• Nem Talált Eredményt

or N-doped by pure TiO Photocatalytic decompositions of methanol and ethanol on Ausupported Journal of Photochemistry and Photobiology A:Chemistry

N/A
N/A
Protected

Academic year: 2022

Ossza meg "or N-doped by pure TiO Photocatalytic decompositions of methanol and ethanol on Ausupported Journal of Photochemistry and Photobiology A:Chemistry"

Copied!
11
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Photochemistry and Photobiology A:

Chemistry

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / j p h o t o c h e m

Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO 2

Andrea Gazsi, Gábor Schubert, Tamás Bánsági, Frigyes Solymosi

MTA-SZTEReactionKineticsandSurfaceChemistryResearchGroup,RerrichBélatér1,H-6720Szeged,Hungary

a r t i c l e i n f o

Articlehistory:

Received6June2013

Receivedinrevisedform16July2013 Accepted6August2013

Available online xxx

Keywords:

Methylalcohol Ethylalcohol Methylformate Photolysis Au/TiO2catalyst EffectofN-doping

a b s t r a c t

TheeffectsofAuparticlesofdifferentsizeswereinvestigatedonthephotocatalyticdecompositionsof methanolandethanolonpureorN-dopedTiO2.IRstudiesrevealedthatthedepositionofAupromoted thedissociationofbothcompoundsduringilluminationandalsoresultedintheformationofformate species.Whereasthephoto-induceddecompositionsofmethanolandethanoloccurredtoonlyalimited extentonpureTiO2,thedepositionofAu,particularlyasnanosizedparticles,markedlyenhancedthe rateandtheextentofthephotocatalyzedreactions.Aninterestingfeatureofthephotodecompositionof methanolwasthat,besidesH2,CO2andCO,asignificantamountofmethylformatewasalsoproduced.

AdditionofH2OorO2tothealcoholinbothcasesdecreasedthelevelofCOformed,andinthecaseof methanolCOwascompletelyeliminated.AuparticlesonN-dopedTiO2withalowerbandgapcatalyzed thephotodecompositionsofbothcompoundseveninvisiblelight.

© 2013 Published by Elsevier B.V.

1. Introduction

Following the pioneering work of Haruta et al. [1,2], who demonstratedtheunexpectedlyhighcatalyticactivityofnanosized supportedAuparticles,greateffortshavebeenmadetoexploitthis propertyofAuinseveralareasofcatalysis[3–5].Asthegeneration ofH2freeofCOisoneofthechallengesinheterogeneouscatal- ysis,thecatalyticbehaviorofAuhasalsobeentestedfromthis aspect.ItwasfoundthatsupportedAuparticleseffectivelycatalyze theproductionof H2 inthethermal decompositionsofHCOOH [6–10],CH3OH [11–18],C2H5OH [19–23] and CH3OCH3 [24] at 423–573K.Pure,CO-freeH2wasobtained,butonlyinthecatalytic decompositionofHCOOHathighertemperatures[6–8].Afurther developmentinthistopicwastheproductionofH2byphotocat- alyticdecompositionoftheabovecompoundsoversupportedAu samplesatroomtemperature[25–32].Inthecontinuationofthis researchprograminthepresentworkweinvestigatedthephoto- catalyticdecompositionsofCH3OHandC2H5OHonvariousAu/TiO2

catalysts.Theoverallaimistoelaborateexperimentalconditions forthegenerationofH2withthelowestachievableCOcontent,to identifysurfacespeciesformedinthephotoreactionandtoproduce H2invisiblelightbynarrowingthebandgapofTiO2byN-doping.

Thedevelopmentofaneffectivephotocatalystusingvisiblelightis achallengingproject,asvisiblelightaccountsfor50%oftotalsolar

Correspondingauthor.Tel.:+3662544107;fax:+3662544106.

E-mailaddress:fsolym@chem.u-szeged.hu(F.Solymosi).

energyincontrasttoUVlight,whichaccountsonly∼5%oftotal solarenergy.

2. Experimental

2.1. Materialsandpreparationofthecatalysts

Thefollowingcompoundswereusedassupports.TiO2(Hom- bikat, 200m2/g and P25, 51m2/g), SiO2 (CAB-O-SiL, 198m2/g).

SupportedAucatalystswithanAuloadingof1,2or5wt%werepre- paredbyadeposition-precipitationmethod.HAuCl4·aq(p.a.,49%

Au,FlukaAG)wasfirstdissolvedintriplydistilledwater.Afterthe pHoftheaqueousHAuCl4solutionhadbeenadjustedto7.5bythe additionof1MNaOHsolution,asuspensionwaspreparedwith thefinelypowderedoxidicsupport,andthesystemwaskeptat 343Kfor1hundercontinuousstirring.Thesuspensionwasthen agedfor24hatroomtemperature,washedrepeatedlywithdis- tilledwater,driedat353Kandcalcinedinairat573Kfor4h.1%

Au/TiO2wasalsopurchasedfromSTREMChem.Inc.Thissampleis marked“Aurolite”.ForthepreparationofN-dopedTiO2weapplied thedescriptionofXuetal.[33].Titaniumtetrachloridewasused asaprecursor.AfterseveralstepstheNH3-treatedTiO2slurrywas vacuumdriedat353Kfor12h,followedbycalcinationat723Kin flowingairfor3h.Thissampleisnotedwith“SX”.

