• Nem Talált Eredményt

PHYSICSBUDAPEST INSTITUTE FOR RESEARCH CENTRAL Tje

N/A
N/A
Protected

Academic year: 2022

Ossza meg "PHYSICSBUDAPEST INSTITUTE FOR RESEARCH CENTRAL Tje"

Copied!
12
0
0

Teljes szövegt

(1)

i'AiU I n K M l f ;

Tje

K F K I - 7 5 - 3 5

J, S Ó L Y O M

L O W E N E R G Y B E H A V I O U R

O F A O N E D I M E N S I O N A L F E R M I M O D E L W I T H S H O R T A N D L O N G R A N G E I N T E R A C T I O N

H u n g a ria n A ca d e m y o f S c ie n c e s

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

(2)

2017

(3)

KFKI-75-35

LOW ENERGY BEHAVIOUR OF A ON E DIMENSIONAL FERMI MODEL WITH SHORT AND LONG RANGE INTERACTION

J. Sólyom

Central Research Institute for Physics, Budapest, Hungary Solid State Theory Department

Submitted to Solid State Communications

ISBN 963 371 037 5

(4)

A B S T R A C T

A one dimensional Fermi model is investigated for a general four parameter interaction, containing both short and long range components.

Using the second order renormalization approach it is shown that the type of interaction with all the four participating electrons around the same Fermi point has a drastic effect. It tends to suppress the superconducting type instability and favours a normal metal, antiferromagnetic or charge density wave state.

РЕЗЮМЕ

Исследована одномерная модель фермионов, в которой взаимодействие описывается 4-мя параметрами и, таким образом, учтены как короткодействующие так и дальнодействующие силы. Проводя ренормализацию во втором порядке пока­

зано, что взаимодействие в случае, когда все четыре электрона находятся вбли зи одной точки Ферми, приводит к существенному эффекту. При этом наблюдается тенденция исчезнования неустойчивости сверхпроводящего типа и основное со­

стояние, повидимому, соответствует нормальному металлу, антиферромагнетику или пайерлсовскому состоянию.

K I V O N A T

Egy dimenziós Fermi rendszert vizsgálunk, melyben a kölcsönhatást négy paraméter jellemzi és igy mind a rövid, mind a hosszú hatótávolságú részt figyelembe vesszük. Másodrendű renormálást használva megmutatjuk, hogy az a kölcsönhatási tipus, melynél mind a négy, a kölcsönhatásban résztvevő dektron ugyanazon Fermi pont közelében van, igen lényeges befolyással van a rendszer viselkedésére. Elnyomni igyekszik a szupravezető tipusu instabili tást és ugyanakkor kedvez a normál fém, antiferromágneses vagy Peierls álla­

pot kialakulásának

(5)

The recent interest in the behaviour of quasi one dimensional highly conducting systems (like TCNQ salts) has led to an extensive study of the properties of the one dimensional interacting Fermi

*1— 1 *1 Я 2

systems . Various methods such as parquet diagram summation ’ ,

3-7 8

renormalization group approach , exact Ward identities , Tomonaga

9 10 11

boson transformation^’ and equation of motion method have been used to investigate the Green functions and response functions for such systems.

Supposing that the interaction is important only for electrons with momenta lying near the i’ermi surface, which here consists of two points, -k„, and that the matrix elements are nearly independent

Г

of the momenta in a range characterized by a cut-off k^ around the Fermi momentum, the general form of the interaction Hamiltonian is

^ 2

a kW k|c О.,,

+* 2 л к,< С Х + Ч Х *

(1)

1 L

%

4«<,P

<L 0 , n +

4 V 4 - 4 - X * 4,*

4 +* /) + Лi+ о

Г4 f ч

a L

where Oil and (з\ _ create electrons with momenta к -к ^ к. £ k +k

Г С 1 Г C

and -kp-kc £ k ^ £ -ky+kc , respectively. The term with g^ is a large momentum transfer interaction (back-scattering), the terms with g^ and g^ describe small momentum transfer, while the term with g^ is effective only if the band is half-filled and it corresponds to Umklapp processes.

