• Nem Talált Eredményt

CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRAL RESEARCH INSTITUTE FOR PHYSICSBUDAPEST"

Copied!
12
0
0

Teljes szövegt

(1)

KFKI-1980-7^1

Z S . K A J C S O S G. B R A U E R

SOME I RON-BASED METALLIC GLASSES STUDIED BY POSITRON ANNIHILATION

H u n g a r ia n A c a d e m y o f S c ie n c e s

C E N T R A L R E S E A R C H

I N S T I T U T E F O R P H Y S I C S

B U D A P E S T

(2)

д а

-

>?

i

(3)

KFKI-1980-74

sore IRON-BASED METALLIC GLASSES STUDIED BY POSITRON ANNIHILATION

Zs. Kajcsos and G. Brauer*

Central Research Institute for Physics H-1525 Budapest 114, P.O.B. 49, Hungary

*Zentralinstitut für Kernforschung Rossendorf, DDR-8051, Dresden, Pf. 19, GDR

Presented in part on "Conference on

Metallic Glasses; Science and Technology"

/Budapest, 1980/ as paper S-09.

HU ISSN 0368 5330 ISBN 963 371 716 7

(4)

ABSTRACT

T h e F e 4 0 N i 4 0 B16 P4 F e 40 N 1 4 0 P14 B6 ; F e 8 0 B 2 0 ; F e 32 N i 36 C r 14 P12 B6

iron-based glassy systems were investigated by positron annihilation methods.

Regarding the parameters measured, a pronounced difference in the values referring to amorphous and crystalline phases respectively was found for Feg0 B^q only. The presence of trapping centres in the amorphous state of Fe^_ NI40 ^14 B 6 is assumed on the basis of measurements studying the depen­

dence ot the annihilation parameters on the heat-treating temperature as compared with results for well-annealed and deformed crystalline pure metals.

АННОТАЦИЯ

С помощью используемых при измерении аннигиляции позитронов методом ис­

следовались металлические стекла на основе железа Fe._ Ni._ В., Р.;

4 U 4 U 1 Ь 4

Fe4Q Ni4o Р14 Bg; FegQ B2o' Fe32 NP36 C r 14 P 12 Вб ‘ 0тличиев параметрах отно­

сительно аморфной и кристаллической фаз было обнаружено только в Feg В . Сравнение результатов, полученных для термически обработанных и деформирован­

ных кристаллических металлов высокой чистоты, с параметрами позитронной ани- гиляции, измеренными в зависимости от температуры термической обработки, поз­

воляет предположить наличие центров захвата.

KIVONAT

A pozitron-annihilációs mérési módszerek segitségével vizsgáltuk a

F e 4 0 N l 40 B16 T>4 ; F e 4 0 N l 4 0 P14 B6 ; F e 8 0 B 2 0 ; F e 32 N l 36 C r 14 P 12 B 6 v a s a l a Pu

fémüvegeket. Az eredmények alapján csak a Feg В_ esetében találtunk az amorf, illetve kristályos fázisra vonatkozó paraméterekben határozott különbséget.

Hőkezelt és deformált kristályos, nagytisztaságu fémekre vonatkozó eredmények­

kel összehasonlitva a F e ^ Ni,- Fi4 Bß -on hőkezelési hőmérséklet függvényében mért pozitron annihilácios paramétereket az amorf fázisban trapping-centrumok

jelenlétére következtethetünk.

(5)

INTRODUCTION

Recently the investigation of glassy metals has witnessed increasing interest. This is due to the very promising technological properties of glassy metals and the many complex questions they have raised in physics.

The structure of such amorphous metals is still a question open to discussion;

a problem directly related to this is the existence /abundance, shape, volume, etc./ of "defects".

As from experiments on pure metals it is known and well demonstrated that positron annihilation is a sensitive and powerful tool for defect studies the application of this method seems to be more and more promising for the study of amorphous solids too [1-6]. The field of positron annihila­

tion itself has been extensively reviewed in many books and articles, e.q.

[7-9].

EXPERIMENTAL

Our measuring conditions were as follows:

a. The positron lifetime measurements were performed with the conventional fast-slow coincidence systems. The measured spectra were evaluated with the POSITRONFIT EXTENDED program [10] into one component, taking into account the source correction.

b. The measurements of the Doppler-boardening of the annihilation y-line were carried out with an ORTEC high-purity Ge-detector. From the measured energy distribution the S lineshape parameter-defined as the ratio of the counts in a narrow central portion of the Doppler-broadened peak to the peak area - was calculated.

c. The 2y-angular correlation measurement was realized on a long-slit geometry device. The measured angular distribution curves were decomposed into two and three components by the [11] PAACFIT program. As positron-source 22Na-was used for all measurements.

