• Nem Talált Eredményt

growth agonists hormone-releasing of with hormone Protection rat cardiac of neonatal myocytes against radiation-induceddamage Pharmacological Research

N/A
N/A
Protected

Academic year: 2022

Ossza meg "growth agonists hormone-releasing of with hormone Protection rat cardiac of neonatal myocytes against radiation-induceddamage Pharmacological Research"

Copied!
8
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Pharmacological Research

jo u r n al ho me p a g e :ww w . e l s e v i e r . c o m / l o c a t e / y p h r s

Protection of neonatal rat cardiac myocytes against radiation-induced damage with agonists of growth hormone-releasing hormone

Laura Kiscsatári

a

, Zoltán Varga

a

, Andrew V. Schally

b

, Renáta Gáspár

c,d

, Csilla Terézia Nagy

e

, Zoltán Giricz

e

, Péter Ferdinandy

d,e

, Gabriella Fábián

a

, Zsuzsanna Kahán

a,1

, Anikó Görbe (MD PhD)

c,d,e,∗,1

aDepartmentofOncotherapy,UniversityofSzeged,Szeged,Hungary

bVeteransAffairsMedicalCenter,MiamiFL,USAandDepartmentsofPathologyandMedicine,DivisionsofHematology/Oncology,UniversityofMiami MillerSchoolofMedicine,Miami,FL,USA

cCardiovascularResearchGroup,DepartmentofBiochemistry,UniversityofSzeged,Szeged,Hungary

dPharmahungaryGroup,Szeged,Hungary

eDepartmentofPharmacologyandPharmacotherapy,SemmelweisUniversity,Budapest,Hungary

a r t i c l e i n f o

Articlehistory:

Received12January2016 Receivedinrevisedform5July2016 Accepted25July2016

Availableonline30July2016

Keywords:

Cardiacmyocytes Cardioprotection GHRHagonists GHRH/SV1receptors Radiationdamage

a b s t r a c t

Despitethegreatclinicalsignificanceofradiation-inducedcardiacdamage,experimentalinvestigationof itsmechanismsisanunmetneedinmedicine.Beneficialeffectsofgrowthhormone-releasinghormone (GHRH)agonistsinregenerationofthehearthavebeendemonstrated.Theaimofthisstudywasthe evaluationofthepotentialofmodernGHRHagonisticanalogsinpreventionofradiationdamageinanin vitrocardiacmyocyte-basedmodel.

Culturesofcardiacmyocytesisolatedfromnewbornrats(NRVM)wereexposedtoaradiationdoseof 10Gy.Theeffectsoftheagonisticanalogs,JI-34andMR-356,ofhumanGHRHoncellviability,prolifera- tion,theirmechanismofactionandtheproteinexpressionoftheGHRH/SV1receptorswerestudied.

JI-34andMR-356,hadnoeffectoncellviabilityorproliferationinunirradiatedcultures.However,in irradiatedcellsJI-34showedprotectiveeffectsoncellviabilityatconcentrationsof10and100nM,and MR-356at500nM;butnosuchprotectiveeffectwasdetectedoncellproliferation.Bothagonisticanalogs decreasedradiation-inducedROSlevelandJI-34interferedwiththeactivationofSAFE/RISKpathways.

UsingWesternblotanalysis,a52kDaproteinisoformofGHRHRwasdetectedinthesamplesinboth irradiatedandunirradiatedcells.

Since GHRHagonistic analogs,JI-34 andMR-356 alleviatedradiation-induceddamageof cardiac myocytes,theyshouldbetestedinvivoaspotentialprotectiveagentsagainstradiogenicheartdamage.

©2016ElsevierLtd.Allrightsreserved.

1. Introduction

Radiation-inducedheartdiseasesincludingischemicheartdis- ease,congestiveheartfailure,electricalconductdefectsandvalve abnormalities are typically late consequences of radiotherapy, occurringmanyyearsordecadesaftertreatment[1,2].Suchadverse effectsmaydevelopafterchestirradiationinchildhoodcancers, lung,esophagealorbreastcancerorHodgkin’slymphoma[3,4].

These often unattributed complications cause deterioration in qualityoflifeoflong-survivingpatients,extrahealthcarecosts,

Correspondingauthorat:CardiovascularResearchGroup,DepartmentofBio- chemistry,UniversityofSzegedDómtér9,Szeged,H-6720,Hungary.

E-mailaddress:aniko.gorbe@pharmahungary.com(A.Görbe).

1 Bothauthorscontributedequally.

andleadoccasionallytofataloutcomes.Althoughtheapplicationof modernradiotherapyplanninganddeliverysignificantlyimproves theradiationprotectionoftheheart,inmanycases,theentireheart ora partofit stillreceivesadosesufficienttocauselong-term adverseeffects.Notably,theevolvinguseofintensity-modulated radiotherapy(IMRT)willincreasethevolumeofnon-targettissues irradiatedwithlowdose.

Thedevelopmentofradiation-inducedheartdiseasesisdose- dependent, and is more likely if radiation exposure occurs at a younger age[5,6].Radiogenic ischemic heart disease,due to atheroscleroticchangesofthecoronaryarteries,isindistinguish- ablefromotheretiologiesthatcauseanginaormyocardialinfarct.

Robustepidemiologicaldataonsuchcardiovasculardiseaseorigi- natesfrombreastcancerstudies.Darbyetal.,analyzingtheSEER databaseofmorethan300,000patients,foundthatamongthose http://dx.doi.org/10.1016/j.phrs.2016.07.036

1043-6618/©2016ElsevierLtd.Allrightsreserved.

