• Nem Talált Eredményt

The main object of this paper is to investigate a new class of the generalizedq-poly- Bernoulli numbers and polynomials with a parameter

N/A
N/A
Protected

Academic year: 2022

Ossza meg "The main object of this paper is to investigate a new class of the generalizedq-poly- Bernoulli numbers and polynomials with a parameter"

Copied!
9
0
0

Teljes szövegt

(1)

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 19 (2018), No. 1, pp. 355–363 DOI: 10.18514/MMN.2018.2435

SOME RESULTS FOR q-POLY-BERNOULLI POLYNOMIALS WITH A PARAMETER

M. MECHACHA, M. A. BOUTICHE, M. RAHMANI, AND D. BEHLOUL Received 27 October, 2017

Abstract. The main object of this paper is to investigate a new class of the generalizedq-poly- Bernoulli numbers and polynomials with a parameter. We give explicit formulas and a recursive method for the calculation of theq-poly-Bernoulli numbers and polynomials. As a consequence, we derive a method for the calculation of the special values at negative integral points of the Arakawa–Kaneko zeta function also known as generalized Hurwitz zeta function.

2010Mathematics Subject Classification: 11B68; 11B73

Keywords: Arakawa-Kaneko zeta function, Poly-Bernoulli numbers, recurrence relations, Stirl- ing numbers

1. INTRODUCTION

Letqbe an indeterminate with0q < 1. Theq-analogue ofxis defined by ŒxqD1 qx

1 q

withŒ0qD0and limq!1ŒxqDx. Recently Komatsu in [12] introduced and studied a new family of polynomials, calledq-poly-Bernoulli polynomialsBn;;q.k/ .´/with a real parameterwhich are defined by the following generating function:

Fq;.tI´/WD

1 e tLik;q

1 e t

e t ´D

1

X

nD0

Bn;;q.k/ .´/tn

nŠ; (1.1) .n0Ik2ZI¤0/

where Lik;q.´/is theq-polylogarithm function [11] defined by Lik;q.´/D

1

X

nD1

´n Œnkq:

Clearly, we have

qlim!1Bn;;q.k/ .´/DBn;.k/.´/;

c 2018 Miskolc University Press

(2)

which is the poly-Bernoulli polynomial with aparameter [7], and

qlim!1Lik;q.´/DLik.´/;

which is the ordinary polylogarithm function, defined by Lik.´/D

1

X

mD1

´m

mk: (1.2)

In addition, when ´D0, Bn;.k/.0/DBn;.k/ is the poly-Bernoulli number with a parameter. When ´D0 and D1, Bn;1.k/.0/DBn.k/ is the poly-Bernoulli number [1–3,10] defined by

Lik.1 e t/

1 e t D

1

X

nD0

Bn.k/tn

nŠ; (1.3)

In this paper, we propose to investigate a new class of the generalized q-poly- Bernoulli numbers and polynomials with a parameter which we call .m; q/-poly- Bernoulli polynomials with a parameter. We establish several properties of these polynomials. The study of.m; q/-poly-Bernoulli polynomials with a parameter yields an interesting algorithm for calculatingBn;m.k/ .´I; q/. As an application, we derive a recursive method for the calculation of the special values at negative integral points of the Arakawa-Kaneko zeta function.

We first recall some basic definitions and some results [8,16] that will be useful in the rest of the paper. The (signed) Stirling numberss .n; i /of the first kind are the coefficients in the following expansion:

x .x 1/ .x nC1/D

n

X

iD0

s .n; i / xi; n1 and satisfy the recurrence relation given by

s .nC1; i /Ds .n; i 1/ ns .n; i / .1i n/ : (1.4) The Stirling numbers of the second kind, denotedS.n; i /are the coefficients in the expansion

xnD

n

X

iD0

S.n; i /x .x 1/ .x iC1/ ; n1:

These numbers count the number of ways to partition a set ofnelements into exactly i nonempty subsets.

The exponential generating functions fors.n; i /andS.n; i /are given by

1

X

nDi

s .n; i / ´n nŠ D 1

i ŠŒln.1C´/i

(3)

357

and 1

X

nDi

S .n; i / ´n nŠ D 1

i Š e´ 1i

;

respectively.

The weighted Stirling numbersSni.x/of the second kind are defined by (see [5,6]) Sni.x/D 1

i Šixn

D 1 i Š

i

X

jD0

. 1/i j i j

!

.xCj /n;

wheredenotes the forward difference operator. The exponential generating func- tion ofSnk.x/is given by

1

X

nDi

Sni.x/´n nŠ D 1

i Še e´ 1i

(1.5) and weighted Stirling numbersSni.x/satisfy the following recurrence relation:

SniC1.x/DSni 1.x/C.xCi /Sni.x/ .1in/:

In particular, we have for nonnegative integerr Sni.0/DS .n; i / andSni.r/D

(nCr iCr

)

r

:

where (n

i )

r

denotes ther-Stirling numbers of the second kind [4].

