ompetitivetransition. Duringtheativityyle the

marking anhange inside the enabling subset of t

g

(where the enabling subset is dened as the subset

of onneted markings in whih t

g

is enabled). The

memoryvariable assoiated to t

g

growsontinuously

duringtheativityylestartingfrom0. Weassoiate

arewardvariableequalto1toallthestatesintheen-

ablingsubset,sothatthevalueofthememoryvariable

isrepresentedbythetotalaumulatedreward.

Age Memory - If t

g

is an age memory transition,

itsativityylestartsassoonast

g

beomesenabled

whendormant,andendsonlyattheringoft

g itself.

Duringtheativityyleofanagememorytransition

there is no restrition on the markings reahable by

the markingproess. The age memory poliy is the

onlypoliyinwhihatransitionanbeativeevenin

markingsinwhihitisnotenabled. Duringtheativ-

ityyle,thememoryvariableisnon-dereasinginthe

sensethatitinreasesontinuouslyin thosemarkings

inwhiht

g

isenabledandmaintainsitsonstantposi-

tivevalueinthosemarkingsinwhiht

g

isnotenabled.

Inorder to trakthe enabling/disablingondition of

t

g

duringitsativityyle,weintrodueareward(in-

diator)variablewhihisequalto1inthosemarkings

in whih t is enabledand equalto 0in those mark-

(5)

TableI -Charaterizationoftheativityyleofa

GENtransition t

g

Memory Resamp. Enabling Age

poliy

startof t

g

t

g

enabled t

g

enabled

ativity enabled when when

yle dormant dormant

endof ring ringor ring

ativity ofany disabling of

yle transition oft

g

t

g

reahable starting markingsin any

markings marking enabling reahable

only subset marking

memory inreasing inreasing inreasing

variable oronstant

ingsin whiht

g

isnotenabled. Thememoryvariable

orrespondstothetotalaumulatedreward.

The above features are summarized in Table 1. By

virtue of Assertion 1, a regeneration time point for

the marking proess ours when a ring auses all

theativeGENtransitions tobeomedormant.

Denition 6- Atransitionisdominant if itsativ-

ity ylestritlyontains the ativityylesof allthe

ative transitions.

Denition 7- AMRSPN withnon-overlapping a-

tivityylesisaMRSPNinwhih alltheregeneration

periodsare dominatedby asingletransition: any two

suessive regeneration time points orrespond to the

startandtotheendoftheativeyleofthedominant

transition.

Denition 7, inludes the possibility that the ative

yles of GEN transitions are ompletely ontained

intotheativeyleofthedominantone,heneallow-

ing thesimultaneous enablingofdierentGENtran-

sitionsinsidethesamesubordinatedproess. Inorder

further restrit the subordinated proess inside any

non-overlappingativityyletobesemi-Markov.

Assertion 2 - The subordinated proess underlying

any non-overlapping ativity yle is semi-Markov if

atanyringinside the ativityyleofthe dominant

transitionallthememoryvariablesoftheGENtransi-

tionarereset. Thisfathappens ifthetransitionsan

be partitioned into three lasses (exlusive, ompeti-

tiveandonurrent)andonlyexlusiveorompetitive

transitions areallowedtobeGEN[13 ℄.

Foraregenerationperiodwithoutinternalstatetran-

sitions (Markovian or semi-Markovian regeneration

period) any of theenabled transitions anbehosen

tobethedominantone.

4 The Subordinated Proess

Atx=

0

=0adominantGENtransitiont

g (with

memoryvariable a

g

and ring time

g

) startsits a-

tivityylein statei(a

g

=0). Thesuessiveregen-

erationtime point

1

is the end ofthe ativity yle

oft

g

aordingto therulessummarizedin TableI.

Let Z i

(x) (x 0) be theproess dened overthe

states reahable from i during the ativity yle of

t

g

, and r i

the orresponding binary reward vetor.