(2)

860 L.Kiscsatárietal./PharmacologicalResearch111(2016)859–866

whoreceivedadjuvantradiotherapy,thepatientswithleftsided tumors had a significantly increased risk of cardiac death due tocardiovasculardiseasesormyocardialinfarction,appearing10 yearsaftertheirradiation,andincreasingfurtherthereafter[7,8].It seemslikely,thattheradiogenicdamageofthemacrovasculature oftheheartoccursaftertheexposureofthesestructurestorela- tivelyhighdoses.Animalexperimentsrevealedinflammatoryand oxidativedamageleadingtotheformationoftypicalatheroscle- roticplaques[4,9].Radiation-induceddiffusemyocardiumchanges includemicrovasculatureabnormalities,degenerative cardiomy- ocyte and interstitial fibrotic changes. Such abnormalities may developafter evenlow doseradiationexposure, and canresult in thedeterioration of theheart’s pumpfunction or in cardiac conductionabnormalities[10].Cilliersetal.,investigatedradiation- inducedtime-dependent changes of themyocardium in Wistar rats[11].Interestingly,theradiationinducedstructuralchanges oftheendothelialcells and myocytesdevelopedearlyafterthe irradiation,andwereaccompaniedbyatransitorydepressionof themechanicalfunctionoftheheart;100–180daysaftertheirra- diation,onlyinterstitialinflammationandfibrosiswerepresent.

Radiationinducesinflammatory responses,andactivatessenes- cencepathways;there is a needtotest new agents thatcould preventthesecellularresponses.

Growthhormone-releasing hormone (GHRH) wasfirst iden- tified in humans as a hypothalamic peptide hormone which primarilyregulatestheproductionandreleaseofpituitarygrowth hormone(GH)[12].Recently,theexpressionofGHRHhasalsobeen demonstratedinaseriesofnormalandcanceroustissues[13].The pituitaryreceptorofGHRH(pGHRHR)belongstotheclasstype-IIG protein-coupledreceptors[14]thebindinginducestheproduction ofcAMPthattriggersaseriesofintracellularsignalingcascades.

Thepresenceofitssplicevariants(mainlySV1,lessimportantly SV2,SV3)hasbeendemonstrated ina seriesofperipheralnor- maltissuesand avarietyofcancers[15–17].Stimulationofthe GHRHRresultsintheactivationoftheERK1/2,AKT,JAK2/STAT3, PI3K/AKTpathways [18]. Numerous experimentaldata support theautocrine-paracrineroleoftheGHRHsysteminregeneration oftissue.GHRHhasbeenshowntopromotesurvivalandinhibit apoptosisincardiomyocytesinvitrodespiteserumstarvationor isoproterenol treatment [19]. The expression and activation of pGHRHRafterGHRHadministrationweredemonstratedin both adultratventricularmyocytesandinH9c2embryonic ratheart cells,whichexpressedpGHRHR[20].

GHRHpreventeddeathofadultratcardiacmyocytesinduced by serum starvation or by isoproterenol treatment which was antagonizedbyantagonisticanalogofGHRH,JV-1-36.Thesepro- tectiveeffectsweremediatedbytheactivationoftheextracellular signal−regulatedkinase(ERK)1/2andphosphoinositide-3kinase (PI3K)/Akt signaling pathways. Additionally, isolated rat hearts subjectedtoischemia-reperfusion(I/R)injurywereprotectedby theadministrationofGHRHbeforeischemia,whichwasabolished ifco-administeredwithJV-1-36[19].Pennaatal.demonstrated similarresultsintheisolatedratheartmodel;theadministrationof GHRHattheonsetofreperfusionreducedthesizeoftheinfarct,and thiseffectwasabrogatedifantagonisticanalogofGHRH,JV-1-36 wasco-administered[21].

Kanashiro-Takeuchidemonstrated thattheadministration of the GHRH agonist, JI-38, reversed ventricular remodeling and enhancedfunctional recoveryaftermyocardial infarction,while reducingexperimentalinfarctsizeinrats[22].Theseeffectswere absentifaGHRHantagonistwasco-administered,orbytreatment withGHonly.TheseeffectspointtotheroleofaGHRHR-mediated mechanism.

FollowingthedemonstrationofbeneficialresultsoftheJ.I.class ofagonisticanalogsofGHRHinmultiplefields,newclassesofGHRH agonistshavebeendevelopedwiththeultimategoalofclinicaluse

Table1

Cellsurvivalinfunctionofradiationdose.The24-hcultureswereexposedtodiffer- entradiationdoses(5,10,15,20Gy),andcelllosswasdetectedatdifferentlatency times(0,24,48,72,96,120h).Dataareexpressedinpercentofunirradiatedcontrol (mean±SEM).

Cellsurvivalinratiotocontrol(%)

Timeafterirradiation 5Gy 10Gy 15Gy 20Gy

0h 100±2 98±2 95±2 96±3

24h 76±2 75±3 79±4 89±6

48h 63±2 50±2 43±1 44±1

72h 58±3 49±3 43±3 42±2

96h 71±7 78±8 53±3 49±3

120h 50±2 38±1 37±1 39±2

[23].Asnotedsomeofthemhavebeentestedintheexperimental myocardialinfarctratmodel,whichconfirmedthecardioprotective effectsofGHRHagonistsbymeasurementofinfarctsizeandheart function[23,24].

Sinceradiationtriggers similarmechanismsas othercellular stresses,such asstarvation and hypoxia,we hypothesized that GHRHanditsreceptor(s)mighthavearoleintherecoveryafter irradiation.WethereforesetouttostudytheeffectsofGHRHandits agonisticanalogsinvitro,innewbornratcardiomyocytes(NRVM), underdifferentconditions.