2. THE.m; q/-POLY-BERNOULLI NUMBERS WITH A PARAMETER In order to computeBn;;q.k/ WDBn;;q.k/ .0/, we define.m; q/-poly-Bernoulli numbers B.k/n;m.; q/with a parameterin terms ofm-Stirling numbers of the second kind by:

B.k/n;m.; q/D. /nŒmC1kq

n

X

iD0

.mCi /ŠSni.m/

. /iŒmCiC1kq; m0 (2.1) withB.k/0;m.; q/D1andBn;0.k/.; q/DBn;;q.k/ .

By direct computation from (2.1), we find B0;m.k/.; q/D1;

B1;m.k/.; q/D.mC1/

qmC1 1 qmC2 1

k m;

(4)

B.k/2;m.; q/D.mC1/ .mC2/

qmC1 1 qmC3 1

k

2m2C3mC1

qmC1 1 qmC2 1

k Cm2:

The following Theorem gives us a relation between the .m; q/-poly-Bernoulli numbersBn;m.k/ .; q/andq-poly-Bernoulli numbersBn.k/.; q/WDBn;;q.k/ .

Theorem 1. Form0, we have

B.k/n;m.; q/D. /mŒmC1kq

m

X

iD0

s .m; i /Bn.k/Ci.; q/

. /i : (2.2)

Proof. The explicit formula (2.2) can be derived from a known result in [14, p.

681, Corollary 1] for the Stirling transform upon specializing the initial sequence a0;mD mŠ

. /mŒmC1kq:

The next Theorem contains the exponential generating function for .m; q/-poly- Bernoulli numbers with a parameter.

Theorem 2. The exponential generating function forBn;m.k/ .; q/is given by

1

X

nD0

B.k/n;m.; q/tn

nŠ D. /mCnŒmC1kq

mŠ emt

e t d

dt m

Fq;.tI´/ : Proof. We have

1

X

nD0

B.k/n;m.; q/tn

nŠ D. /mŒmC1kq

m

X

iD0

s .m; i /

1

X

nD0

Bn.k/Ci.; q/

. /i tn

D. /mCnŒmC1kq

m

X

iD0

s .m; i / di dti

1 etLik;q

1 et

:

Since [13]

m

X

iD0

s .m; i / d

dt i

Demt

e t d dt

m

;

we get the desired result.

Next, we propose an algorithm, which is based on a three-term recurrence relation, for calculating the.m; q/ poly-Bernoulli numbersB.k/n;m.; q/with a parameter.

(5)

359

Theorem 3. For every integerk, theB.k/n;m.; q/satisfies the following three-term recurrence relation:

B.k/nC1;m.; q/D.mC1/

qmC1 1 qmC2 1

k

B.k/n;mC1.; q/ mBn;m.k/ .; q/ (2.3) with the initial sequence given byB.k/0;m.; q/D1.

Proof. From.2:2/and.1:4/, we have B.k/n;mC1.; q/D. /mC1ŒmC2kq

.mC1/Š

mC1

X

iD0

.s .m; i 1/ ms .m; i //Bn.k/Ci.; q/

. /i :

After some simplifications, we find that B.k/n;mC1.; q/D 1

ŒmC1kq

. /ŒmC2kq mC1

1

. /B.k/nC1;m.; q/ mBn;m.k/ .; q/

:

This evidently equivalent to.2:3/.

Remark1. If we setD1; kD1andq!1, in.2:3/, we get BnC1;mD.mC1/2

.mC2/ Bn;mC1 mBn;m; (2.4) an algorithm for the classical Bernoulli numbers withB1D12. See [15] for the case B1D 12 .

3. THE.m; q/-POLY-BERNOULLI POLYNOMIALS WITH A PARAMETER Form0, let us consider the.m; q/-poly-Bernoulli polynomials with a parameter B.k/n;m.´I; q/as follows:

Bn;m.k/ .´I; q/D

n

X

iD0

. 1/n i n i

!

B.k/i;m.; q/ ´n i: (3.1) It is easy to show that the generating function ofBn;m.k/ .´I; q/is given by

X

n0

Bn;m.k/ .´I; q/tn

nŠ De ´tX

n0

B.k/n;m.; q/tn

D 1

mŠ. /mCnŒmC1kqe.m ´/t

e t d dt

m

Fq;.tI´/ : Next, we show an explicit formula aboutB.k/n;m.´I; q/.

