• Nem Talált Eredményt

On generators in multiplicative group of the Field Zp.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "On generators in multiplicative group of the Field Zp."

Copied!
4
0
0

Teljes szövegt

(1)

- 3 9 -

ALEÍCS A N D E R G R Y T C Z U K A N D J A R O S L A W G R Y T C Z U K

ON G E N E R A T O R S IN M U L T I P L I C A T I V E G R O U P OF T H E F I E L D Z p

A B S T R A C T : In the paper the following theorem is proved: "Let tl<

Zp be the multiplicative group of the field Z^, where p=2q+l and p , q are odd primes. Then 2, q+1, - 22 and - C q + 1 ) a r e generators in the group Z2 • p if p = 8 k + 3 and q, 2q-l, - q2 and — C 2 q - 1 )2 a r e g e n e r a t o r s in Z * if p = 8 k + 7 " .

P

This result is an extension of some earlier ones.

Baum [1] has g i v e n an i n t e r e s t i n g c r i t e r i a for c e r t a i n p r i m i t i v e roots. Vilansky t2J, using only the L e g e n d r e s y m b o l , proved t h e f o l l o w i n g r e s u l t : Let p and q a r e odd p r i m e s and p=2q+l. If q ^ l C m o d 4>, then q+1 is a p r i m i t i v e root m o d u l o p, w h i l e if q = 3 C m o d d), then q is a p r i m i t i v e root m o d u l o p.

In the present n o t e we g i v e s o m e e x t e n s i o n of t h i s r e s u l t p r o v i n g t h e f o l l o w i n g theorem:

THEOREM. Let Z * be the m u l t i p l i c a t i v e g r o u p of the field Zp , where p = 2 q + l and p,q are odd p r i m e s . Then 2, q+1, - 22 and

2 H<

- C q + 1 ) a r e g e n e r a t o r s in t h e g r o u p Zp if p = 8 k + 3 and q, 2 q - l ,

—q and - C 2 q - 1 ) ^ a r e g e n e r a t o r s in Z if p = 8 k + 7 . For the proof o f the T h e o r e m we nead two lemmas.

L E M M A 1. Let Z* be the m u l t i p l i c a t i v e g r o u p of the field Z

P P where p = 2 q + l and p,q are odd p r i m e s and let N Rp be the s e t o f

the q u a d r a t i c n o n — r e s i d u e s m o d u l o p. Then the set NR N.<2q> is

(2)

- d o -

t h e set of all g e n e r a t o r s o f t h e g r o u p 1(1

P R O O F OF L E M M A 1: Let R be the s e t o f all q u a d r a t i c r e s i d u e s

|f<

m o d u l o p. T h e n we h a v e t h a t R^ is a s u b g r o u p of Zp and s i n c e p=2q+l t h e g r o u p R h a s the o r d e r q. If b<£R t h e n b is n o t

P p a g e n e r a t o r in Z . S i n c e p

C2q> 2 = C p - l )q = C - l >q = —1Cmod p>,

h e n c e by E u l e r T h e o r e m w e get 2 q « N Rp. On the o t h e r hand we have

C 2 q ) 2 = C p - 1 )2 = 1Cmod p )

and t h e r e f o r e 2q h a s t h e o r d e r 2 and c a n n o t be a g e n e r a t o r in Zp. But the g r o u p Z^ h a s e x a c t l y

•p C p - 1 ) = <p C 2 q ) = q-1

g e n e r a t o r s and t h e r e f o r e the set. NRf>S(2q> is t h e set of all g e n e r a t o r s in Z*.

P

L E M M A 2. Let g be a g e n e r a t o r o f t h e g r o u p Z w h e r e p = 4 k + 3 . T h e n - g is a l s o a g e n e r a t o r in Z^.