In the case e: =g =0, the Hamiltonian reduces to that of the

1 3 8 9

Tomonaga model, for which exact results are available ’ . The Hubbard model is equivalent to g ^ g ^ g - ^ g ^ * In the presence of the large momentum transfer interaction g. only a special case can be

10 '

solved exactly and in general we have to have recourse to some approximate treatment as in 1-7.

(6)

2

Until now there has been no attempt to investigate the one dimensional Fermi model with this general Hamiltonian. In the renor*

malization group treatments the long range interaction g^ has been completely neglected, although its importance can be easily seen.

Even if the bare coupling g^ is zero, in higher orders g^ and g_ can generate g^ type couplin. Therefore in a consequent renormalization procedure the invariant coupling of g^ type has to be introduced.

g From the exact treatment of the g^ coupling it is known that at very low energies a branch cut appears in the Green function, instead of the usual pole behaviour. The spin of the fermmons is very important in this respect, as has been pointed out by Nozi^res 12. In this work we will neglect this branch cut and will sur,i up loga­

rithmic contributions only. This may modify our results at energies very near the Fermi energy, where our approximation is questionably anyway.

3 ^

As we have shown earlier ’ , first order renormalization in the renormalization group approach corresponds to summing up leading logarithmic corrections, while second order renormalization corres­

ponds to considering next to leading logarithmic corrections as well and thereby to taking into account fluctuation effects.

We have performed second order renormalization for the general 1D Fermi model, and after a straightforward but tedious calculation we have got the Lie equations for the invariant couplings in the following form

(7)

- 3 -

where x=k'/k’ is the ratio of the cut-offs in the renormalized c c

and original systems. For the definitions and notations used we refer to fiefs. 3”^*

This system of equations can be best analyzed by taking the combination g^-2g^.

c) (% - 2- Ob ) I ( I \ t I / ' i t ' \ Iг.

( 6 )

The solutions for x 0, i.e. the fixed points of the invariant couplings can be obtained from the zeros of'the right hand sides of eqs. (2-6). This consideration gives a plane of fixed points and two isolated fixed points, namely

1. ) g ’(0)=0, g^(o)=0, g^iO) and g^(0) have non-universal value, (?) 2 . ) g ’(0)=-2*-o-, g ’(0)=0, g^(0) = 2'r\r, g£(0)=0, (8) 3 . ) g ’(0)=-2ira, g ’(0)=0, е ’(0)=-21глг , g»(0)=0. (9)

The domain of attraction of the plane of fixed points consists at least of the whole subspaco g 7=0, i.e. the case when the band, is not half-filled. In this case, starting from any value for the bare coupling g^, it will always be renormalized to zero, in contrast to the case when has been neglected. This shows, that the inclusion of g^, even if g^=0, changes drastically the behaviour of the inva­

riant couplings. This comes from the fact that, as can be seen from the the Lie equations (2-5), the large momentum transfer interaction g^

can generate an effective g^, which, in turn, will modify the beha­

viour of g ’ itself.

The importance of g? can be seen from comparing our results 7 4

with that of Kimura . He performed second order renormalization with g ’, g!, and g^ only (in his notation the corresponding invariant couplings are 2., ) and he got six fixed points ( or better to say two lines of fixed points and four isolated fixed points).

As we see, the inclusion of g^ modifies the invariant couplings in such a way that only one plane of fixed points and two isolated fixed points will persist.