We assume in the following that Z i

(x) is a semi-

Markov proess aording to Assertion 2. The sub-

ordinatedproessM i

(x)(Denition4)oinideswith

Z i

(x)whentheinitialstateisstateiwithprobability

1(PrfZ i

(0) =ig=1). The memoryvariable a

g in-

reasesatarater i

j

(whihiseitherequalto0orto1)

whenM i

(x)=j.

Weonsiderseparatelythefollowingasesdepend-

ingwhetherthedominanttransitiont

g

isofenabling

oragememorytype.

4.1 Enabling type dominant transition

The dominant GEN transition t

g

is of enabling

type. The statespae of thesubordinated proess is

partitioned into two subsets: R i

ontains the states

inwhiht

g

isontinuouslyenabled,andR i

ontains

thestatesinwhiht

g

beomesdisabledbytheringof

aompetitive transition. The rewardvetor isequal

to 1 for j 2 R i

and 0elsewhere. The next regener-

ation time point ours beauseone of the following

twomutuallyexlusiveevents:

t

g

res: this event an be formulatedas aom-

pletion time problem [4℄ when the aumulated

reward(memoryvariable)a

g

reahesan absorb-

ingbarrier equaltotheringrequirement

g .

t is disabled: this eventanbeformulatedasa

(6)

r r

A

A

A U

? 6

? 6 s

1

s

2

s

3 t

1 t

2

t

2 t

1 t

1 t

2

2010

1110

0210

a) b)

p

1

p

2

r

A

A

A U t

3 t

4 p

3

p

4

s

4

s

5

s

6 2001

1101

0201 -

-

-

t

3

t

3

t

3 t

4

t

4

t

4

Z Z

L L

A A A K

A A A K

a a

*

Figure1-a)PNoftheperiodiallyselftestedM/M/1/k;

b)orrespondingreahabilitygraph.

rst passage time in the subset R i

, and there-

fore R i

is made absorbing in the subordinated

proess.

Wefurtherpartiularizethefollowingtwoases:

CASE A - no other GEN transitions are ativated

during the ativity yle of t

g

. The subordinated

proess Z i

(x) isaCTMC.

CaseAistheoneonsideredintheDSPNmodel

dened in [3,7,20℄, andin thesuessiveexten-

sionstogeneraldistributionselaboratedin[8,15℄.

All the examplesreported in the mentioned pa-

persbelongtothis ase.

CASEB-duringtheativityylesoft

g

,Assertion2

issatisedandthesubordinatedproessisasemi-

Markov proess.

The Markovian (semi-Markovian) regeneration

period belongs to Case A (Case B), where R i

ontainsonlythe initial state. Thesteady state

analysis of aMRSPN with semi-Markoviansub-

ordinated proesshasbeenonsideredin[9℄.

Example1-Aperiodially self-testedsystem.

A system is exeuting tasks aording to a

M/M/1/kqueue(Figure1a). Plaep

1

representsuser

thinking andp

2

isthequeueinludingthetaskunder

servie. t

1

is the exponential submitting time with

markingdependentratem

1

,andt

2

istheexponen-

tialservietimewithrate. p

3

representsthesystem

waiting forthetest andp

4

thesystemunder test. t

3

is thedeterministitesting interval, andt

4

theexpo-

nentiallydistributed testdurationwithrateÆ. When

t

3

restheexeutionoftheM/M/1/kqueueisfrozen

untilthetest isompleted (t res). Thestatespae

Æ

Æ

Æ

Æ

q

Æ

Æ Æ s

1

s

2

s

4 t

1 t

3

t

2 t

4

1010

1001

0101

a) b)

p

1

p

2 p

4 p

3

q

?

?

?

?

?

?

?

?

Æ

s

3

J

J

J

J

^ J J J

J

J

J

J

^ J J J

/ 0110

b

t

1

t

1 t

2 t

3

t

3 t

4 t

4

Figure2-PreemptiveM/G/1/2/2queuewithtwolasses

ofustomers.

of the PN of Figure 1a with k = 2 ustomers is in

Figure 1b. All thestates anbe regenerationstates,

but notall the transitions provideregeneration time

points. States s

4 , s

5 and s

6

are alwaysregeneration

statesfrom whih asingleEXP transitionis enabled

(CaseA).Statess

1 ors

2 ors

3

areregenerationstates

onlywhenenteredbyring t

4

,i.e. whenthe ativity

yleofthedominantGENtransitiont

3

starts. Dur-

ingthe ativity yleof t

3

, the subordinated proess

anmove among s

1 , s

2 and s

3

whih thereforeform

thesubordinated CTMC(CaseA).