2. Materialsandmethods

TheseexperimentsconformtheNationalInstitutesofHealth GuidefortheCareandUseofLaboratoryAnimals(NIHPub.No.85- 23,Revised1996)andwasapprovedbythelocalethicscommittee attheUniversityofSzeged.

2.1. Preparationofculturesofprimaryneonatalratcardiac myocytes

Neonatalratcardiacmyocytes(NRVM)wereisolatedasprevi- ouslydescribed[25].Briefly,newbornWistarratsweredisinfected with70%ethanol andthenkilledbycervicaldislocation.Hearts wereexcisedand transferredtocold phosphate-bufferedsaline (PBS),pH7.2.Theventricleswereseparated,mincedgentlybyfine forcepsanddigestedin0.25%trypsinsolution(5ml/heart)at37C for25min.Thecellsuspensionwasthencentrifugedat2000RPMat 4Cfor15min.Pelletswereresuspendedingrowthmedium(Dul- becco’sMEMsupplementedwith10%fetalbovineserum[FBS],0.1%

glutamine,0.1%Antibiotic/Antimycoticsolution)andplatedonto6- wellplatestoeliminatefibroblastsat37Cfor90min(pre-plating step).Cellsofthesupernatantwerethenre-platedontofresh6-and 96-wellplatesandflasks(5×105,15×104and4×106cells/well, respectively).NRVMweresuppliedwith2ml,150␮land20mlper wellgrowthmediumwithorwithout10%FBSin6-well,96-well platesandflasks,respectively,andwereincubatedat37Cand5%

CO2.Theexperimentswerestarted24hafterplating.

2.2. Irradiationofcellcultures

Thecellcultureswereirradiated24hafterplating,usingalinear accelerator(SiemensPrimus,SiemensMedicalSolutions,USA).The plateswereirradiatedwith6MVenergyphotonbeamswithoppos- ingfieldtechnique.Toachieveahomogeneousdosedistributionin thesample,2cmthickPMMAsheetswereapplied.

2.3. TestingofGHRHagonisttreatment

First, theeffects ofsynthetic humanGHRH(hGHRH) (Bertin Pharma,MontignyleBretonneux,France)wastestedatconcen- trationsof1,10,50,and100nMinunirradiatedandirradiatedcell

(3)

Fig.1.Viabilityofunirradiated(A)andirradiated(B)NRVMafterhGHRHtreat- ment(48h).TheeffectsofhGHRHontheproliferationofunirradiatedandirradiated NRVMareshowninpanelsCandD,respectively.Dataareexpressedasmean±SEM incomparisontocontrol(100%);*p<0.05,n=8–16ineachgroup.

cultures.Next,GHRHagonists,JI-34andMR-356,werestudiedboth inunirradiatedandirradiatedcellculturesatconcentrationsof1, 10,50,100and500nMincultureswithorwithout1%FBSsupple- mentation(forJI-34).Cellviabilityandproliferationassayswere performed48hthereafter.

NRVMculturesmaintainedinFBS-supplementedmediumwere alsostudiedforGHRHRexpressionandpossibleinvolvedsignaling pathwaysviaWesternblotanalysesasfollows:1.non-irradiated, non-treated, 2. non-irradiated, JI-34-treated,3. irradiated, non- treated,4.irradiatedandJI-34-treated;intheseexperiments,JI-34 wasappliedatthemosteffectiveconcentrationof10nM.Cellswere collected1and48haftertheirradiation.

2.4. Cellviabilityandproliferationassays

Bothtestswereperformedfollowingtherespectiveexperimen- talprocedure(irradiationand/ortreatment).Fortheassessment of cell viability,NRVM were incubated with1␮Mcalcein ace- toxymethyl ester (calcein-AM, Sigma, St Louis, MO) at room temperaturefor30min.Fluorescenceintensitywasmeasuredwith afluorescenceplatereader(FluostarOptima,BMGLabtech,Orten-

Fig.2.Viabilityofunirradiated(A)andirradiated(B)NRVMafterJI-34treatment (48h).Bromodeoxyuridine(BrdU)proliferationassayperformedinunirradiated(C) andirradiatedNRVM(D),48hafterthetreatmentwithJI-34.Dataareexpressed asmean±SEM;incomparisontounirradiateduntreatedcontrol(100%).*p<0.05, n=8–16ineachgroup.

berg,Germany)[26].Cellviabilitywascomparedtothatofvehicle control.Eachplatecontainednon-irradiatedcolumnsservingas technicalcontrols.

FortheassessmentofcellproliferationtheNRVMcultureswere incubatedandlabeledwith10␮l/well5-bromo-2-deoxyuridine (BrdU) (Cell Proliferation ELISA, BrdU (colorimetric), Roche, Germany) labelingsolution at 37C, 5% CO2 for 20h. Then the labelingmediumwasremoved,thecellsfixed,andtheDNAwas denaturedinonestep withfix/denaturesolution.Thenananti- BrdUmousemonoclonalantibodywasaddedfollowedbyanHRP conjugatedsecondaryantibodytodetecttheincorporatedBrdU.

Theabsorbanceintensitywasmeasuredwithaplatereader.

2.5. Westernblot

Aftertheindicatedtimeofincubation,cellcultureswerewashed withD-PBSandincubatedfor5mininhomogenizationbuffer(1x RIPA supplemented with a protease and phosphatase inhibitor cocktail).Thencellswerescraped, collectedand sonicatedwith an ultrasound homogenizer for 10s on ice. The homogenate wascentrifugedat 11800RPM, 4Cfor 10min(HettichUniver- sal320RCentrifuge,AndreasHettichGmbHandCo.,Tuttlingen,

(4)

862 L.Kiscsatárietal./PharmacologicalResearch111(2016)859–866

Fig.3. NRVMcellviabilityculturedwithorwithout1%FBS.Unirradiatedandirra- diatedcultureswerecomparedafter48hoflatencytime(A).Viabilityofirradiated nrcmNRVMcellsafterJI-34treatment,culturedwithoutFBSsupplementation;data areexpressedasmean±SEM;incomparisontocontrol(100%).*p<0.05,n=8–16 ineachgroup(B).