The most essential experimental characteristics of the above set-ups are summarized in Table 1.

4

(6)

2

Table 1

Method 22

Na source Resolution Laboratory

Angular correlation 5mCi, external 0.4 mrad Budapest

Lifetime

lOpCi. Al-foil

/lmg cm _2/ 340ps/60Co/ Budapest

Lifetime

3pCi, Hostaphan foil. _2 /О.ЗЗтдсш /

320ps/^°Co/ Rossendorf

Doppler broadening If 1.1 KeV at

514 KeV Rossendorf

All measurements were performed at room temperature. The heat-treatment of the samples was carried out in vacou; the temperature was controlled to + 5 K.

The conventional sandwich-type source-sample arrangement was utilized for the positron lifetime and Doppler-boadening measurements. The three-layer thick metallic glass samples were prepared by point-welding pieces of ribbon to a stainless steel frame. The iron-based metallic glasses studied by the above methods were Fe80 B2Q; Fe40 Ni4Q P4 B16, Fe4Q Ni4Q P,14 Bß ; and

Fe32 Ni36 Cr14 P12 B6 ^raT1 AUiöd Chemicals or produced in Hungary and in the GDR.

RESULTS/ DISCUSSION AND CONCLUSIONS

2y-angular correlation measurements were performed on FegQ B20 and Fe40 Nl40 P14 B6 amorphous alloys. A typical result for Fe4Q Ni4Q P^4 Bg is shown in Fig. 1.

From the computer analysis of the measured curves it was found that only ill-fitting of the curves is achievable following the conventional assumption that they consist of two components, one of Gaussian form, origi­

nating from positron annihilation with core electrons, and one of parabolic shape, resulting from annihilation with valence electrons. No better fit was obtained when assuming a third component representing a localization of the positron before annihilation as in the case of pure metals containing defects. This fact indicates a substantial difference in the electronic structure of amorphous alloys compared with that of materials of crystalline structure.

In order to establish the most sensitive part of the distribution of the annihilation y-line for producing the S-parameter, a difference of the annihilation Y“lines referring to Fe4Q Ni4Q P14 B6 an<^ Fe s;i-n9^e crystal respectively was evaluated and is shown in Fig. 2. On base of this result for the calculation of the S-parameter a narrow central portion /corre­

(7)

3

sponding to + 1.5 mrad in the angular correlation measurements/ was selected.

Fig. 1. 2y-angular correlation spectrum measured, for Fe^0

Measurements of the positron lifetime and Doppler-broadening of the annihilation у-line were also used to investigate the effect of crystalliza­

tion on the positron annihilation parameters. The results are summarized in Table 2.

A pronounced difference in the values referring to amorphous and crystal­

line phases respectively was found only for Feg0B2C).

As earlier results indicated temperature dependent positron annihilation characteristics in the amorphous state of some metallic glasses it was

decided to carry out measurements on one metallic glass in a broader tempera­

ture range.

Fe^0 Ni4Q P^4 Bg was selected because of sample-preparing considerations /it was a ~ 15 mm wide ribbon/.

(8)

4

Fig. 2. The difference of the annihilation у-line for F e Ni^ В^ as referred to the one measured for Fe single crystal.

(9)

5

Table 2

rV

(

4 <D

00 О 03 to о F e 40N i 40B 16P 4 Fe.^Ni,^P, A Br-

40 40 14 6 F e ^ - N i ^ C r , ,P, -B,.

32 36 14 12 6

Sc" Sa

° 3 /% -2+0.5 0+0.5 0+0.5 0+0.5

Sc

Tc -Ta /PS -8+3 2+3 2+3 -2 + 3

Table 2. Difference between amorphous and crystalline phase of some metallic glasses measured by positron annihilation methods. The index c_ and a denote the crystalline and amorphous state respectively.

Figure 3/a presents the results of the Doppler-broadening measurements compared with those of pure, crystalline and polycrystalline, well-annealed and deformed Fe-samples.

The S-parameter values for the metallic glass considerably exceed those of the pure Fe even after substantial deformation.

Regarding the effect of heat-treatment of the S-parameter an increase of ~ 1% is observed at ~ 380 К which disappears at ~ 480 K; above this temperature the value of the S-parameter remains constant, independent of phase.