Iftransitionst

1 andt

2

areGENwithenablingmem-

orypoliy,thefeatures ofstatess

4 ,s

5 ands

6 donot

hange,whilethesubordinatedproessduringthea-

tivityyleoft

3

beomessemi-Markovianthusrepre-

sentingaCaseBexample.

4.2 Age type dominant transition

Thesituation in whih thedominant GENtransi-

tiont

g

is ofagetypehasbeenaddressedfortherst

timein [6℄. Thestatespaeof thesubordinatedpro-

essR i

ontainsallthestatesreahableduringthea-

tivityyleoft

g

,andthedisablingsubsetR

isempty

(the onlyriterionfortheterminationofthe ativity

yleistheringoft

g

). Therewardvetorisequalto

1forthestatesj2R i

inwhiht

g

isenabledand0for

thestatesj2R i

inwhiht

g

isnotenabled. Thering

oft

g

anbeformulatedasaompletiontimeproblem

[4℄ when the aumulated reward(memory variable)

a

g

reahestheringrequirement

g

. Wefurtherpar-

tiularizethefollowingtwoases:

CASE C - During the ativity yle of t

g

no other

GEN transitions are ativated and the subordi-

natedproessisarewardCTMC.

(7)

CASED - duringtheativityylesoft

g

,Assertion

2issatisedandthesubordinatedproessisaRe-

ward semi-Markovproess.

Example 2 - Preemptive M/G/1/2/2 with dierent

ustomers

Inthisexample,CasesCandDaremixedinasin-

glePN[5℄. ThePNofFigure2amodelsaM/G/1/2/2

queueinwhihthejobssubmittedbyustomer2have

higherpriorityandpreemptthejobssubmittedbyus-

tomer1. Theserverhasaprsserviedisipline. Plae

p

1 (p

3

)representsustomer1(2)thinking,whileplae

p

2 (p

4

)representjob 1(2) under servie. Transitions

t

1 and t

3

are EXPandrepresentthe submissionofa

job of type 1or 2, respetively. t

2 and t

4

are GEN

transitions,andrepresenttheompletionofservieof

ajob oftype1or2,respetively. Aprs serviedisi-

plineismodeledbyassigningtot

2 andt

4

anagemem-

orypoliy. Theinhibitorarfromp

4 tot

2

modelsthe

desribedpreemptionmehanism: assoonasatype2

jobjoinsthequeuethetype1jobeventuallyunderser-

vie isinterrupted. Thereahabilitygraphof thePN

ofFigure2aisinFigure2b. Underaprsservie,after

ompletionofthetype2job,theinterruptedtype1job

isresumedontinuingthenewservieperiodfromthe

pointreahed just before thelast interruption. From

Figure 2b, it is easily reognized that s

1 , s

2 and s

3

anallberegenerationstates,whiles

4

anneverbea

regenerationstate(ins

4

atype2job isalwaysinex-

eution sothat itsorrespondingmemoryvariablea

2

is never0). Onlyexponentialtransitionsare enabled

in s

1

and the next regeneration states an be either

s

2 ors

3

depending whether t

1 ort

3

resrst. From

state s

3

thenext regenerationmarkinganbeeither

states

1 ors

2

dependingwhetherduringtheexeution

ofthetype2jobatype1jobdoesrequireservie(but

remainsblokeduntilompletionofthetype2job)or

doesnot. Thesubordinated proessis aCTMC, and

belongstoCaseC.Froms

2

thenextregenerationstate

anbeonlys

1

,butmultipleyles(s

2 -s

4

)anour

dependingwhethertype2jobsarrivetointerruptthe

exeutionofthetype1job. Thesubordinatedproess

isaSMP(t

4

isGEN),andbelongstoaseD.