By determining the generalized susceptibilities corresponding to the charge density, spin density and Cooper pair fluctuations,

(8)

- k -

the respective Lie equations are as follows:

nT(<) 3 X

1

~ X . iro- L 2- ^ ' + ь } +■F ( * ' +

1

, (

10

)

Ъ (xl

d <

* 1 - h Ы + j,

(

11

)

Э a (x)

э <

( V 4-

+

L

(

12

)

with

г - / \ < I \ i I '

, ^ 'L i M

1

F U Í * L » _ 1< 4 * + v + 1 ъ J,

where N , ^ and Д are the auxiliary susceptibilities of the charge density, spin density and Cooper pair fluctuations as defined in Ref. х = ы / и ) л> for these susceptibilities are calculated as a function of the energy variable cO and is the cut-off in energy space. The behaviour at w ^ O or at T ~ 0 is governed by

the fixed point value of the invariant couplings. Inserting the results of eqs. (7) — C9) into eqs. (10)-(12), we get that

1. ) when g ’(0)=0 and g^(0)=0, the fixed point values of g!, and g^ are not universal, therefore the critical exponents of the sus­

ceptibilities are not universal either and no general statement can be made as to which of the susceptibilities will diverge,

2. ) when g ’(o)=-2iro- , g^(0)=2ira and gZ,(0) = g^(0)=0, none of the susceptibilities diverges and the system will tend to a normal metal ground state,

3«) when g ’ (0) = -2icví- , g^(0)=-2rv and g!,(0) = g^(0) =0, the charge density fluctuation N diverges and the ground state of the system will be a period doubled charge density wave state.

The phase diagram, as can be expected from the above considera­

tions is drastically changed by the inclusion of g^. In the last two cases the superconducting type instability is suppressed comple­

tely. In the first case it might appear depending on g^(ü), but even in this case the tendency for this type of instability is weakened because g *(0) whose large value was mainly responsible for its appearance is now renormalized to zero.

(9)

The results obtained here are as yet tentative, because the fixed point values in the last two cases are of the order of unity, and so second order renormalization is not sufficient any more, the lower order logarithmic corrections being equally important. Never­

theless this calculation shows the importance of the coupling of type and the tendency that this coupling might suppress the super­

conducting instability and favonr a normal metal, antiferromagnetic or charge density wave state.

(10)

6

References:

1) Bychkov Ju.A., Gorkov L.P. and Dzyaloshinsky I.E., Soviet Fhys.

JETP 22,

**89

(

1966

)

2) Dzyaloshinsky I.E. and l.arkin A.I., Soviet Phys. JETP 3*1,

*f22 (

1972

)

3

) Menyhárd N. and Sólyom J., J. Low Temp. Phys. J^2, 529 (1973)

*0 Sólyom J., J. Low Temp. Phys. 1^2, 5*17 (1973)

5) Fukuyama H . , Rice T.M., Varma C.M. and Halperin B.I., Phys.

Rev. В 10, 3775.(197*0

6) Konishi M. and Kimura M. , Prog. Theor. Phys. 5j?, 353 (197*0 7) Kimura И., preprint, to be published

8) Dzyaloshinsky I.E. and Larkin A.I., Zh. Eksperim. i Teor. Fiz.

65, *И1 (1973)

9) Luther A. and Peschei I., Phys. Rev. В 9i 2911 (197*0

10) Luther A. and Emery V.J., Phys. Rev. letters 33, 589 (197*0 11) Everts H.U. and Schulz H. , Solid State Commun. 15, 1

9

—— *+13 (197*0 12) Nozieres P . , private communication

(11)
(12)

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadós Siklós Tivadar, a KFKI Szilárdtestkutatási Tudományos Tanácsának szekcióelnöke

Szakmai lektor: Menyhárd Nóra Nyelvi lektor : Fazekas Patrik

Példányszám: 290 Törzsszám: 75-724 Készült a KFKI sokszorosító üzemében Budapest, 1975. május hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

In general we have only a single pair of the exciting and decay curve (or only one exciting curve for a number of different decay curves) therefore we are able to

We report on a new variational method for determining the ground state energy of antiferromagnetic Heisenberg spin chains with nearest neighbour interaction..