Germany);thesupernatantwastransferredintoaconcentrating tube(Amicon® Ultra-4Centrifugal FilterUnits, 10kDaMWCO), and was centrifuged again at 6300 RPM, 4C for 20min. The concentratedsamplewascollectedandstoredat−80C.Protein concentrationwasmeasuredwithbicinchoninicacid(BCA)assay (PierceTM BCA Protein Assay Kit, Thermo Fisher Scientific Inc., Waltham,MAUSA)byreadingtheopticaldensityatUVmaxof 560nm,andcalculatingautomaticallybytheAnthossoftware.

Foranalysis ofGHRHRexpression 20-␮gsamplesof protein wereloadedon10%SDS-PAGEfollowed bythetransferofpro- teins onto a nitrocellulose membrane (90V, 1h). Membranes werethen blocked overnightat 4C in 1%bovine serum albu- min(BSA).MembraneswereincubatedbothwithGHRHRantibody (1:1000,ab76263,AbcamInc.,Cambridge,MA)andGAPDHanti- body(1:5000,Cell SignalingTechnology,Danvers,MA) for1.5h atroomtemperaturein1%BSA(CellSignalingTechnology,Dan- vers,MA)andthenanti-rabbitHRPsecondaryantibody(1:2000;

1:10000,Dako,Glostrup,Denmark)for40min.Membraneswere then developed with an enhanced chemiluminescence kit (GE HealthCare,Little Chalfont, UK), exposed to X-ray film (Kodak, Rochester,NY,US),andscanned[27].

For the analysis of ERK and Akt, equal amounts of protein (20␮g) were mixed with reducing 5×Laemmli buffer, loaded andseparatedin 4–20%precastTris-glycineSDSpolyacrilamide gels(Bio-Rad Hungary Ltd., Budapest, Hungary). Proteins were transferredontoapolyvinylidenedifluoridemembrane(Bio-Rad HungaryLtd.,Budapest,Hungary)at350mAfor2h.Transferwas visualizedwith Ponceau staining (Sigma, St Louis, MO). Mem- branes were blocked with 5% BSA (Santa Cruz Biotechnology, Inc.,Heidelberg,Germany)inTris-bufferedsalinecontaining0.05%

Tween-20(0.05%TBS-T;Sigma,StLouis,MO)atroomtemperature for2h.Membraneswereprobedwithprimaryantibodies(dilution 1:1000)overnightat4C(phospho-Akt[Ser473]–#9271;Akt–

#9272;phospho-Erk1/2[Thr202/Tyr204]–#9106;Erk1/2–#9107;

Fig.4. Viabilityofunirradiated(A)andirradiated(B)NRVMafterMR-356treatment.

Bromodeoxyuridine(BrdU)proliferationassayperformedinunirradiated(C)and irradiatedNRVM(D)48hafterthetreatmentwithMR-356.Dataareexpressedas mean±SEM;incomparisontocontrol(100%).*p<0.05,n=8–16ineachgroup.

GAPDH– #5174),andwithcorrespondingHRP-conjugatedsec- ondaryantibodies(CellSignalingTechnology,Danvers,MA)for2h atroomtemperature.Signalsweredetectedwiththechemilumi- nescencekit.QuantificationwasmadebyintensityratiobyImage Lab4.1 (ImageLabTM Software,Bio-Rad Laboratories,Inc., Cali- fornia,USA).Antibodiesdetectingphosphorylatedepitopeswere removedwithPiercestrippingbuffer(ThermoScientificLaborKft., Budapest,Hungary)beforeincubationwithantibodiesdetecting thetotalprotein.

2.6. Oxidativestressdetection

Thepresenceofsuperoxidewasdetectedwithaplatereader using the oxidative fluorescent dye dihydroethidium (DHE) (SigmaSt.Louis,MO;D7008).Cellmembranesarefreelyperme- abletoDHEthatfluorescesredwhenoxidizedtoethidiuminthe presenceofsuperoxide.ThepresenceofgeneralROSproduction wasdetectedbyDCFH-DA(Sigma;D6883).Cardiacmyocyteswere rinsedwithPBS,thenincubatedwith10uMDHEorDCFH-DAat roomtemperaturefor60mininadarkchamber,Afterremoving

(5)

Fig.5. Westernblotanalysis:pGHRHRandGAPDHhousekeepinggeneexpression (A).TheexpressionofGHRHRnormalizedtotheGAPDHhousekeepinggenein unirradiated(B)andirradiated(C)NRVMcultures.Westernblotswereperformed bothonuntreatedcellsandcellstreatedwith10nMJI-34.Resultsaremean±SEM (expressedin%ascomparedtonon-treatedcells);n=6sample/group,*p<0.05.

extradyewithD-PBS(pH7.4),thefluorescenceintensitywasmea- sured[28].

2.7. Statisticalanalysis

Resultsarepresentedasamean±SE.One-wayanalysisofvari- ance(ANOVA)followedbyFisher’sleastsignificantdifference(LSD) post-hoctestsorDunnet’spost-hoctestswereusedtoevaluatedif- ferencesbetweengroups.Twoexperimentalgroupswereanalyzed withthet-test.Westernblotresultswereanalyzedwithtwo-way analysisofvariance(ANOVA).Differenceswereconsideredsignifi- cantifp<0.05.

