• Nem Talált Eredményt

(x−E(X))2and for theLpabsolute deviation of a random variable

N/A
N/A
Protected

Academic year: 2022

Ossza meg "(x−E(X))2and for theLpabsolute deviation of a random variable"

Copied!
6
0
0

Teljes szövegt

(1)

A NOTE ON THE UPPER BOUNDS FOR THE DISPERSION

YU MIAO AND GUANGYU YANG

COLLEGE OFMATHEMATICS ANDINFORMATIONSCIENCE

HENANNORMALUNIVERSITY

453007 HENAN, CHINA. yumiao728@yahoo.com.cn DEPARTMENT OFMATHEMATICS

ZHENGZHOUUNIVERSITY

450052 HENAN, CHINA. study_yang@yahoo.com.cn

Received 08 January, 2007; accepted 24 July, 2007 Communicated by N.S. Barnett

ABSTRACT. In this note we provide upper bounds for the standard deviation(σ(X)),for the quantityσ2(X) + (xE(X))2and for theLpabsolute deviation of a random variable. These improve and extend current results in the literature.

Key words and phrases: Dispersion.

2000 Mathematics Subject Classification. 60E15, 26D15.

1. INTRODUCTION

Letf : [a, b]⊂ R → R+ be the probability density function (p.d.f.) of the random variable XandE(X)andσ(X)the mean and standard deviatin respectively.

In [2], the authors gave upper bounds for the dispersionσ(X)and forσ2(X) + (x−E(X))2 in terms of the p.d.f. for a continuous random variable. Recently, Agbeko [1] also obtained some upper bounds for the same two quantities, namely,

(1.1) σ(X)≤min{max{|a|,|b|},(b−a)},

and

(1.2) p

σ2(X) + (x−E(X))2 ≤2 min{max{|a|,|b|},(b−a)}, for allx∈[a, b].

Both the work of Barnett et al. [2] and Agbeko [1] exclude the discrete case. In this present note, we remove this exclusion and improve the bounds of (1.1) and (1.2) in Section 2. In Section 3, we consider the Lp absolute deviation. The symbolism 1A denotes the indicator function on the setA.

The authors wish to thank the referee for his suggestions in improving the presentation of these results.

010-07

(2)

2. STANDARDDEVIATION

LetPbe the distribution of the random variableX, then the expectation ofXcan be denoted by

E(X) = Z b

a

xdP(x) and the dispersion or standard deviation ofXby

σ(X) = Z b

a

x2dP(x)− Z b

a

xdP(x) 2

.

Theorem 2.1. LetXbe a random variable witha≤X ≤b. Then we have (2.1) σ(X)≤min{max{|a|,|b|}, M(a, b,E(X))(b−a)}, where

M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

.

Proof. Sinceσ2(X) =E(X−E(X))2, by the Fubini’s theorem, we have E(X−E(X))2 =E

Z (XE(X))2

0

ds (2.2)

=E Z

0

1{(X−E(X))2≥s}ds

= Z

0

P (X−E(X))2 ≥s ds

=

Z (b−E(X))2

0

P(X−E(X)≥√ s)ds

+

Z (E(X)−a)2

0

P −(X−E(X))≥√ s

ds.

For anyλ >0, we have

Eeλ(XE(X))≤e−λE(X)

b−E(X)

b−a eλa+ E(X)−a b−a eλb

=eλ(a−E(X))

1− E(X)−a

b−a + E(X)−a b−a eλ(b−a)

,eL(λ), where

L(λ) =λ(a−E(X)) + log

1− E(X)−a

b−a + E(X)−a b−a eλ(b−a)

. The first two derivatives ofL(λ)are

L0(λ) = a−E(X) + (E(X)−a)eλ(b−a)

1− E(X)−ab−a +E(X)−ab−a eλ(b−a)

=a−E(X) + E(X)−a

(1− E(X)−ab−a )e−λ(b−a)+ E(X)−ab−a ,

(3)

L00(λ) = (b−E(X))(E(X)−a)e−λ(b−a)

(1− E(X)−ab−a )e−λ(b−a)+ E(X)−ab−a 2.