(6)

Theorem 4. The following formula holds true

Bn;m.k/ .´I; q/DŒmC1kq

n

X

iD0

. /n i .mCi /Š ŒmCiC1kqSni

´ Cm

:

Proof. From (3.1), we have Bn;m.k/ .´I; q/DŒmC1kq

n

X

iD0

. 1/n i n i

! i X

jD0

. /i j.mCj /ŠSij.m/

ŒmCjC1kq ´n i

DŒmC1kq

n

X

jD0

. /n j.mCj /Š ŒmCjC1kq

n

X

iD0

n i

! Sij.m/

´

n i

:

By using the relation

Sni.xCy/D

n

X

lD0

n l

!

Sli.x/ yn l;

we obtain

B.k/n;m.´I; q/DŒmC1kq. /n

n

X

jD0

.mCj /Š

. /jŒmCjC1kqSnj ´

Cm

;

we arrive at the desired result.

Theorem 5. The polynomialsB.k/n;m.´I; q/satisfy the following three-term recur- rence relation:

B.k/nC1;m.´I; q/D.mC1/

qmC1 1 qmC2 1

k

Bn;m.k/C1.´I; q/

C.´ m/Bn;m.k/ .´I; q/ ; (3.2) with the initial sequence given by

B.k/0;m.´I; q/D1:

Proof. From (3.1), we get d

d´Bn;m.k/ .´I; q/D

n

X

iD0

.n i / . 1/n i n i

!

B.k/i;m.; q/ ´n i 1

Dn

n

X

iD0

. 1/n i n i

!

B.k/i;m.; q/ ´n i 1

n

n

X

iD1

. 1/n i n 1 i 1

!

B.k/i;m.; q/ ´n i 1:

(7)

361

Then

´ d

d´B.k/n;m.´I; q/DnB.k/n;m.´I; q/

n

n 1

X

iD0

. 1/n i 1 n 1 i

!

Bi.k/C1;m.; q/ ´n i 1:

Now, using (2.3), we have

´ d

d´B.k/n;m.´I; q/DnB.k/n;m.´I; q/Cnm

n 1

X

iD0

n 1 i

!

B.k/i;m.; q/ . ´/n i 1

n .mC1/

qmC1 1 qmC2 1

k n 1 X

iD0

n 1 i

!

B.k/i;mC1.; q/ . ´/n i 1;

which, after simplification, yields

´B.k/n 1;m.´I; q/DBn;m.k/ .´I; q/ .mC1/

qmC1 1 qmC2 1

k

B.k/n 1;mC1.´I; q/

CmB.k/n 1;m.´I; q/ ;

which is obviously equivalent to (3.2) and the proof is complete.

As consequence of Theorem 5, one can deduce a three-term recurrence relation for.m; q/-poly-Bernoulli polynomials with a parameterand negative upper indices B. k/n;m .´I; q/.

Corollary 1. TheBn;m. k/.´I; q/satisfies the following three-term recurrence re- lation:

Bn. k/C1;m.´I; q/D.mC1/

qmC2 1 qmC1 1

k

B. k/n;mC1.´I; q/

C.´ m/B. k/n;m .´I; q/ ; with the initial sequence given by

B. k/0;m .´I; q/D1:

The next result gives a method for the calculation of the special values at negat- ive integral points of the Arakawa–Kaneko zeta function. Recall that the Arakawa- Kaneko zeta functionk.s; x/, fors2C,x > 0,k2Z, is defined by [9]

k.s; x/D 1 .s/

C1Z

0

ts 1Lik 1 e t 1 e t e xtdt

(8)

It is well-known that the special values at negative integral points are given in terms of poly-Bernoulli polynomials

k. n; x/D. 1/nBn.k/.x/ ; n0:

We now present the following algorithm fork. n; x/. We start with the sequence K0;mD1 as the first row of the matrix Kn;m

n;m0. Each entry is determined recursively by

KnC1;m.k; x/D.mC1/kC1

.mC2/k Kn;mC1.k; x/C.x m/Kn;m.k; x/:

Then

k. n; x/D. 1/nKn;0.k; x/

whereKn;0.k; x/are the first column of the matrix Kn;m

n;m0. 4. CONCLUSION

In our present research, we have investigated a new class of the generalized q- poly-Bernoulli numbers and polynomials with a parameter. As a consequence, we derive a method for the calculation of the special values at negative integral points of the Arakawa-Kaneko zeta function. We have also given a recursive method for the calculation ofq-poly-Bernoulli numbers and polynomials with parameter.

ACKNOWLEDGEMENTS

The authors would like to thank an anonymous referee for the helpful comments.

REFERENCES

[1] T. Arakawa, T. Ibukiyama, and M. Kaneko,Bernoulli numbers and zeta functions. With an ap- pendix by Don Zagier. Tokyo: Springer, 2014. doi:10.1007/978-4-431-54919-2.