ThesizesoftheAunanoparticlesweredeterminedwithanelec- tron microscope.We obtainedthefollowingvalues: 1.5–2.0nm for 1% Au/TiO2 (Aurolite), 10–15nm for 1% Au/TiO2 (Hombi) and 6.0–7.0nm for 1% Au/SiO2 (Cabosil). For photocatalytic 1010-6030/$seefrontmatter© 2013 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.jphotochem.2013.08.009

(2)

measurementsthesample(70–80mg)wassprayedontotheouter sideoftheinnertubefromaqueoussuspension.Thesurfaceofthe catalystfilmwas168cm2.Thecatalystswereoxidizedat573Kand reducedat573Kinsitu.

ForIRstudiesthedriedsampleswerepressedinself-supporting wafers (30mm×10mm ∼10mg/cm2). For photocatalytic mea- surements the sample (70–80mg) was sprayed onto the outer sideoftheinnertubefromaqueoussuspension.Forphotocatalytic studiesthesamplewassprayedontotheoutersideoftheinner tubefromaqueous suspension.The surfaceof thecatalyst film was168cm2.Thecatalystswereoxidizedat573Kandreducedat 573KintheIRcellorinthecatalyticreactorfor1h.Methanoland ethanolweretheproductsofScharlauwithpurityof99.98and 99.7%,respectively.

2.2. Methods

For the determination of bandgap of solids,we appliedthe sameproceduresasdescribedinpreviouspapers[34,35].Diffuse reflectancespectraofTiO2sampleswereobtainedusinganUV/Vis spectrophotometer(OCEANOPTICS,Typ.USB2000)equippedwith a diffuse reflectance accessory. In the calculation we followed theprocedureofBeranekandKisch[34],whousedtheequation

˛=A(h−Eg)n/h,where˛istheabsorptioncoefficient,Aisacon- stant,histheenergyoflight,andnisaconstantdependingonthe natureoftheelectrontransition.Assuminganindirectbandgap (n=2)forTiO2,with˛proportionaltoF(R),thebandgapenergy canbeobtainedfromtheplotsof[F(R)h]1/2vs.h,astheinter- ceptat[F(R)h]1/2=0oftheextrapolatedlinearpartoftheplot.

Table1

SomecharacteristicdataforpureandN-modifiedTiO2.

Sample Pretreatment temperature(K)

Surface area(m2/g)

Bandgap (eV)

Notation

TiO2 Asreceived 200 3.17 Hombikat

TiO2 723 135

TiO2 723 265 3.00 SX

TiO2+N 723 79 1.96

ThesurfaceareaofthecatalystsweredeterminedbyBETmethod withN2adsorptionat∼100K.DataarelistedinTable1.

Photocatalytic reaction was followed in the same way as describedinourpreviouspaper[35].Brieflythephotoreactor(vol- ume:970ml)consistsoftwoconcentricPyrexglasstubesfitted oneintotheotherandacentrallypositionedlamp.Itisconnected toagas-mixingunitservingfortheadjustmentofthecomposi- tionof thegasor vapormixtures tobephotolyzed in situ.The lengthoftheconcentrictubeswas250mm.Thediameterofouter tubewas 70mm, and that of theinside tube28mmlong. The widthofannulusbetweenthemwas42mm,andthatofthepho- tocatalystfilmwas89mm.Weuseda15Wgermicidelamp(type GCL307T5L/CELL,LighttechLtd.,Hungary),whichemitspredom- inantly in the wavelength range of 250–440nm, its maximum intensityisat254nm.Forthevisiblephotocatalyticexperiments anothertypeoflampwasused(LighttechGCL307T5L/GOLD)with 400–640nmwavelengthrangeandtwomaximumintensitiesat 453and 545nm.Theapproximatelightintensityatthecatalyst filmsare3.9mW/cm2forthegermicidelampand2.1mW/cm2for theotherlamp.Theincidentlightintensitiesweredeterminedby

Fig.1.EffectsofilluminationtimeontheFTIRspectraofadsorbedCH3OHon1%Au/TiO2(Aurolite)(A),1%Au/TiO2(Hombikat)(B),TiO2(P25)(C)and1%Au/SiO2(D).

(3)

Fig.2. PhotocatalyticdecompositionofCH3OHon1%Au/TiO2and1%Au/SiO2samples.

anactionometry.Methanol(∼1.2%,227␮mol)andethanol(∼1.3%, 252␮mol)wereintroducedinthereactorthroughanexternally heatedtubeavoidingcondensation.ThecarriergaswasAr,which was bubbled through alcohols at room temperature. The gas- mixturewascirculatedbya pump.Thereactionproductswere analyzedwithaHP5890gaschromatographequippedwithPORA- PAKQandPORAPAKSpackedcolumns.Thesamplingloopofthe GCwas500␮l.Theamountofallproductswererelatedtothisloop.

Forinfrared(IR)studiesamobileIRcellhousedinametalcham- berwasused.Thesamplecanbeheatedandcooledinsitu.TheIR cellcanbeevacuatedto105Torrusingaturbomolecularpumping system.ThesampleswereilluminatedbythefullarcofaHglamp (LPS-220,PTI)outsidetheIRsamplecompartment.TheIRrangeof thelightwasfilteredbyaquartztube(10cmlength)filledwith triplydistilledwaterappliedattheexitofthelamp.Thefiltered lightpassedthroughahigh-purityCaF2windowintothecell.The lightofthelampwasfocusedontothesample.Theoutputproduced bythissettingwas300mWcm2atafocusof35cm.Themaximum photonenergyatthesampleisca.5.4eV.Afterillumination,theIR cellwasmovedtoitsregularpositionintheIRbeam.Infraredspec- trawererecordedwithaBiorad(Digilab.Div.FTS155)instrument withawavenumberaccuracyof±4cm−1.Allthespectrapresented inthisstudyaredifferencespectra.