Noting that

L00(λ)≤ (b−a)2

4 ,

then by Taylor’s formula, we have

L(λ)≤L(0) +L0(0)λ+ (b−a)2

8 λ2 = (b−a)2 8 λ2. Therefore from Markov’s inequality, we have

P X−E(X)≥√ s

≤ inf

λ>0e

Eeλ(X−E(X)) (2.3)

≤ inf

λ>0exp

−√

sλ+(b−a)2 8 λ2

= exp

− 2s (b−a)2

.

Similarly,

P(−(X−E(X))≥√

s)≤exp

− 2s (b−a)2

.

From (2.2), it follows that E(X−E(X))2 (2.4)

=

Z (b−E(X))2

0

P (X−E(X))≥√ s

ds+

Z (E(X)−a)2

0

P −(X−E(X))≥√ s

ds

Z (b−E(X))2

0

exp

− 2s (b−a)2

ds+

Z (E(X)−a)2

0

exp

− 2s (b−a)2

ds

= (b−a)2 2

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

.

Furthermore,

E(X−E(X))2 =E(X2)−(E(X))2 ≤E(X2)≤max{|a|2,|b2|},

which, by (2.4), implies the result.

Remark 2.2. In fact, by, M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

≤ 1

√2

2−e−2 <1,

min{max{|a|,|b|}, M(a, b,E(X))(b−a)} ≤min{max{|a|,|b|},(b−a)}, and is, therefore, a tighter bound than (1.1). IfE(X) = (b+a)/2, then

M(a, b,E(X)) = 1

√2 s

2−exp

−2(b−E(X))2 (b−a)2

−exp

−2(E(X)−a)2 (b−a)2

=p

1−e−1/2 < 1

√2,

(4)

which means that under some assumptions, this bound is better than the result of [2] for the case f ∈L1([a, b]).

Corollary 2.3. LetXbe a random variable witha≤X ≤b, then for anyx∈[a, b],

(2.5) p

σ2(X) + (x−E(X))2 ≤min{2 max{|a|,|b|}, N(a, b,E(X))(b−a)}, where

N2(a, b,E(X)) = 2− 1 2

exp

−2(b−E(X))2 (b−a)2

+ exp

−2(E(X)−a)2 (b−a)2

.

Proof. It is clear that(x−E(X))2 ≤(b−a)2and from the proof of Theorem 2.1, we know that σ2(X)+(x−E(X))2

2− 1

2

exp

−2(b−E(X))2 (b−a)2

+ exp

−2(E(X)−a)2 (b−a)2

(b−a)2. Furthermore,

σ2(X) + (x−E(X))2 =E(X−x)2 ≤max{(x−y)2, x, y ∈[a, b]}.

The remainder of the proof follows as Theorem 1.2 in Agbeko [1], giving max{|x−y|, x, y ∈[a, b]} ≤2 min{max{|a|,|b|},(b−a)}.

3. Lp ABSOLUTE DEVIATION

In fact by the method in Section 2, we could extend the case of Lp absolute deviation, i.e., the following quantity,

σp(X) = E(|X−E(X)|p)1/p. We have the following

Theorem 3.1. Let X be a random variable andp ≥ 1. Assume thatE|X|p < ∞, then itsLp absolute deviation has the following estimation forp >2,

p(X))p ≤min{|b−a|p, M1(a, b, p, X)}, where

M1(a, b, p, X) = (b−a)2 2

1−exp

−2(|b−E(X)|p∧1) (b−a)2

(3.1)

+ (|b−E(X)|p− |b−E(X)|p∧1)

×exp

−2(|b−E(X)|p∧1)2/p (b−a)2

+ (b−a)2 2

1−exp

−2(|a−E(X)|p∧1) (b−a)2

+ (|a−E(X)|p− |a−E(X)|p ∧1)

×exp

−2(|a−E(X)|p∧1)2/p (b−a)2

. If1≤p < 2, then we have

p(X))p ≤min{|b−a|p, M2(a, b, p, X)},

(5)

where

(3.2) M2(a, b, p, X)

=|b−E(X)|p∧1 + (b−a)2 2

exp

−2|b−E(X)|p ∧1 (b−a)2

−exp

−2|b−E(X)|p (b−a)2

+|a−E(X)|p∧1 + (b−a)2 2

exp

−2|a−E(X)|p ∧1 (b−a)2

−exp

−2|a−E(X)|p (b−a)2

. Proof. On one hand, by the Fubini’s theorem, we have

E|X−E(X)|p =E

Z |X−E(X)|p

0

(3.3) ds

=E Z

0

1{|XE(X)|p≥s}ds

= Z

0

P(|X−E(X)|p ≥s)ds

=

Z |b−E(X)|p

0

P (X−E(X))≥s1/p ds +

Z |E(X)−a|p

0

P −(X−E(X))≥s1/p ds.