3. Results

To determineoptimal experimental conditions, NRVMwere exposedtovariousradiationdoses,andviabilitywasmeasuredfol-

Fig.6.TheexpressionofpERK/ERKandtheexpressionofGAPDHhousekeeping geneinunirradiatedandirradiatedNRVMcultures.Westernblotswereperformed bothonuntreatedcellsandcellstreatedwith10nMJI-34.Resultsaremean±SEM;

n=6sample/group*p<0.05.

Fig.7.TheexpressionofpAkt/AktandtheexpressionofGAPDHhousekeepinggene inunirradiatedand10GyirradiatedNRVMcultures.Westernblotswereperformed bothonuntreatedcellsandcellstreatedwith10nMJI-34.Resultsaremean±SEM;

n=6sample/group*p<0.05.

lowingvaryinglatencytimes(Table1).Asignificantcelllossof50%

wasobtainedafter10Gydoseofradiationandlatencytimeof48h.

Thissetofconditionswaschosenandappliedthroughoutallthe experiments.

(6)

864 L.Kiscsatárietal./PharmacologicalResearch111(2016)859–866

Fig.8.ROSproductioninratioofviability(A)detected48hpostirradiation.TheeffectofJI-34onROSformationinunirradiated(B)andirradiatedNRVM(C);theeffect ofMR-356onROSproductioninunirradiated(D)andirradiatedcells(E).Thesuperoxidelevelinratioofviabilitydetected48hafterirradiation(F).TheeffectofJI-34on superoxidelevelsinunirradiated(G)andirradiatedNRVM(H);theeffectofMR-356onsuperoxidelevelinunirradiated(J)andirradiatedNRVM(I).Resultsaremean±SEM;

n=8–16ineachgroup*p<0.05.

First,theeffectofhGHRHwastestedoncellviabilityandcell proliferationinunirradiatedandirradiatedNRVMcultures.hGHRH didnotsignificantlyinfluencecellsurvivalascomparedtocontrol (Fig.1AandB).hGHRHwastestedforitseffectoncellproliferation viatheBrdUincorporationassay.Cellproliferationofbothirradi- atedandnon-irradiatedcellswasslightlystimulatedbyhGHRHat aconcentrationof50nM(Fig.1C).

TheeffectsoftheGHRHagonists,JI-34andMR-356,werefirst testedinunirradiatedNRVM.TheadministrationofJI-34hadno effecton cell viabilityat concentrations of 1–500nM (Fig.2A).

However,inirradiatedcells,JI-34 showedaprotective effectat

concentrationsof10and100nM(Fig.2B).Anti-proliferativeeffect ofJI-34wasdetectedat50nMinunirradiatedandat1–50nMin irradiatedcultures(Fig.2CandD).Wehavetestedthesameparam- etersunderserum-deprivedconditionstotestthepossibleeffects oftheabsenceof1%FBSincludingtheavoidanceofthebindingof theanalogstotheplasmaproteins.NRVMculturesmaintainedin serum-freemediumfor2dayscontainedroughly50%lesscellsboth intheirradiatedandunirradiatedplates(Fig.3A).Again,astrong protectiveeffectofJI-34wasdetectedafterirradiation,atconcen- trationsof10and100nM(Fig.3B).TheGHRHagonist,MR-356,had nosignificanteffectoncellsurvivalinunirradiatedNRVMcultures

(7)

(Fig.4A),butpreventedcelllossataconcentrationof500nMafter irradiation(Fig.4B).NoproliferativeeffectofMR-356wasdetected ineithertheunirradiatedortheirradiatedcultures(Fig.3CandD).

InordertoinvestigatetheexpressionofGHRHRsinNRVMatthe proteinlevel,Westernblotanalysiswasperformedusingananti- bodyabletodetectpGHRHRs.A52kDaproteinisoformwasreadily detectedinthesamplestogetherwithGAPDHusedasinternalcon- trol(Fig.5A).This52kDaglycosylatedGHRHRwasexpressedin bothirradiatedandunirradiatedcells.Thetreatmentofcellswith JI-34,didnotinfluencetheexpressionofGHRHRs(probablydueto lowdoseofagonist)inirradiated(Fig.5B)orunirradiatedNRVM (Fig.5C).Irradiationcausedsignificantdeclineinreceptorexpres- sionafter48h

ForfurtherinvestigationofintracellularactionofGHRHago- nists,theactivationofRISK/SAFEpro-survivalkinaseswastested.

ThephosphorylationratioofERKsignificantlyincreasedafterthe irradiationwith10Gy,whichwassignificantlyattenuatedbyJI- 34treatment(Fig.6).Likewise,thephosphorylationratioofAKT significantlyincreasedafterthe10-Gyirradiationwhichwassig- nificantlyattenuatedafterJI-34treatment(Fig.7).

Next,JI-34agonistwasadditionallytestedforitspossibleeffect on ROS production. Both the overall level of ROS and that of superoxidesignificantlyincreased48haftertheirradiation.JI-34 treatmentsignificantlydecreasedoverallROSproductionafterirra- diation,whileMR-356decreaseditslevelinbothirradiatedand unirradiatedcultures.Bothagonistsdecreasedsuperoxidelevelsig- nificantlyinirradiatedcultures(Fig.8).

4. Discussion

InthisinvitroNRVMmodel,theagonisticanalogsofGHRH,JI- 34andMR-356,reducedradiation-inducedcellloss.Thisisthefirst demonstrationthatGHRHagonistsexertprotectiveeffectinirra- diatedcardiacmyocytesviatheattenuationofROSformationand othermechanismspresentindifferentkindsofstresssituations.