3. Resultsanddiscussion

3.1. Adsorptionandreactionsofmethanol

TheadsorptionofCH3OHonAu/TiO2 (Aurolite)at300Kpro- ducedabsorptionbandsat2940,2919,2888,2838and2815cm1 inthehigh-frequencyrange, andat∼1563,1452,∼1358,1158,

1132and1055cm−1inthelow-frequencyregion(Fig.1A).Illumi- nationoftheCH3OHvaporcatalystsystemresultedinonlyslight attenuationinthehigh-frequencyrange,butledtoasignificant intensification of thevery weakbandsat 1563and 1358cm1. In light of the IR spectroscopic results of previous studies [16,30,35,36],thebandsat2940and∼2838cm1canbeassignedto theasymmetricandsymmetricstretchingfrequenciesofadsorbed CH3OHandthoseat∼2919and∼2815cm−1toadsorbedmethoxy (CH3O).Thepeaksintheinterval1000–1200cm1areduetothe C Ostretchingofthetwoadsorbedspecies.Approximately,same features were registered for Au/TiO2 (Hombi) sample (Fig.1B).

Accordingly,theoccurrence ofthefollowing stepsmaybepre- sumed:

CH3OH(g)= CH3OH(a) (1)

CH3OH(a)=CH3O(a)+H(a) (2)

Theappearanceofnewabsorptionbandsat1563and1358cm−1 suggeststhatadsorbedformatespeciesarealsoformedduringthe photolysis[35,36].Withregardtotheresultsofphotocatalyticstud- ies(nextchapter),adsorbedformateisveryprobablyformedinthe dissociationofHCOOCH3(methylformate)producedbythephoto- conversionofCH3OH[30–32].SimilarlytoHCOOH,HCOOCH3does notexhibitavibrationat1558–1578cm1[31,32].Asnearlythe samespectralfeatureswereobservedforthepureTiO2(P25)sam- ple(Fig.1C),itmaybeconcludedthatallthesespecieslocateon theTiO2surface.

WeobtaineddifferentresultsonAu/SiO2.Followingtheadsorp- tionofCH3OH,absorptionbandsat∼2957,∼2850,1470,1451and 1389cm1predominatedinthespectrum,indicatingthatCH3OHis mainlyadsorbedmolecularlyonthiscatalyst.Illuminationexerted

(4)

Fig.3.EffectsofH2OandO2additiononthephotocatalyticdecompositionofCH3OHover1%Au/TiO2(Aurolite)catalyst.

onlyveryslightalterationsintheIRspectrum.However,thevery weakabsorption at around 1587cm−1, due to the asymmetric stretchofformate,wasclearlystrengthened.IRspectraareshown inFig.1D.AsnoformatespeciesexistsonSiO2,itfollowsthata proportionoftheprocessesinvolvedoccurontheAuparticles.

Fig.2depictstheconversionofCH3OHandtheformationof variousproductsondifferentAu/TiO2catalystsasafunctionofthe durationofillumination.Themosteffectivecatalystwasclearly 1%Au/TiO2(Aurolite),onwhichalmostcompletephotodecompo- sitionoftheCH3OHwasattainedin∼100min.Themainproducts wereH2andHCOOCH3:COandCO2wereformedinonlyrelatively smallamounts.WhenCH3OHhasbeencompletelydecomposed, theamount of HCOOCH3 started decreasing. At the same time CO appeared in the products. As reported previously [30], the photocatalyticdecompositionofCH3OHalsooccursonpureTiO2

(Hombi):theconversionofCH3OHreachedonly2–3%in240min.

Asthephotoactivity ofpureTiO2 dependsonitsorigin,forthe reliableestablishmentoftheeffectsofAuweexaminedthephoto- catalyticdecompositionofCH3OHonthesameTiO2(P25)asused forthepreparationofAu/TiO2(Aurolite).TheactivityofthisTiO2 (P25)washigherthanthatofTiO2(Hombi),butevenonthissample theextentofphotodecompositionofCH3OHreachedonly6–7%in 210min(Fig.3).Notethatmethylformatewasalsoproducedon thisTiO2.InordertoassesstheimportanceoftheTiO2supportand thatofthemetal/TiO2contact,thephotolysisofCH3OHwasalso carriedoutona2%Au/SiO2catalyst.AscanbeseeninFig.2,only slightdecompositionoccurred;theconversionapproached15%in 240min.

Agreateffortwasmadetoeliminateorfundamentallyreduce the formation of CO. The addition of H2O to the CH3OH (a H2O/CH3OHratioof5:1)enhancedtheproductionofH2andcom- pletelyeliminatedtheCOfromtheproductsduringthecompletion ofreaction,∼90minandevendecreasedtheCOcontentafterwards (Fig. 3).Similarresultswere foundwhen O2 was addedtothe CH3OH.AtanO2/CH3OHratioof1:1,theformationofCOceased completely.Atthesametime,theproductionofH2andHCOOCH3 alsodecreased,whiletheamountofCO2generatedincreased.This clearlyindicatestheoxidationofCH3OHand/ortheproducts.The mainresultsoftheeffectsofH2OandO2arepresentedinTable2.

TheeffectsofNincorporationintoTiO2wereexaminedbyusing theTiO2(SX)sample,whichwasconsiderablylessactivethanthe Au/TiO2/Aurolite.AsshowninFig.4,thephotoactivityofAu/TiO2 (SX)wasenhancedsignificantlybyN-doping.Whenthephotolysis wasperformedinvisiblelight,theextentofphotodecomposition waslower,butthepositiveeffectofN-dopingwasclearlyexhibited (Fig.5).