P R O O F OF L E M M A 2: Let p = 4 k + 3 and g be a g e n e r a t o r in Z*. T h e n we have

Z * = { gk ; k = l , 2 , . . . .p-1 = 4 k + 2 } . By Euler t h e o r e m we h a v e

g 2 = -1 and t h e r e f o r e g2 k*1 — -1- From last e q u a l i t y we g e t

C 2.1> - g2 = g2 k*3

It is easy to s e e t h a t C2k+3, 4 k + 2 = p - l > = l and t h e r e f o r e g2 k + 3 is a g e n e r a t o r in Z * t h u s by C 2 . 1 ) L e m m a 2 f o l l o w s . P R O O F OF T H E T H E O R E M . F i r s t we r e m a r k that if p=2q+l w h e r e p,q a r e odd p r i m e s t h e n p = 4 m + 3 , b e c a u s e f o r p=4m+l t h e e q u a l i t y p = 2 q + i is i m p o s i b l e . H e n c e p = 8 k + 3 o r p=8k+7. If

(3)

- 4 1 -

p = 8 k + 3 then -1 and the n u m b e r 2 is a q u a d r a t i c n o n — r e s i d u e m o d u l o p. F r o m L e m m a i we get t h a t 2 is a g e n e r a t o r in Zp. On t h e o t h e r hand we h a v e

2 C q + l ) = 2 q + 2 = 2q+l+l = p+1 = lCmod p>

and t h e r e f o r e q+1 is a g e n e r a t o r in Z^ a s t h e i n v e r s e e l e m e n t with r e s p e c t to 2.

Let p = 8 k + 7 , t h e n 2 is not a g e n e r a t o r in Z * . S i n c e t h e r e a r e e x a c t l y £>Cp-l) g e n e r a t o r s in Zp and t h e e l e m e n t 1 i s not a g e n e r a t o r t h u s t h e r e e x i s t s at least o n e

>ii n u m b e r g such that C g , p — 1 ) > 1 and g is a g e n e r a t o r in Z^.

B e c a u s e p=2q+l t h u s q|p-l and C q , p - l ) > l and 2 is not a

#

g e n e r a t o r t h u s the n u m b e r q must b e a g e n e r a t o r in Zp. V e have

qC2q-l> = q C 2 q + l - 2 ) = q C p - 2 ) s -2q = 1 - p = lCmod p). tfi and so 2q—1 is a g e n e r a t o r in Z^. T h e last part o f a s s e r t i o n f o l l o w s from L e m m a 2 and the p r o o f is c o m p l e t e .

R E F E R E N C E S

111 J.D. Baum, A note on p r i m i t i v e roots, M a t h , M a g . 3 8 C1965> 12-14.

12 Í A. W i l a n s k y , P r i m i t i v e r o o t s w i t h o u t q u a d r a t i c r e c i p r o c i t y , Math. Mag. 49 ( 1 9 7 6 > , 146.

(4)

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

For this case, the group algebras F G with metabelian group of units are classified in [16], under restriction G is finite, and this result is extended to torsion G in [6]..

In this paper it is proved that some earlier results on the location of zeros of polynomials defined by special linear recursions can be improved if the Brauer’s theorem is

It is an extension of a result of P.Erdős who proved it for Mersenne numbers... f.23 D.H.Lehmer, An extended theory of Lucas»

In this section we apply the previous result to find lower bounds for the sum of reciprocals of multinomial coefficient and for two symmetric functions.. Sum of reciprocals

• the application of the polynomial method in a multiplicative setting that led to the solution of a problem of Snevily, the extension of a result of Alon, and a generalization of

103 From the point of view of Church leadership, it is quite telling how the contents of the dossier of the case are summed up on the cover: “Reports on György Ferenczi, parson

11 In point III the equations of persistence were based on the metaphysical intuition that an ex- tended object can be conceived as the mereological sum of its local parts, each

In this paper we prove some new results on near-vector spaces and near domains and give a first application of the nearring of quotients with respect to a multiplicative set, namely