[2] A. Bayad and Y. Hamahata, “Polylogarithms and poly-Bernoulli polynomials.”Kyushu J. Math., vol. 65, no. 1, pp. 15–24, 2011, doi:10.2206/kyushujm.65.15.

[3] B. B´enyi and P. Hajnal, “Combinatorics of poly-Bernoulli numbers.”Stud. Sci. Math. Hung., vol. 52, no. 4, pp. 537–558, 2015, doi:10.1556/012.2015.52.4.1325.

[4] A. Z. Broder, “The r-Stirling numbers.” Discrete Math., vol. 49, pp. 241–259, 1984, doi:

10.1016/0012-365X(84)90161-4.

[5] L. Carlitz, “Weighted Stirling numbers of the first and second kind. I.”Fibonacci Q., vol. 18, pp.

147–162, 1980.

[6] L. Carlitz, “Weighted Stirling numbers of the first and second kind. II.”Fibonacci Q., vol. 18, pp.

242–257, 1980.

[7] M. Cenkci and T. Komatsu, “Poly-Bernoulli numbers and polynomials with aqparameter.”J.

Number Theory, vol. 152, pp. 38–54, 2015, doi:10.1016/j.jnt.2014.12.004.

[8] L. Comtet, “Advanced combinatorics. The art of finite and infinite expansions. Translated from the French by J. W. Nienhuys. Rev. and enlarged ed.” Dordrecht, Holland - Boston, U.S.A.: D.

Reidel Publishing Company. X, 343 p. Dfl. 65.00 (1974)., 1974.

[9] M.-A. Coppo and B. Candelpergher, “The Arakawa-Kaneko zeta function.”Ramanujan J., vol. 22, no. 2, pp. 153–162, 2010, doi:10.1007/s11139-009-9205-x.

(9)

363

[10] M. Kaneko, “Poly-Bernoulli numbers.”J. Th´eor. Nombres Bordx., vol. 9, no. 1, pp. 221–228, 1997, doi:10.5802/jtnb.197.

[11] M. Katsurada, “Complete asymptotic expansions for certain multiple q-integrals and q- differentials of Thomae-Jackson type.” Acta Arith., vol. 152, no. 2, pp. 109–136, 2012, doi:

10.4064/aa152-2-1.

[12] T. Komatsu, “q-poly-Bernoulli numbers and q-poly-Cauchy numbers with a parameter by Jackson’s integrals.” Indag. Math., New Ser., vol. 27, no. 1, pp. 100–111, 2016, doi:

10.1016/j.indag.2015.08.004.

[13] M. Mohammad-Noori, “Some remarks about the derivation operator and generalized Stirling num- bers.”Ars Comb., vol. 100, pp. 177–192, 2011.

[14] M. Rahmani, “Generalized Stirling transform.”Miskolc Math. Notes, vol. 15, no. 2, pp. 677–690, 2014.

[15] M. Rahmani, “Onp-Bernoulli numbers and polynomials.”J. Number Theory, vol. 157, pp. 350–

366, 2015, doi:10.1016/j.jnt.2015.05.019.

[16] H. M. Srivastava and J. Choi,Zeta andq-zeta functions and associated series and integrals. Am- sterdam: Elsevier, 2012.

Authors’ addresses

M. Mechacha

USTHB, Faculty of Mathematics, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria E-mail address:mmechacha@usthb.dz

M. A. Boutiche

USTHB, Faculty of Mathematics, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria E-mail address:mboutiche@usthb.dz

M. Rahmani

USTHB, Faculty of Mathematics, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria E-mail address:mrahmani@usthb.dz

D. Behloul

USTHB, Department of Computer Science, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria E-mail address:behloul.djilali@gmail.com

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

• It is really important to deal with 3D motion analysis and the quantitative comparison of healthy subjects and patients (suffering from either movement disfunction or

Is the most retrograde all it requires modernising principles and exclusive court in the world Mediaeval views and customs still prevailing Solemn obsequies at the late Emperor's

The main aim of this paper is to give some new Turán-type inequalities for the q-polygamma and q-zeta [2] functions by using a q-analogue of the generalization of the

•The fluctuations in a force output of a muscle during a constant- force contraction are caused by the fluctuations in the firing rates of the motor units..

Electrical muscle stimulation (EMS) – Notes on techniques applied - Frequency :. - acute conditions: high frequency of 80-120 Hz, when pain still

Also it is shown that the remainder term is related with the Basel problem and the Riemann zeta function, which can be interpreted as the energy of discrete-time signals; from

In this paper we presented our tool called 4D Ariadne, which is a static debugger based on static analysis and data dependen- cies of Object Oriented programs written in

Malthusian counties, described as areas with low nupciality and high fertility, were situated at the geographical periphery in the Carpathian Basin, neomalthusian