For comparison, we studied the thermal decomposition of CH3OHonthemostactiveAu/TiO2(Aurolite)catalyst.Nodecom- positionwasobservedat300–423Kin60min.Thedecomposition startedat448K,andreached∼3%in60min.Itisimportanttopoint outthatnoHCOOCH3wasformedinthethermalreaction.

Intheinterpretationoftheeffectsofillumination,itshouldbe takenintoaccountthattherate-determiningstepinthethermal decompositionofCH3OHisthecleavageofoneoftheC Hbonds intheadsorbedCH3Ospecies.TheoccurrenceofthissteponTiO2 at300Krequiresactivation,asotherwisenoreactionsoccuratall.

(5)

Table2

EffectofH2OandO2additiononthephotocatalyticdecompositionofmethanolandethanolon1%Au/TiO2(Aurolite).

Conversion(%) CO(%) CO/H2ratio

60min 180min 60min 180min 60min 180min

CH3OH 91.1 100 1.5 3.9 0.03 0.07

H2O/CH3OH(5:1) 98.2 100 0 0.5 0 0.007

O2/CH3OH(1:1) 100 100 0 0 0 0

C2H5OH 100 100 6.1 11.9 0.16 0.3

H2O/C2H5OH(5:1) 96.8 100 1.9 4.3 0.05 0.08

O2/C2H5OH(1:1) 100 100 2.0 3.6 0.09 0.1

Illumination,however,initiatedthedecompositionofthissurface speciesevenonpureTiO2at300K,whichcanbeexplainedbythe donationofphotoelectronsformedinthephoto-excitationprocess

TiO2+h=h++e (3)

totheCH3Ospecies:

CH3O(a)+e=CH3O(a)␦− (4)

whichdecomposestoH2andCO:

CH3O(a)␦−= CH2O(a)␦−+H(a) (5)

CH2O(a)␦−= CO(g)␦−+H2(g) (6)

However,eventhephoto-inducedreactionoccurredtoonlya verylimitedextentonpureTiO2,afindingwhichcanbeattributed

tothefast recombinationof theelectronsand holes formedin the photo-excitation process. The incorporation of N into the TiO2appreciablyincreasedtheextentofphotodecomposition,very likelyasaconsequenceofthepreventionofelectron-holerecom- bination[30–32].ThedepositionofAuontoTiO2greatlyimproved thephotocatalyticeffectoftheTiO2.We assumethattheCH3O speciesformedontheAuparticlesorattheAu/TiO2interfaceare muchmorereactivethanthatlocatedonTiO2.

Aninterestingfeatureofthephotocatalyticdecompositionof methanolistheformationofmethylformate.Thiscompoundhas been consideredas a precursor in the synthesis of formamide, dimethylformamide,aceticacid,propionicacid,cyanhydricacid and several other materials [37]. It is mainly synthesized by dehydrogenation of methanol over Cu-based catalyst at higher temperatures. However, recent works showed that it is also formedinthephotocatalyticoxidation[38–41]anddecomposition of methanol onpolycrystalline TiO2 at roomtemperature [30].

Fig.4.EffectsofNdopingofTiO2(SX)onthephotocatalyticdecompositionofCH3OHon1%Au/TiO2and1%Au/TiO2+N.

(6)

Fig.5.EffectsofNdopingofTiO2(SX)onthephotocatalyticdecompositionofCH3OHinthevisiblelight.1%Au/TiO2(A)and1%Au/TiO2+N(B).

Fig.6.EffectsofilluminationtimeontheFTIRspectraofadsorbedC2H5OHonTiO2(P25)(A),1%Au/TiO2(Hombikat)(B),1%Au/TiO2(Aurolite)(C)and1%Au/SiO2(D).

(7)

Fig.7.PhotocatalyticdecompositionofC2H5OHon1%Au/TiO2(Aurolite)andTiO2(P25)samples.

Its production was markedly increased when Pt metals were depositedonTiO2[30].Thehighestyieldofmethylformatewas measuredforPt/TiO2(62.2)andthelowestoneforRu/TiO2(26.0).

TheCO/H2ratiovariedbetween0.017and0.023.Aunanoparticles alsoenhancedtheproductionofmethylformate(Fig.2).Theyield ofmethylformateonthemostactiveAu/TiO2(Aurolite)was78.0 at the maximum (60min). The formation of HCOOCH3 can be ascribedtotherecombinationofCH2Oformedintheprocessof CH3Odissociation(Eq.(4)and(5)):

2CH2O(a)= HCOOCH3(a) (7)

orbythereactionofCH2OwithafurtherCH3Ospecies:

CH2O(a)+CH3O(a)=HCOOCH3(a)+H(a) (8) RecentstudiesperformedunderUHVconditionsonpreoxidized TiO2(110)disclosedthat methylformate is produced fromthe photo-oxidationof methanolevenat∼200K[42].Itsformation requiredthatbothmethoxyandformaldehydebepresentonthe surface,indicatingthatthephotochemicalactivationofformalde- hydeisfasterthanthemethoxyphotooxidationtoformaldehyde.

Incontrasttoabovereactionstepsit wasassumed thatmethyl formateisformedinthecouplingofHCOwithmethoxyspecies.