The results of lifetime measurements are shown in Fig. 3/b. The т-values do not present such a conclusive picture as given above and a trend similar to that in Fig. 3/a is not observable.

The complexity of the amorphous state is indicated by the positron annihila­

tion parameters measured in the amorphous and crystalline state of metallic glasses producing a significant difference in some, while in others no such difference is observed.

The higher mean values of the S-parameter and lifetime compared with values related to well annealed Fe-samples might show the presence of trapping centres /possible holes/ in the amorphous state of Fe4Q Ni4Q P^4 Bg .

The temperature dependence of the S-parameter values might indicate a change in structure or in the trapping process in the temperature range 350-450 K.

As at present, there is no general description of positron annihilation in the amorphous solid state further systematic studies in a much broader temperature range - also below room temperature - under well-controlled conditions are necessary and are in progress.

The authors are indebted for the considerable encouragement and help given by corworkers of the Nuclear Physics and Solid State Physics Departments of CRIP Budapest and of ZfK Rossendorf.

(10)

6

t / р е 180 160 140

120 100 5 0 ,

эс 10

O '

-t— I I t-

1 I J.

3 1 &

'b l n

n. * * *

5 al8

--L-

273

• • • •

I-e rro r bar

♦ ♦

amorphous slate

373 473 573

^crystalline state

673 773

T/K

Fig. 3/a S-parameter values referring to Fe and Fe^ Ní^q P^ В^ in dependence on heat-treating temperature

Fig. 3/b The positron lifetime values as measured in Fe and in

Fe^Q Ní^q ín dependence on heat-treating temperature

(11)

7

REFERENCES

[1] H.S. Chen, S.Y. Chuang; Appl. Fhys. Lett. 31 /1977/255

[2] Zs. Kajcsos, S. Mantl. W. Triftshäuser, J. Winter; Proc. 5th Int. Conf.

Positron Abbihilation /Japan, 1979/ p. 893

[3] K. Suzuki, F. Holz, M. Hasegawa, T. Fukunaga, T. Honda; Proc. 5th Int.

Conf. Positron Annihilation /Japan, 1979/ p. 861

[4] Zs. Kajcsos, J. Winter, S. Mantl, W. Triftshäuser; phys. stat. sol /а/, 58, 77 /1980/

[5] W. Triftshäuser, G. Kögel; Proc. of Conf. on Metallic Glasses; Science and Technology, /Budapest, Hungary/ 1980, paper S-10.

[6] G. Kögel, J. Winter, W. Triftshäuser; Proc. of Conf. on Metallic Glasses: Science and Technology, /Budapest, Hungary/ 1980, paper S-17.

[7] R.N. West; Adv. Phys. 2j2 /1973/ 263

[8] "Positrons in Solids", ed. P. Hautojärvi /Springer Verlag, 1979/

[9] "Progress in the Study of Point Defects" ed. M. Doyama, S Yoshida /The University of Tokyo Press, Tokyo, 1977/

[10] P. Kirkegaard, M. Eldrup; Comp. Phys. Comm. 1_, 401 /1974/

[11] P. Kirdegaard, 0. Mogensen; RÍS0-M-1615 /1973/

(12)

■ЧГ

£ 3 -О У-

0

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Szegő Károly

Szakmai lektor: Horváth Dezső Nyelvi lektor: Harvey Shenker

Példányszám: 685 Törzsszám: 80-596 Készült a KFKI sokszorosító üzemében Budapest, 1980. október hó

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The second result follows from our approach too: it is shown that the identification of gravitation with a massless spin 2 gauge field requires the restriction

100 m magas kéménytől 800 m-re szélirányban, 1 m/s szél- sebesség mellett, D stabilitási kategória esetén a csóva gamma-sugárzása által okozott földfelszini

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Lőcs Gyula. Szakmai lektor: Pócs Lajos Nyelvi lektor: Harvey

Mivel a rendszerben a nyomáskülönbségek ekkor más csak néhány század MPa-t tesznek ki, ugyanebben az időpontban vált előjelet a gőzfejlesztők primer és

Both the Curie temperature and the mean magnetic moment of iron and holmium decrease with increasing holmium content.. The temperature dependence of magnetization

characterise different flow regimes. We propose to desc r i b e the propagating two-phase substance by the spatial correlation function of its density

In general we have only a single pair of the exciting and decay curve (or only one exciting curve for a number of different decay curves) therefore we are able to

We report on a new variational method for determining the ground state energy of antiferromagnetic Heisenberg spin chains with nearest neighbour interaction..