5 Unied Transient Analysis

TheglobalandloalkernelsK(x)andE(x)anbe

evaluated rowbyrow. Inthis setion, weprovidean

uniedanalytialproedurefordeterminingin losed

form the entries of a generi row i, given that i is

a regeneration marking whose subordinated proess

is asemi-Markov rewardproess as desribed in the

previoussetion.

Let Q i

(x) = [Q i

k `

(x)℄ be the kernel of the subor-

dinatedsemi-Markovproess(Z i

(x)). Z i

(x)startsin

markingM

i

(Z (0)=i),sothattheinitialprobability

vetorisV i

0

=[0;0;:::;1

i

;:::; 0℄(avetorwithall

theentriesequalto0butentryiequalsto1). Forno-

tationalonvenienewedonotrenumberthestatesin

Z i

(x)sothatallthesubsequentmatrixfuntionshave

thedimensions(NN)(ardinalityof R(M

0 )),but

with the signiant entries loated in position (k;`)

only, withk;`2R i

[R i

. Wedenoteby H thetime

durationuntiltherstembeddedtimepointin Z i

(x)

fromtimex=0.

Letusx thevalueof theringrequirement

g

=

w, and let us dene the following matrix funtions

P i

(x;w),F i

(x;w),D i

(x;w)and i

:

P i

k `

(x;w) = PrfZ i

(x)=`2R i

;

1

>xj

Z i

(0)=k2R i

;

g

=wg

F i

k `

(x;w) = PrfZ i

(

1

)=`2R i

;

1 x;t

g resj

Z i

(0)=k2R i

;

g

=wg

D i

k `

(x;w) = PrfZ i

(

1

)=`2R i

;

1 xj

Z i

(0)=k2R i

;

g

=wg

i

k `

= Prfnexttangiblemarkingis`j

urrentmarkingisk; t

g resg

(7)

By the above denitions, the entries P i

k `

(x;w) and

F i

k `

(x;w) are signiant only for k;` 2 R i

and are

0 otherwise; the entries D i

k `

(x;w) are signiant for

k2R i

and`2R i

,andare0otherwise.

P i

k `

(x;w) is theprobabilityof beingin state `2

R i

attimex beforeabsorptioneitherat thebar-

rierworintheabsorbingsubsetR i

,startingin

statek2R i

atx=0.

F i

k `

(x;w)istheprobabilitythatt

g

resfromstate

`2R i

(hitting theabsorbingbarrier win `) be-

forex,startinginstatek2R i

at x=0.

D i

k `

(x;w)is theprobabilityofrstpassagefrom

astatek 2 R i

to a state` 2R i

before hitting

thebarrierw, startingin statek2R i

at x=0.

i

isthe branhing probabilitymatrixand rep-

resentsthe suessor tangible marking ` that is

reahedbyring t

g

in statek2R i

(the ringof

t

g

in the subordinated proess M i

(x), an only

ourinastatek inwhih r i

k

=1).

From(7),itfollowsforanyx:

X

i i [P

i

k `

(x;w)+ F i

k `

(x;w)+ D i

k `

(x;w)℄ = 1

(8)

g

funtion of the r.v.

g

assoiated to the transition

t

g

,theelementsofthei-throwofmatriesK(x) and

E(x) anbeexpressedasfollows,asafuntionofthe

matriesP i

(x;w),F i

(x;w)andD i

(x;w):

K

ij (x) =

Z

1

w=0 [

X

k 2R i

F i

ik

(x;w) i

k j +

D i

ij

(x;w)℄dG

g (w)

E

ij (x) =

Z

1

w=0 P

i

ij

(x;w)dG

g (w)

(8)

In order to avoidunneessarily umbersome nota-

tion in the following derivation, we neglet the ex-

pliitdependeneonthepartiularsubordinatedpro-

essZ i

(x),byeliminatingthesupersripti. Itishow-

evertaitlyintended, that allthequantities r, Q(x),

P(x;w), F(x;w), D(x;w), ,R andR

referto the

spei proess subordinated to the regenerationpe-

riod startingfrom statei.