ThefactthattheconcentrationofHCOOCH3 startsdecreasing when CH3OH almostcompletely consumedsuggeststhe occur- rence of the photocatalytic decomposition of HCOOCH3. This featureappearedonlyonthemosteffectiveAu/TiO2(Fig.2).Itwas notobservedevenontheTiO2-supportedPtmetals[30]indicating theexceptionallyhighreactivityofAuinnanosizeonTiO2.AsIR spectrashowthepresenceofadsorbedformateverylikelyformed

inthedissociationofHCOOCH3,itsphoto-induceddecomposition canbedescribedasfollows:

HCOO(a)+e=HCOO(a)␦− (9)

HCOO(a)= CO2␦−+H(a) (10)

CO2␦−+h+= CO2(g) (11)

TheformationofCOinthisstageofphotodecomposition(Fig.2) suggeststheoccurrencethereaction

2HCOO(a)␦−= 2CO2+2OH␦−(a) (12)

ThepromotingeffectofAudepositedonTiO2canbeexplained bythebetterchargecarrierseparationinducedbyilluminationand bytheoccurrenceofanelectronicinteractionbetweentheAupar- ticlesandn-typeTiO2[43,44].Theroleoftheelectronicinteraction betweenmetalsandTiO2hasbeenfirstdemonstratedinthecat- alyticdecompositionofformicacidonNidepositedonpureand dopedTiO2[45].Asfarasweareaware,TiO2 wasfirstusedasa supportinthiscase[45,46].AstheworkfunctionofTiO2(∼4.6eV) islessthanthatofAu(5.31eV),electrontransferisexpectedto occurfromTiO2tothedepositedAu,whichincreasestheactiva- tionofadsorbedmolecules.Weassumethatilluminationenhances theextentofelectrontransferfromTiO2toAuattheinterfaceof thetwosolids,leadingtoincreaseddecomposition.TheSchottky barrierformedatAuandTiO2interfacecanalsoserveasaneffi- cient barrierpreventingelectron-holerecombination [28,47,48].

AswaspointedoutbyLietal.[28]smallergoldparticlesinduce morenegativeFermilevelshiftthanthebiggerparticles.Onthe

(8)

Fig.8.EffectsofH2OandO2additiononthephotocatalyticdecompositionofC2H5OHover1%Au/TiO2(Aurolite)catalyst.

basisofthisconsiderationweexpectthatthecatalystwithsmaller goldnanoparticlesiscatalyticallymoreactivethanthatwithlarger goldparticles.

3.2. Adsorptionandreactionsofethanol

Inharmonywithourpreviousstudies[23],theadsorptionof C2H5OHonAu/TiO2(Aurolite)producedintenseabsorptionbands intheC-HstretchingregionoftheIRspectrumat2969,2932and 2866cm−1andbandsofdifferentintensitiesat1448,1379,1269, 1118and∼1072cm−1(Fig.6).Virtuallyidenticalspectraweremea- suredfollowingtheadsorptionofC2H5OHonthepureTiO2 and onotherAu/TiO2samples.Inviewoftheresultsofpreviousstud- ies[19,23],themajorbandsat2969and2866cm−1cancertainly beassignedtotheasymmetricandsymmetricstretches,andthe peaksat1118and1072cm1tothe(OC)vibrationsoftheethoxy group.Thepresenceofmolecularlyadsorbedethanolisindicated bytheabsorptionbandat 1279cm1,due tothe␦(OH),and at 1379cm1,dueto(␦CH3)ofethanol.AccordinglyC2H5OHreadily dissociatesonTiO2andAu/TiO2evenatroomtemperaturewithout illumination:

C2H5OH(g)=C2H5OH(a) (13)

C2H5OH(a)= C2H5O(a)+H(a) (14) As a result of irradiation, the very weak absorption at 1550–1564cm−1 wasconvertedintoawell-detectablepeak,the intensityofwhichincreasedwiththedurationofillumination.This absorptionbandisveryprobablyduetotheasymmetricstretch

offormatespecies.Itshouldbenotedthattherewasnopeakat 1718–1723cm1duetoCH3CHO.Absorptionbandsidentifiedon Au/SiO2sample(Fig.6D)suggestthatthedissociationofC2H5OH didnot occuron this catalyst to detectableextentby IR spec- troscopy.

Whereasthe conversionof C2H5OH onthe pureTiO2 (P25) usedforthepreparationofAu/TiO2(Aurolite)waslessthan20%

in60min,inthepresenceof1%Auitwasalmost100%(Fig.7).

TheprimaryproductswereH2andCH3CHO,theamountsofwhich increasedasthedurationofilluminationwaslengthened.Whenthe totalconversionoftheC2H5OHwasattained,theconcentrationof CH3CHOdecreased,indicatingtheoccurrenceofitsphoto-induced degradation (Fig. 7).In thecase of TiO2 (Hombikat) we exam- inedtheeffectofAuloadingonthephotocatalyticdecomposition of ethanol. The extentof theconversion is graduallyincreased withtheriseofAucontentfrom∼20%(pureTiO2)to∼100%on 5%Au/TiO2in210min.TheformationofCOinthephotocatalytic decompositionofC2H5OHwasmoreextensivethaninthephotore- actionofCH3OH.TheadditionofH2OtotheC2H5OHexertedonly slighteffectontheconversion,butmarkedlyloweredtheCOcon- tentontheAu/TiO2 (Aurolite)catalyst(Fig.8).AtaH2O/C2H5OH ratioof5:1,theamountofCOdecreasedfrom6.1%to1.9%,andthe CO/H2ratiofrom0.16to0.05at60min.ThequantityofCH3CHO also decreased. The addition of O2 to the C2H5OH also ledto loweramountsofallproducts,withtheexceptionofCO2.Atan O2/CH3OH ratio of1:1, theformation of CO decreased to2.0%, andtheCO/H2 ratioto0.09%.Inthiscasethephoto-oxidationof C2H5OHistobeexpected.Somecharacteristicdataarepresented inTable2.