ThesedataandtheexpressionofGHRHRinNRVMcontributetothe previousfindingsontheroleoftheGHRHsystemincardiomyocyte regeneration.Radiogeniclatecardiaccytotoxicityiswidely-studied ininvivomodels,however,limitedexperienceisavailablewiththe useofinvitromodelsappropriateforthestudyofacuteradiogenic effects.Thepresentstudyseemstoprovidereproducibleconditions forfurtherstudies.

ThemechanismofcardiocytoprotectionofGHRHagonistsisnot fullyclarified,andprobablydependsonthesystemexamined.The antiapoptoticeffectsofGHRHagonistshavebeendemonstratedin invivoexperimentalinfarctsintherat.Thechronicadministra- tionoftheGHRH-agonistJI-38upregulatedtheexpressionofthe anti-apoptoticBCL2, whiledown-regulated thatoftheproapop- toticBAXgene,andincreasedtheproliferationofcardiacprecursor cellsin experimentalheartinfarcts[22,24].Ina similarsystem, GHRHagonistsreducedtheexpressionofinflammatoryandpro- fibrotic markers [20]. In H9c2 cardiomyoblasts cultured under serum-deprivedcondition,agonisticanalogs ofGHRHrepressed theexpressionofaseriesofgenesrelatedtocardiacremodelling [20].SomestudiesconcludetothatGHRHoritsagonisticanalogs modulatethe kinases includedin theRISK and SAFE pathways [19,21].GHRHtreatmentpreventedapoptosisinducedbyserum starvationorisoproterenoltreatmentincardiacmyocytesthrough theinteractionwithmultiplesignallingmechanismsinvolvingthe cAMP/proteinkinaseA,ERK½andPI3K/Aktpathways[19].GHRH protected the rat heart fromI/R-caused injury administered at reperfusionviaactivationoftheRISKandSAFEpathways,asmea- sured20minafterthestartofreperfusion[21].Theearlyactivation ofERK1/2andAktwasdetectedbyGranata,inserum-deprived isolatedcardiacmyocytes[19].Inourstudy,thepost-irradiation

administrationofGHRHagonistsalsostronglyaffectedtheactiva- tionoftheSAFE/RISKsignalingpathways.BothJI-34andMR-356 treatmentsignificantlydecreasedphosphorylationofAktandERK after48hoflatencytime.Theirprotectiveeffectmaybeexplained bythisphenomenonsinceirradiationinducestheMAPKpathway andthephosphorylationofERKviaROS formation[29].Infact, ourstudyindicatesthattheagonistic analogs ofGHRH directly influenceoxidativestress.ROSformationreadilydetectable48h aftertheirradiationwaseffectivelyreducedbythepost-irradiation administrationofJI-34andMR-356.ThepretreatmentofC3Hmice withtheGHRHantagonist,JMR-132,causedaresponsedependent ontheradiationdoseofwholebodyradiation[30,31].

TheeffectsofGHRHortheagonisticanalogsaremediatedby theGHRHR.TheadministrationofGHRHantagoniststogetherwith GHRHoritsagonisticanalogsabolisheditsprotectiveeffectsoncar- diomyocytes[19,21].WebelievethatGHRHanditsreceptorshave physiologicalrolesintherecoveryfromcellinjury,andthatthe explanationforourfindingsinNRVMisthepresenceandfunction oftheGHRHR.Granataetal.havedemonstratedboththemRNAand proteinexpressionofthepGHRHRincardiaccells[19].ThepGHRHR hasbeen detectedin rat hearts bymeans of Westernblotting, immunohistochemistryand ligandbindingassay[24].Inconsis- tencewiththesefindings,we showedthepresence ofa 52kDa proteinisoformofGHRHR,withWesternblotting;theexpression ofthisproteindeclinedbytimeinirradiatedNRVM,irrespective ofwhetherJI-34treatmentwasapplied.Thedifferenceirradiation made,maypointtotheroleoftheGHRHsystemincellrecovery afterradiationinjury.

Inconclusion,thepresentstudyprovidesawell-reproducible in vitro cell culture model for the investigation of irradiation- inducedcardiomyocytedamage,inwhichGHRHanalogshavebeen tested.GHRHagonisticanalogs,JI-34andMR-356exertedprotec- tiveeffectsonradiation-inducedcelldamage,henceGHRHagonists shouldbetestedinvivoaspotentialprotectiveagentsagainstradio- genicheartdamage.

Declarationofinterest

Theauthorsreportnoconflictofinterest.Theauthorsaloneare responsibleforthecontentandwritingofthepaper.

Acknowledgements

TheauthorswouldliketothankDr.MiklósJászberényi(Depart- ment of Pathophysiology,University of Szeged)for his support andguidancethroughoutthestudy.Thisstudywassupportedby NationalDevelopmentAgency–NewHungaryDevelopmentPlan TAMOP-4.2.2.A-11/1/KONV-2012-0035andTAMOP-4.2.2/B-10/1- 2010-0012andNationalResearch,DevelopmentandInnovation Office–NKFIHPD106001(NKFI).Dr.GörbeheldBolyaiJánosfel- lowshipfromtheHungarianAcademyofSciences.

ProfessorFerdinandywasaSzentágothaiFellowoftheNational ProgramofExcellence(TAMOP4.2.4.A/2-11-1-2012-0001).

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.phrs.2016.07.

036.

References

[1]M.J.Adams,P.H.Hardenbergh,L.S.Constine,S.E.Lipshultz,

Radiation-associatedcardiovasculardisease,Crit.Rev.Oncol.Hematol.45 (2003)55–75.

(8)

866 L.Kiscsatárietal./PharmacologicalResearch111(2016)859–866

[2]N.Andratschke,J.Maurer,M.Molls,K.R.Trott,Lateradiation-inducedheart diseaseafterradiotherapy.Clinicalimportance,radiobiologicalmechanisms andstrategiesofprevention,Radiother.Oncol.100(2011)160–166.