5.1 Derivation of P(x;w), F(x;w) and

D(x;w)

The derivation of these matrix funtions is de-

sribedin moredetailin [21, 6℄ andfollowsthesame

pattern of theompletion time analysis presentedin

[19,4℄.

Theorem1- FortheringprobabilityF

k `

(x;w)the

following doubletransformequationholds:

F

k `

(s;v) = Æ

k ` r

k

[1 Q

k

(s +vr

k )℄

s+ vr

k

+

X

u2R Q

k u

(s +vr

k )F

u`

(s;v)

(9)

Proof - Conditioningon H =h and

g

=w, let us

dene:

F

k `

(x;wjH=h) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

: Æ

k ` U

x w

r

k

if:hr

k w

X

u2R dQ

k u (h)

dQ

k (h)

F

u`

(x h;w hr

k )

if:hr

k

<w

(10)

In (10), two mutually exlusive events are identi-

ed. Ifr 6=0andhr w,asojourntimeequalsto

ingtime(nextregenerationtimepoint)is

1

=w=r

k .

If hr

k

< w then atransition ours to stateu with

probability dQ

k u (h)=dQ

k

(h) and theresidual servie

(w hr

k

)shouldbeaomplishedstartingfromstate

uattime(x h). TakingtheLSTtransformwithre-

spettox(denotingthetransformvariablebys),the

LTtransform withrespetto w (denoting the trans-

form variable by v) of (10) and unonditioning with

respettoH,(10)beomes(9). 2

Theorem2- ThestateprobabilityP

k `

(x;w)satises

the following doubletransformequation:

P

k `

(s;v) = Æ

k `

s[1 Q

k

(s +vr

k )℄

v(s +vr

k )

+

X

u2R Q

k u

(s +vr

k )P

u`

(s;v)

(11)

Proof - Conditioningon H =h, and

g

=w letus

dene:

P

k `

(x;wjH =h) =

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

: Æ

k `

U(x) U

x w

r

k

if:hr

k w

Æ

k `

[U(x) U(x h)℄+

X

u2R dQ

k u (h)

dQ

k (h)

P

u`

(x h;w hr

k )

if:hr

k

< w

(12)

ThederivationofthematrixfuntionP(x;w)based

on (12)follows the samepattern asfor the funtion

F(x;w)[21℄. 2

Theorem3- Theprobability D

k `

(x;w)of rstpas-

sage into R

satises the following double transform

equation:

D

k `

(s;v) = 1

v Q

k l

(s+ vr

k )+

X

u2R Q

k u

(s + vr

k )D

u`

(s;v)

(13)

Proof - Conditioningon H =h, and

g

=w letus

dene:

(9)

D

k `

(x;wjH=h) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if:hr

k w

dQ

k ` (h)

dQ

k (h)

U(x h)+

X

u2R dQ

k u (h)

dQ

k (h)

D

u`

(x h;w hr

k )

if:hr

k

< w

(14)

The derivation of the matrix funtion D(x;w)

basedon(14)followsthesamepatternasforthefun-

tionF(x;w)[21℄. 2

5.2 ThesubordinatedproessisaReward

CTMC

Let us onsider the partiular ase in whih the

subordinated proess Z(x) is a reward CTMC with

innitesimal generator A = fa

k `

g. Let us suppose

that the states numbered 1;2;:::;m belong to R

(1;2;:::;m2R )andthestatesnumberedm+1;m+

2;:::;nbelongto R

(m+1;m+2;:::;n2R

). By

this orderingof statesA an be partitioned into the

followingsubmatriesA=

B C

U

1 U

2

whereBon-

tains theintensityof thetransitions inside R ,andC

ontainstheintensityofthetransitionsfromRtoR

.

U

1 andU

2

refertotheportionofthestatespaenot

involvedintheurrentsubordinatedmarkingproess,

andare,thus,notinuentialfortheproblemathand.