(9)

Fig.9.EffectsofNdopingofTiO2(SX)onthephotocatalyticdecompositionofC2H5OH.1%Au/TiO2(A)and1%Au/TiO2+N(B).

Fig.9depictsthephotocatalyticeffectsofAudepositedonpure and N-modifiedTiO2 (SX). Thephotoactivity of theN-modified catalystsisseentobemarkedlyhigherthanthatofAu/TiO2 free ofnitrogen.ThisisreflectedintheconversionofC2H5OHandin theamountsof theproductsformed.Theamountof H2 gener- atedincreasedbyafactorof6.TheeffectsofN-dopingofTiO2(SX) werealsoinvestigatedinvisiblelight.WhereasAu/TiO2exhibited relativelylittleactivity,thephotoactivityofAu/TiO2+N(SX)was clearlyhigher(Fig.10).

Someexperimentswerealsodevotedtothethermaldecomposi- tionofC2H5OHontheAu/TiO2(Aurolite)catalyst.At323K,merely veryslightreactionwasdetected(<1%in60min).Amoreconsid- erabledegreeofdecomposition(∼3%in60min)wasobservedat

448K.Theresultsofthesecontrolexperimentsledustoexclude thecontributionofthermaleffectstothedecompositionofC2H5OH inducedbyillumination.

TheeffectsofilluminationonthedecompositionofC2H5OHcan bedescribedanalogouslyasinthecaseofCH3OH.Thefirststepis theactivationofC2H5Oinvolvingthedonationofaphotoelectron formedinthephoto-excitationprocesstothissurfacespecies:

C2H5O(a)+e= C2H5O(a)␦− (15) Thisstepisfollowedbythephoto-induceddecompositionof C2H5OtoCH3CHOandH2:

C2H5O(a)␦−=CH3CHO(a)␦−+H(a) (16)

Fig.10.EffectsofNdopingofTiO2(SX)onthephotocatalyticdecompositionofC2H5OHinthevisiblelight.1%Au/TiO2(A)and1%Au/TiO2+N(B).

(10)

ThelevelofphotolysisonpureTiO2waslow,mostlikelybecause ofthereadyrecombinationbetweenelectronsandholesgenerated bylight.ThepresenceofAuonTiO2,however,markedlyenhanced thephotocatalyticperformanceofTiO2.Afterthecompletecon- versionofC2H5OH,thephotocatalyzeddecompositionofCH3CHO cameintoprominence

CH3CHO(a)␦−=CH4+CO(a)␦− (17)

CO(a)␦−+h+= CO(g) (18)

ThepromotingeffectofAuappearstobethesameasthatdis- cussedforthephotocatalyticdecompositionofCH3OH.Itshouldbe borneinmindthatnanosizedAuisanactivecatalystforthethermal decompositionofC2H5OHatelevatedtemperature[19–23].Thisis attributedtopromotionoftheruptureofaC HbondintheC2H5O speciesadsorbedontheAuorattheAu/TiO2interface.

4. Conclusions

(i)IRspectroscopicstudiesrevealedthattheilluminationofpure orAu-containingTiO2promotesthedissociationofCH3OHand C2H5OHtoCH3OandC2H5Ospecies.

(ii)NanosizedAuparticlesmarkedlyenhancethephotocatalytic decompositionsofbothCH3OHandC2H5OH.

(iii)BesidestheproductionofCOandH2,HCOOCH3isformedfrom CH3OHandCH3CHOisformedfromC2H5OH.

(iv)ThroughtheadditionofH2OorO2tothesealcohols,thequan- tityofCO releasedcanbesignificantlydecreased and even completelyeliminatedinthephotodecompositionofCH3OH.

(v)LoweringthebandgapofTiO2byNincorporationincreasesthe photoactivityoftheAu/TiO2catalystandleadstothephotode- compositionofCH3OHandofC2H5OHeveninvisiblelight.

Acknowledgements

Thisworkwassupportedbythegrant OTKAunder contract number K 81517 and TÁMOP under contract numbers 4.2.2/B- 10/1-2010-0012and4.2.2.A-11/1/KONV-2012-0047.Theauthors expresstheirthankstoDr.D.Seb ˝okforsomespectroscopicexper- iments.A loanofTiO2 used forAu/TiO2 (Aurolite)fromSTREM Chemicals,Inc.isgreatlyacknowledged.

References

[1]M.Haruta,T.Kobayashi,H.Sano,N.Yamada,Novelgoldcatalystsfortheoxi- dationofcarbon-monoxideatatemperaturefarbelow0C,Chem.Lett.(1987) 405–408.

[2]M.Haruta,N.Yamada,T.Kobayashi,S.Iijima,Goldcatalystspreparedbycopre- cipitationforlow-temperatureoxidationofhydrogenandofcarbon-monoxide, J.Catal.115(1989)301–309.

[3]G.J.Hutchings,Goldcatalysisinchemicalprocessing,Catal.Today72(2002) 11–17.

[4]G.C.Bond,C.Louis,D.T.Thompson,CatalysisbyGoldCatalyticScienceSeries, Vol.6,ImperialCollegePress,London,2006.

[5]A.S.K.Hashmi,G.J.Hutchings,Goldcatalysis,Angew.Chem.Int.Ed.45(2006) 7896–7936.