From the estimation (2.3), we have

E|X−E(X)|p =

Z |b−E(X)|p

0

P(X−E(X)≥s1/p)ds+

Z |E(X)−a|p

0

P(−(X−E(X))≥s1/p)ds

Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds+

Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds.

(Case:p > 2.) By simple calculating, we have Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds

Z |b−E(X)|p∧1

0

exp

− 2s (b−a)2

ds+

Z |b−E(X)|p

|b−E(X)|p∧1

exp

− 2s2/p (b−a)2

ds

≤ (b−a)2 2

1−exp

−2(|b−E(X)|p∧1) (b−a)2

+ (|b−E(X)|p− |b−E(X)|p∧1) exp

−2(|b−E(X)|p∧1)2/p (b−a)2

and with the same reason

Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds≤ (b−a)2 2

1−exp

−2(|a−E(X)|p∧1) (b−a)2

+ (|a−E(X)|p− |a−E(X)|p∧1) exp

−2(|a−E(X)|p∧1)2/p (b−a)2

.

(6)

(Case1≤p <2) In this case, we have Z |b−E(X)|p

0

exp

− 2s2/p (b−a)2

ds

Z |b−E(X)|p∧1

0

exp

− 2s2/p (b−a)2

ds+

Z |b−E(X)|p

|b−E(X)|p∧1

exp

− 2s (b−a)2

ds

≤ |b−E(X)|p∧1 + (b−a)2 2

exp

−2|b−E(X)|p∧1 (b−a)2

−exp

−2|b−E(X)|p (b−a)2

and with the same reason Z |E(X)−a|p

0

exp

− 2s2/p (b−a)2

ds≤ |a−E(X)|p∧1 + (b−a)2

2

exp

−2|a−E(X)|p ∧1 (b−a)2

−exp

−2|a−E(X)|p (b−a)2

. On the other hand, for anyp≥1, it is clear that

E|X−E(X)|p ≤(b−a)p.

From the above discussion, the desired results are obtained.

Remark 3.2. M1(a, b, p, X)andM2(a, b, p, X)are sometimes better than(b−a)p, e.g., ifp >2, takingE(X) = (a+b)/2and letting1/2<(b−a)/2<1, then

M1(a, b, p, X) = (b−a)2 1−exp

−21−p(b−a)p−2

<(b−a)p 1−exp

−21−p(b−a)p−2

<(b−a)p.

Further, if1≤p < 2, takingE(X) = (a+b)/2and letting(b−a)/2<1, then M2(a, b, p, X) = 2

(b−a)p 2p

= 21−p(b−a)p ≤(b−a)p. REFERENCES

[1] N.K. AGBEKO, Some p.d.f.-free upper bounds for the dispersionσ(X)and the quantityσ2(X) + (x−E(X))2, J. Inequal. Pure and Appl. Math., 7(5) (2006), Art. 186. [ONLINE:http://jipam.

vu.edu.au/article.php?sid=803].

[2] N.S. BARNETT, P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Inequal. Pure and Appl. Math., 2(1) (2001), Art. 1. [ONLINE: http://jipam.vu.edu.au/article.php?

sid=117].

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

We first apply the Cuadras identity to relax the monotonicity assumption of β(x) for a single random variable in the Chebyshev inequality, as shown in the following theorem:..

We first apply the Cuadras identity to relax the monotonicity assumption of β(x) for a single random variable in the Chebyshev inequality, as shown in the following theorem:..

In this note, by using some inequalities of normal random variables in probability theory, we will establish the following two inequalities whose special cases refine inequalities

TRIF, Note on certain inequalities for means in two variables, J. Pure

Given a random variable, X, we denote its expectation by E [X], its variance by Var [X], and use F X and F X −1 to denote its (cumulative) distribution function and the inverse of

ROUMELIO- TIS, Some inequalities for the dispersion of a random variable whose pdf is defined on a finite interval, J. Pure

In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.. 2000 Mathematics

In this note, a weighted Ostrowski type inequality for the cumulative distribution function and expectation of a random variable is established.. Key words and phrases: Weight