Forthisreason,theirentriesanbeassumedequalto

zero.

Corollary 4 - The entries of the matrix funtions

P

k `

(x;w), F

k `

(x;w) and D

k `

(x;w), in double trans-

formdomain, takethe followingexpression:

(s+vr

k )F

k `

(s;v) = Æ

k ` r

k +

X

u2R a

k u F

u`

(s;v)

(s+vr

k )P

k `

(s;v) = Æ

k ` s

v +

X

u2R a

k u P

u`

(s;v)

(s+vr

k )D

k `

(s;v) = a

k `

v +

X

u2R a

k u D

u`

(s;v)

(15)

Proof - Thekernel(transitionprobabilitymatrix) of

thegivenCTMC anbewritten as:

Q

k ` (x) =

>

<

>

: a

k `

a

k k (1 e

ak kx

) if:k 6= `

0 if:k = `

(16)

andinLST domain:

Q

k ` (s) =

8

>

<

>

: a

k `

s a

k k

if:k 6= `

0 if:k = `

(17)

witha

k k

= P

`2R i

[R i

;`6=k a

k `

By substituting (17) into (11), (9) and (13), the

orollaryisproved.2

Equations(15)anberewrittenin matrixform:

F

(s;v) = (sI+vR B) 1

R

P

(s;v) = s

v

(sI+vR B) 1

D

(s;v) = 1

v

(sI+vR B) 1

C

where I is theidentity matrixand R is thediagonal

matrixof therewardrates (r

k

); thedimensionsof I,

R,B,FandPare(mm),andthedimensionsofC

andDare(m(n m)).

6 Numerial Results

Anumerialderivationofthetransientstateprob-

abilities of the M/D/1/2/2 system desribed in Ex-

ample 2 of Setion 4.2 is provided. We onsider in

details the partiular ase in whih the GEN transi-

tionst

2 and t

4

areassumed to bedeterministi with

duration,while t

1 andt

3

are EXPwithparameter

[6℄. The reahabilitygraphin Figure 2b omprises

4states. Let us build upthe K

(s)and E

(s) ma-

triesrowbyrow,takingintoonsiderationthatstate

s

4

anneverbearegenerationmarkingsineatype2

jobwithnonzeroagememoryisalwaysative.

i)- The startingregenerationstate iss

1

- Nodeter-

ministi transitions areenabled: the state is Marko-

vian and the next regeneration state an be either

states

2 ors

3

. Thenonzeroelementsof the1-st row

ofmatriesK

(s)andE

(s)taketheform:

K

12 (s) =

s +2

; K

13 (s) =

s +2

E

11 (s) =

s

;

(10)

ii) - Thestartingregenerationstateiss

2

-Transition

t

2

isdeterministisothat thenextregenerationtime

point is the epoh of ring of t

2

. The subordinated

proess M 2

(x) omprises states s

2 and s

4

and is a

semi-Markovproess(CaseD) sinet

4

is determinis-

ti. Thekernelofthesemi-Markovproessis:

Q

(s)=

0 0 0 0

0 0 0

s +

0 0 0 0

0 e s

0 0

The rewardvetorisr (2)

= [0;1;0;0℄, andtheonly

nonzero entryof the branhing probability matrix is

(2)

21

=1. ApplyingEquations(9)and(11)weobtain

thefollowingresultsforthenonzeroentries:

F

22

(s;w) =

1

s+w+ e s

P

22

(s;w) =

s=w

s+w+ e s

P

24

(s;w) =

(1 e s

)=w

s+w+ e s

Applying (8), and after inverting the LT transform

with respet to w, the LST matrix funtions K

(s)

andE

(s)beome:

K

21

(s) = e

(s+ e s

)

E

22 (s) =

s[1 e

(s+ e s

)

s+ e s

E

24 (s) =

(1 e s

)[1 e

(s+ e s

)

s+ e s

iii)- Thestartingregenerationstateiss

3

- Thesub-

ordinated proessM 3

(x)isaCTMC(CaseC),hene

theresultsofSetion5.2apply. Theinnitesimalgen-

erator oftheCTMC is:

A=

0 0 0 0

0 0 0 0

0 0

0 0 0 0

and the reward vetor is r (3)

= [0;0;1;1℄. The

branhing probabilities arising from the ring of t

are

31

= 1 and

42

= 1. Applying the rst and

seondequation in (15),the nonzeroentries takethe

form:

F

33

(s;w) =

1

s++w

F

34

(s;w) =

(s+w)(s++w)

P

33

(s;w) =

s

w(s++w)

P

34

(s;w) =

s

w(s+w)(s++w)

Inverting the above equations with respet to w,

takingintoaountthebranhingprobabilities,yields:

K

31

(s) = e (s+)

K

32

(s) = e s

(1 e

)

E

33 (s) =

s

s+ (1 e

(s+)

)

E

34 (s) =

s+ (1

s

s+ e

)e s

The time domain probabilities are alulated by

rstderivingmatrixV

(s)from(6)usingastandard

pakage for symboli analysis (e.g. MATHEMAT-

ICA), and then numerially inverting the resulting

LST expressionsresortingto the Jagerman'smethod

[18℄. Theplotofthestateprobabilitiesversustimefor

statess

1 and s

4

is reported in Figure 3,for a deter-

ministi servieduration =1 andfor twodierent

valuesofthesubmittingrate=0:5and=2.

7 Conlusion

The GDT SPN model, whose semantishas been

disussedin[1℄,providesanaturalenvironmentforthe

denitionofalassofanalytiallytratableMRSPN's.

ThepaperhasonsideredtheaseofGDT SPNwith

non-overlappingativity yles, suh that the mark-

ing proess subordinated to theativity yle of the

dominanttransitionisarewardsemi-Markovproess.

Theinlusionofarewardvariableinthedesriptionof

thesubordinated proesshasprovento beveryee-

tivetehniquefor extendingthe desriptivepowerof

themodel to age memorypoliies, and forproviding

auniedproedure fortheanalytialsolution.

(11)

0.5 1 1.5 2 2.5 3 3.5 t 0

0.2 0.4 0.6 0.8 1 st. prob.

λ = 0.5 λ = 2 p (t) 1

p (t)

4

Figure 3 - Transient behavior of the state probabilities

for thepreemptiveM/D/1/2/2 systemwithdierentus-

tomers.

Aknowledgements

ThisworkhasbeenpartiallysupportedbyPHARE-

ACCORD under grant No. H-9112-0353 and by

OTKA undergrantNo. W-015859.

Referenes

[1℄ M.AjmoneMarsan,G.Balbo,A.Bobbio,G.Chi-

ola, G.Conte,andA. Cumani. Theeet ofex-

eution poliies onthesemantis andanalysis of

stohastiPetrinets.IEEETransationsonSoft-

ware Engineering,SE-15:832{846,1989.

[2℄ M. Ajmone Marsan, G. Balbo, and G. Conte.

A lass of generalized stohasti Petri nets for

theperformaneevaluationofmultiproessorsys-

tems. ACM Transationson Computer Systems,

2:93{122,1984.

[3℄ M.AjmoneMarsanandG.Chiola.OnPetrinets

with deterministiand exponentiallydistributed

ring times. In Leture Notes in Computer Si-

ene, volume 266, pages 132{145. Springer Ver-

lag,1987.

[4℄ A. Bobbio andM. Telek. Task ompletion time.

In Proeedings 2nd International Workshop on

Performability Modellingof ComputerandCom-

muniationSystems(PMCCS2), 1993.

[5℄ A. BobbioandM.Telek. Computationalrestri-

tiontimes. InD.HammerK.EhtleandD.Pow-

ell, editors, First European Dependable Comput-

ingConferene (EDCC-1),pages131{148,1994.

[6℄ A. Bobbio and M. Telek. Transient analysis of

a preemptive resume M/D/1/2/2 throughPetri

nets. Tehnial report, Departmentof Teleom-

muniations -TehnialUniversityof Budapest,

April1994.