[6]M.Mavrikakis,M.A.Barteau,Oxygenatereactionpathwaysontransitionmetal surfaces,J.Mol.Catal.A:Chem.131(1998)135–147.

[7]M.Ojeda,E.Iglesia,FormicaciddehydrogenationonAu-basedcatalystsatnear- ambienttemperatures,Angew.Chem.Int.Ed.48(2009)4800–4803.

[8]D.A.Bulushev,S.Beloshapkin,J.R.H.Ross,Hydrogenfromformicaciddecom- positionoverPdandAucatalysts,Catal.Today154(2010)7–12.

[9]X.Zhou,Y.Huang,W.Xing,C.Liu,J.Liao,T.Lu,High-qualityhydrogenfrom thecatalyzeddecompositionofformicacidbyPd-Au/CandPd-Ag/C,Chem.

Commun.(2008)3540–3542.

[10]A.Gazsi,T.Bánsági,F.Solymosi,Decompositionandreformingofformicacidon supportedAucatalysts:productionofCO-freeH2,J.Phys.Chem.C115(2011) 15459–15466.

[11]J.G. Hardy, M.W. Roberts, Mechanism of the catalytic decomposition of methanolongoldfilaments,J.Chem.Soc.D:Chem.Commun.(1971)494–495.

[12]M.Haruta,A.Ueda,S.Tsubota,R.M.TorresSanchez,Low-temperaturecatalytic combustionofmethanolanditsdecomposedderivativesoversupportedgold catalysts,Catal.Today29(1996)443–447.

[13]A.Nuhu,J.Soares,M.Gonzalez-Herrera,A.Watts,G.Hussein,M.Bowker, MethanoloxidationonAu/TiO2catalysts,Top.Catal.44(2007)293–297.

[14]F.Boccuzzi,A.Chiorino,M.Manzoli,FTIRstudyofmethanoldecompositionon goldcatalystforfuelcells,J.PowerSources118(2003)304–310.

[15]M.Manzoli,A.Chiorino,F.Boccuzzi,Decompositionandcombinedreformingof methanoltohydrogen:aFTIRandQMSstudyonCuandAucatalystssupported onZnOandTiO2,Appl.Catal.B:Environ.57(2005)201–209.

[16]A.Gazsi,T.Bánsági,F. Solymosi,Hydrogenformationinthereactionsof methanolonsupportedAucatalysts,Catal.Lett.131(2009)33–41.

[17]I.Mitov,D.Klissurski,C.Minchev,Catalyticdecompositionofmethanolon Au/Fe(2)O(3)catalysts,C.R.Acad.Bulg.Sci.61(2008)1003–1006.

[18]S.Pongstabodee,S.Monyanon,A.Luengnaruemitchai,Hydrogenproduction viamethanolsteamreformingoverAu/CuO,Au/CeO2,andAu/CuO-CeO2cat- alysts preparedby deposition-precipitation,J. Ind. Eng. Chem.18(2012) 1272–1279.

[19]P.-Y.Sheng,G.A.Bowmaker,H.Idriss,TheReactionsofEthanoloverAu/CeO2, Appl.Catal.A:Gen.261(2004)171–181.

[20]P.-Y.Sheng,G.A.Bowmaker,H.Idriss,ThereactionsofethanoloverAu/CeO2, Appl.Catal.A:Gen.261(2004)171–181.

[21]Y.Guan,E.J.M.Hensen,Ethanoldehydrogenationbygoldcatalysts:theeffect ofthegoldparticlesizeandthepresenceofoxygen,Appl.Catal.A:Gen.361 (2009)49–56.

[22]Y.Guan,E.J.M.Hensen,Ethanoldehydrogenationbygoldcatalysts:theeffect ofthegoldparticlesizeandthepresenceofoxygen,Appl.Catal.A:Gen.361 (2009)49–56.

[23]A.Gazsi,A.Koós,T.Bánsági,F.Solymosi,Adsorptionanddecompositionof ethanolonsupportedAucatalysts,Catal.Today160(2011)70–78.

[24]A.Gazsi,I.Ugrai,F.Solymosi,Productionofhydrogenfromdimethyletheron supportedAucatalysts,Appl.Catal.A:Gen.391(2011)360–366.

[25]G.R.Bamwenda,S.Tsubota,T.Nakamura,M.Haruta,Photoassistedhydrogen productionfromawater-ethanolsolution:acomparisonofactivitiesofAu-TiO2

andPt-TiO2,J.Photochem.Photobiol.A:Chem.89(1995)177–189.

[26]M.Bowker,L.Millard,J.Greaves,D.James,J.Soares,PhotocatalysisbyAu nanoparticles:reformingofmethanol,GoldBulletin37(2004)170–173.

[27]G.Wu,T.Chen,W.Su,G.Zhou,X.Zong,Z.Lei,C.Li,H2productionwithultra-low COselectivityviaphotocatalyticreformingofmethanolonAu/TiO2catalyst,Int.

J.HydrogenEnergy33(2008)1243–1251.

[28]G.Wu,T.Chen,W.Su,G.Zhou,X.Zong,Z.Lei,C.Li,H2productionwithultra-low COselectivityviaphotocatalyticreformingofmethanolonAu/TiO2catalyst,Int.

J.HydrogenEnergy33(2008)1243–1251.

[29]M.Murdoch,G.I.N.Waterhouse,M.A.Nadeem,J.B.Metson,M.A.Keane,R.F.