[3]B.M.P.Aleman,D.Re,V.Diehl,Theroleofradiationtherapyinpatientswith Hodgkin’slymphoma,Curr.Hematol.Malig.Rep.2(2007)151–160.

[4]F.A.Stewart,I.Seemann,S.Hoving,N.S.Russell,Understanding radiation-inducedcardiovasculardamageandstrategiesforintervention, Clin.Oncol.(R.Coll.Radiol.)25(2013)617–624.

[5]S.Schultz-Hector,K.R.Trott,Radiation-inducedcardiovasculardiseases:isthe epidemiologicevidencecompatiblewiththeradiobiologicdata?Int.J.Radiat.

Oncol.Biol.Phys.67(2007)10–18.

[6]F.A.Stewart,S.Heeneman,J.TePoele,J.Kruse,N.S.Russell,M.Gijbels,M.

Daemen,Ionizingradiationacceleratesthedevelopmentofatherosclerotic lesionsinApoE−/−miceandpredisposestoaninflammatoryplaque phenotypepronetohemorrhage,Am.J.Pathol.168(2006)649–658.

[7]S.Darby,P.McGale,C.W.Taylor,R.Peto,Long-termmortalityfromheart diseaseandlungcancerafterradiotherapyforearlybreastcancer:

prospectivecohortstudyofabout300,000womeninUSSEERcancer registries,LancetOncol.6(2005)557–565.

[8]S.C.Darby,M.Ewertz,P.McGale,A.M.Bennet,U.Blom-Goldman,D.Brønnum, C.Correa,D.Cutter,G.Gagliardi,B.Gigante,M.B.Jensen,A.Nisbet,R.Peto,K.

Rahimi,C.Taylor,P.Hall,Riskofischemicheartdiseaseinwomenafter radiotherapyforbreastcancer,N.Engl.J.Med.368(2013)987–998.

[9]K.Gabriels,S.Hoving,I.Seemann,N.L.Visser,M.J.Gijbels,J.F.Pol,M.J.

Daemen,F.A.Stewart,S.Heeneman,LocalheartirradiationofApoE(−/−)mice inducesmicrovascularandendocardialdamageandacceleratescoronary atherosclerosis,Radiother.Oncol.105(2012)358–364.

[10]S.Schultz-Hector,Radiation-inducedheartdisease:reviewofexperimental dataondoseresponseandpathogenesis,Int.J.Radiat.Biol.61(1992) 149–160.

[11]G.D.Cilliers,I.S.Harper,A.Lochner,Radiationinducedchangesinthe ultrastructureandmechanicalfunctionoftheratheart,Radiother.Oncol.16 (1989)311–326.

[12]N.Ling,F.Esch,P.Böhlen,P.Brazeau,W.B.Wehrenberg,R.Guillemin, Isolation,primarystructure,andsynthesisofhumanhypothalamic somatocrinin:growthhormone-releasingfactor,Proc.Natl.Acad.Sci.U.S.A.

81(1984)4302–4306.

[13]H.Kiaris,I.Chatzistamou,A.G.Papavassilliou,A.V.Schally,Growth hormone-releasinghormone:notonlyaneurohormone,TrendsEndocrinol.

Metab.22(2011)311–317.

[14]B.Martin,R.LopezdeMaturana,R.Brenneman,T.Walent,M.P.Mattson,S.

Maudsley,ClassIIGprotein-coupledreceptorsandtheirligandsinneuronal functionandprotection,Neuromol.Med.7(2005)3–36.

[15]S.Bellyei,A.V.Schally,M.Zarandi,J.L.Varga,I.Vidaurre,E.Pozsgai,GHRH antagonistsreducetheinvasiveandmetastaticpotentialofhumancancercell linesinvitro,CancerLett.293(2010)31–40.

[16]G.Halmos,A.V.Schally,T.Czompoly,M.Krupa,J.Varga,Z.Rekasi,Expression ofgrowthhormonrelasinghormoneandsplicevariantsinhumanprostate cancer,J.Clin.Endocrinol.Metab.87(2002)4707–4714.

[17]B.K"ovári,O.Rusz,A.V.Schally,Z.Kahán,G.Cserni,Differential

immunostainingofvarioustypesofbreastcarcinomasforgrowthhormone releasinghormonereceptor—Apocrineepitheliumandcarcinomasemerging asuniformlypositiveAPMIS,122,2014.824–831.

[18]N.Barabutis,A.Siejka,A.V.Schally,N.L.Block,R.Cai,J.L.Varga,Activationof mitogen-activatedproteinkinasesbyasplicevariantofGHRHreceptor,J.

Mol.Endocrinol.44(2010)127–134.

[19]R.Granata,L.Trovato,M.P.Gallo,S.Destefanis,F.Settanni,F.Scarlatti,A.

Brero,R.Ramella,M.Volante,J.Isgaard,R.Levi,M.Papotti,G.Alloatti,E.

Ghigo,Growthhormone-releasinghormonepromotessurvivalofcardiac myocytesinvitroandprotectsagainstischaemia-reperfusioninjuryinrat heart,Cardiovasc.Res.83(2009)303–312.

[20]R.M.Kanashiro-Takeuchi,L.Szalontay,A.V.Schally,L.M.Takeuchi,P.Popovics, M.Jaszberenyi,I.Vidaurre,M.Zarandi,R.Z.Cai,N.L.Block,J.M.Hare,F.G.Rick, Newtherapeuticapproachtoheartfailureduetomyocardialinfarctionbased ontargetinggrowthhormone-releasinghormonereceptor,Oncotarget6 (2015)9728–9739.