[7℄ H. Choi, V.G. Kulkarni, and K. Trivedi. Tran-

sient analysis of deterministi and stohasti

Petri nets. In Proeedings of the 14-th Interna-

tional Conferene on Appliation and Theory of

Petri Nets,Chiago,June1993.

[8℄ H. Choi,V.G.Kulkarni,andK.Trivedi. Markov

regenerativestohasti Petri nets. Performane

Evaluation,20:337{357,1994.

[9℄ G. Ciardo, R. German, and C. Lindemann. A

haraterizationof thestohasti proess under-

lying a stohasti Petri net. In Proeedings In-

ternational Workshop onPetri Netsand Perfor-

maneModels - PNPM93, pages170{179.IEEE

ComputerSoiety,1993.

[10℄ G.CiardoandC.Lindemann. Analysis ofdeter-

ministi and stohasti Petri nets. In Proeed-

ings International Workshop on Petri Nets and

Performane Models - PNPM93, pages160{169.

IEEEComputerSoiety,1993.

[11℄ E. Cinlar. Introdution to Stohasti Proesses.

Prentie-Hall,EnglewoodClis,1975.

[12℄ D.R. Cox. The analysis of non-markovian sto-

hastiproessesbythe inlusion of supplemen-

taryvariables.ProeedingsoftheCambridgePhy-

losophial Soiety,51:433{440,1955.

[13℄ J.BehtaDugan, K.Trivedi,R. Geist,and V.F.

Niola. Extended stohasti Petri nets: appli-

ations and analysis. In Proeedings PERFOR-

MANCE '84,Paris,1984.

[14℄ D.P.Gaver. Awaiting linewith interruptedser-

vie, inluding priorities. Journal of the Royal

StatistialSoiety,B24:73{90,1962.

[15℄ R. German and C. Lindemann. Analysis of

stohasti Petri nets by the method of supple-

mentary variables. Performane Evaluation, 20:

(12)

hasti Petri nets. Performane Evaluation, 6:

189{204,1986.

[17℄ B.R. Haverkort and K. Trivedi. Speiation

tehniquesforMarkovRewardModels. Disrete

Event Dynami Systems: Theory and Applia-

tions,3:219{247,1993.

[18℄ D.L. Jagerman. An inversion tehnique for the

Laplae transform. The Bell System Tehnial

Journal,61:1995{2002,Otober1982.

[19℄ V.G. Kulkarni, V.F.Niola, and K.Trivedi. On

modelingtheperformaneandreliabilityofmulti-

modeomputersystems.TheJournalofSystems

andSoftware,6:175{183,1986.

[20℄ C.Lindemann.Animprovednumerialalgorithm

foralulatingsteady-statesolutionsofdetermin-

isti and stohasti Petri net models. Perfor-

maneEvaluation,18:75{95,1993.

[21℄ MiklosTelek.Someadvanedreliabilitymodelling

tehniques. Phd Thesis, HungarianAademy of

Siene, 1994.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Since the beginning of the nineties, Hungary has been the only country in the Central European region in which every one of the elected governments has been able to fulfil

Analysis of the generated aerosol with ICP-MS has been shown to provide the sensitivity required for the determination of sample constituents present in traces only, such as

• Mostly resource-constrained scheduling has been addressed. Even in the works that dealt with time-constrained scheduling, the problem was often solved by reducing it to a set

The UNA program [8] for the analysis of time invariant linear networks has been written by the author of this paper in the BASIC-PLUS language. It can be run in the

The steady state analysis of an induction motor &#34;\vith asymmetrical cage has been discussed by VAS [4], from the paper the quadrature and direct axis rotor

The steady state performance of the asymmetrical slip ring machine will be studied by the aid of a new equivalent circuit derived by using symmetrical

A method has been given to directly determine the transfer fnnction of sampled-data control systems. on condition that the steady-state error should disappear in

In this study the effect of the characteristics of the oscillating motion, the surface pressure and the surface hardness has been inyestigated in the steady stage