Howe,J.Llorca,H.Idriss,Theeffectofgoldloadingandparticlesizeonphoto- catalytichydrogenproductionfromethanoloverAu/TiO2nanoparticles,Nature Chemistry3(2011)489–492.

[30]Gy.Halasi,G.Schubert,F.Solymosi,Comparativestudyonthephotocatalytic decompositionofmethanolonTiO2modifiedbyNandpromotedbymetals,J.

Catal.294(2012)199–206.

[31]Gy.Halasi,G.Schubert,F.Solymosi,PhotodecompositionofformicacidonN- dopedandmetal-promotedTiO2.ProductionofCO-freeH2,J.Phys.Chem.C 116(2012)15396–15405.

[32]A.Gazsi,G.Schubert,P.Pusztai,F.Solymosi,Photocatalyticdecompositionof formicacidandmethylformateonTiO2dopedwithNandpromotedwithAu.

ProductionofH2,Int.J.HydrogenEnergy38(2013)7756–7766.

[33]J.-H.Xu,W.-L.Dai,J.Li,Y.Cao,H.Li,H.He,K.Fan,Simplefabricationofthermally stableaperturedN-dopedTiO2microtubesasahighlyefficientphotocatalyst undervisiblelightirradiation,Catal.Commun.9(2008)146–152.

[34]R.Beranek,H.Kisch,Tuningtheopticalandphotoelectrochemicalproperties ofsurfacemodifiedTiO2,Photochem.Photobiol.Sci.7(2008)40–48.

[35]Gy.Halasi,I.Ugrai,F.Solymosi,Photocatalyticdecompositionofethanolon TiO2modifiedbyNandpromotedbymetals,J.Catal.281(2011)309–317.

[36]P.Forzatti,E.Tronconi,G.Busca,P.Tittarelli,Oxidationofmethanoltomethyl formateoverV-Tioxidecatalysts,Catal.Today1(1987)209–218.

[37]G.Jenner,Homogeneouscatalyticreactionsinvolvingmethylformate,Appl.

Catal.A:Gen.121(1995)25–44.

[38]J.Ara ˇna,J.M.Do ˇna-Rodríguez,C.Garriga,O.González-Díaz,J.A.Herrera-Melián, J.Pérez,FTIRstudyofgas-phasealcoholsphotocatalyticdegradationwithTiO2

andAC-TiO2,Appl.Catal.B:Environ.53(2004)221–232.

[39]W.-C.Wu,C.-C.Chuang,J.-L.Lin,Bondinggeometryandreactivityofmethoxy andethoxygroupsadsorbedonpowderedTiO2,J.Phys.Chem.B104(2000) 8719–8724.

[40]G.L.Chiarello,M.H.Aguirre,E.Selli,Hydrogenproductionbyphotocatalytic steamreformingofmethanolonnoblemetal-modifiedTiO2,J.Catal.273(2010) 182–190.

[41]H.Kominami,H.Sugahara,K.Hashimoto,Photocatalyticselectiveoxidationof methanoltomethylformateingasphaseovertitanium(IV)oxideinaflow-type reactor,Catal.Commun.11(2010)426–429.

[42]K.R.Phillips,S.C.Jensen,M.Baron,S.-C.Li,C.M.Friend,Sequentialphoto- oxidationofmethanoltomethylformateonTiO2(110),J.Am.Chem.Soc.135 (2013)574–577.

[43]M.R.Hoffmann,S.T.Martin,W.Choi,D.W.Bahnemann,Environmentalappli- cationsofsemiconductorphotocatalysis,Chem.Rev.95(1995)69–96.

[44]A.Linsebigler,G.Lu,J.T.YatesJr.,PhotocatalysisonTiO2surfaces:principles, mechanisms,andselectedresults,Chem.Rev.95(1995)735–758.

(11)

[45]Z.G.Szabó,F.Solymosi,Influenceofthedefectstructureofsupportonthe activityofcatalyst,ActesCongr.Intern.Catalyse2eParis2(1961)1627–1651.

[46]F.Solymosi,Importanceoftheelectricpropertiesofsupportsinthecarrier effect,Catal.Rev.1(1968)233–255.

[47]A.A.Ismail,D.W.Bahnemann,I.Bannat,M.Wark,Goldnanoparticlesonmeso- porousinterparticlenetworksoftitaniumdioxidenanocrystalsforenhanced photonicefficiencies,J.Phys.Chem.C113(2009)7429–7435.

[48]M.Alvaro, B. Cojocaru,A.A. Ismail, N.Petrea, B. Ferrer, F.A. Harraz, V.I.

Parvulescu,H.Garcia,Visible-lightphotocatalyticactivityofgoldnanoparticles supportedontemplate-synthesizedmesoporoustitaniaforthedecontamina- tionofthechemicalwarfareagentSoman,Appl.Catal.B:Environ.99(2010) 191–197.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Photocatalytic decomposition of dimethyl ether on pure and N-doped TiO 2 samples (SX) in visible light..

In order to cre- ate the contents of our own electronic messages to improve the sun protection behaviour of the participants we used professional sources, for example sun

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

The method discussed is for a standard diver, gas volume 0-5 μ,Ι, liquid charge 0· 6 μ,Ι. I t is easy to charge divers with less than 0· 6 μΐ of liquid, and indeed in most of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of

Infrared (IR) spectroscopic studies revealed that illumination initiated the decomposition of adsorbed formate formed in the dissociation of formic acid and located mainly on TiO 2.

Keywords: folk music recordings, instrumental folk music, folklore collection, phonograph, Béla Bartók, Zoltán Kodály, László Lajtha, Gyula Ortutay, the Budapest School of