[21]C.Penna,F.Settanni,F.Tullio,L.Trovato,P.Pagliaro,G.Alloatti,E.Ghigo,R.

Granata,GH-releasinghormoneinducescardioprotectioninisolatedmalerat heartviaactivationofRISKandSAFEpathways,Endocrinology154(2013) 1624–1635.

[22]R.M.Kanashiro-Takeuchi,L.M.Takeuchi,F.G.Rick,R.Dulce,A.V.Treuer,V.

Florea,C.O.Rodrigues,E.C.Paulino,K.E.Hatzistergos,S.M.Selem,D.R.

Gonzalez,N.L.Block,A.V.Schally,J.M.Hare,Activationofgrowthhormone releasinghormone(GHRH)receptorstimulatescardiacreverseremodeling aftermyocardialinfarction(MI),Proc.Natl.Acad.Sci.U.S.A.109(2011) 559–563.

[23]R.Cai,A.V.Schally,T.Cui,L.Szalontay,G.Halmos,W.Sha,M.Kovacs,M.

Jaszberenyi,J.He,F.G.Rick,P.Popovics,R.Kanashiro-Takeuchi,J.M.Hare,N.L.

Block,M.Zarandi,Synthesisofnewpotentagonisticanalogsofgrowth hormone-releasinghormone(GHRH)andevaluationoftheirendocrineand cardiacactivities,Peptides52(2014)104–112.

[24]R.M.Kanashiro-Takeuchi,K.Tziomalos,L.M.Takeuchi,A.V.Treuer,G.

Lamirault,R.Dulce,M.Hurtado,Y.Song,N.L.Block,F.Rick,A.Kulkovits,Q.Hu, J.L.Varga,A.V.Schally,J.M.Hare,Cardioprotectiveeffectsofgrowth hormone-releasinghormoneagonistaftermyocardialinfarction,Proc.Natl.

Acad.Sci.U.S.A.107(2010)2604–2609.

[25]A.Gorbe,Z.Giricz,A.Szunyog,T.Csont,D.S.Burley,G.F.Baxter,P.Ferdinandy, RoleofcGMP-PKGsignalingintheprotectionofneonatalratcardiac myocytessubjectedtosimulatedischemia/reoxygenation,BasicRes.Cardiol.

105(2010)643–650.

[26]G.Sz"ucs,Z.Murlasits,S.Török,G.F.Kocsis,J.Pálóczi,A.Görbe,T.Csont,C.

Csonka,P.Ferdinandy,Cardioprotectionbyfarnesol:roleofthemevalonate pathway,Cardiovasc.DrugsTher.27(2013)269–277.

[27]C.Csonka,K.Kupai,P.Bencsik,A.Görbe,J.Pálóczi,A.Zvara,L.G.Puskas,T.

Csont,P.Ferdinandy,Cholesterol-enricheddietinhibitscardioprotectionby ATP-sensitivepotassiumchannelactivatorscromakalimanddiazoxide,Am.J.

Physiol.HeartCirc.Physiol.306(2014)405–413.

[28]T.Csont,E.Bereczki,P.Bencsik,G.Fodor,A.Görbe,A.Zvara,C.Csonka,L.G.

Puskás,M.Sántha,P.Ferdinandy,Hypercholesterolemiaincreasesmyocardial oxidativeandnitrosativestresstherebyleadingtocardiacdysfunctionin apoB-100transgenicmice,Cardiovasc.Res.76(2007)100–109.

[29]M.Drigotas,A.Affolter,W.J.Mann,J.Brieger,Reactiveoxygenspecies activationofMAPKpathwayresultsinVEGFupregulationasanundesired irradiationresponse,J.OralPathol.Med.42(2013)612–619.

[30]C.Salata,S.C.Ferreira-Machado,C.B.DeAndrade,A.L.Mencalha,C.A.

Mandarim-De-Lacerda,C.E.deAlmeida,Apoptosisinductionof

cardiomyocytesandsubsequentfibrosisafterirradiationandneoadjuvant chemotherapy,Int.J.Radiat.Biol.90(2014)284–290.

[31]M.Abdel-Wahab,A.V.Schally,G.F.Rick,L.Szalontay,L.N.Block,M.Jorda,O.

Mahmoud,A.Markoe,Y.F.Shi,T.Reiner,M.Zarandi,R.Duncan,Antagonistsof growthhormonereleasinghormone(GHRH)givenbeforewholebody radiationleadtomodulationofradiationresponseandorgan-specific changesintheexpressionofangiogenesis,J.Radiat.Oncol.1(2012)389–396.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

distribution in plants, 108 effect on root formation, 33 plant hormone activity of, 108 transport through plants, 108 Nitrates, effect on root formation, 33

(PROLACTIN-INHIBITING HORMONE) DA or PIH Dopamine neurons of the arcuate nucleus Inhibit prolactin release from anterior pituitary GROWTH HORMONE-RELEASING. HORMONE GHRH

Antagonists of growth hormone-releasing hormone arrest the growth of MDA-MB-468 estrogen-independent human breast cancers in nude mice.. Kahán Z, Sun B, Schally AV,

Neonatal complete generalized glucocorticoid resistance and growth hormone deficiency caused by a novel homozygous mutation in helix 12 of the ligand binding domain of

BPAP had no effect on H358 lung adenocarcinoma cell line in vitro, but it had a strong inhibitory effect on tumor growth in vivo in SCID mice indicating an indirect mechanism

(2000) Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic

(2002) Expression of gonadotropin-releasing hormone II (GnRH-II) receptor in human endometrial and ovarian cancer cells and effects of GnRH-II on tumor cell