• Nem Talált Eredményt

JJ II

N/A
N/A
Protected

Academic year: 2022

Ossza meg "JJ II"

Copied!
18
0
0

Teljes szövegt

(1)

volume 5, issue 2, article 49, 2004.

Received 14 January, 2004;

accepted 25 April, 2004.

Communicated by:Kazimierz Nikodem

Abstract Contents

JJ II

J I

Home Page Go Back

Close Quit

Journal of Inequalities in Pure and Applied Mathematics

THE STABILITY OF SOME LINEAR FUNCTIONAL EQUATIONS

BELAID BOUIKHALENE

Department of Mathematics University of Ibn Tofail Faculty of Sciences BP 133 Kenitra 14000, Morocco.

EMail:bbouikhalene@yahoo.fr

c

2000Victoria University ISSN (electronic): 1443-5756 012-04

(2)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page2of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

Abstract

In this note, we deal with the Baker’s superstability for the following linear func- tional equations

m

X

i=1

f(x+y+ai) =f(x)f(y), x, y∈G,

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y∈G,

whereGis an abelian group,a1, . . . , am(m ∈N) are arbitrary elements inG andfis a complex-valued function onG.

2000 Mathematics Subject Classification:39B72.

Key words: Linear functional equations, Stability, Superstability.

Contents

1 Introduction. . . 3

2 General Properties. . . 5

3 The Main Results . . . 10

4 Applications. . . 14 References

(3)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page3of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

1. Introduction

LetGbe an abelian group. The main purpose of this paper is to generalize the results obtained in [4] and [5] for the linear functional equations

m

X

i=1

f(x+y+ai) =f(x)f(y), x, y ∈G, (1.1)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G, (1.2)

where a1, . . . , am (m ∈ N), are arbitrary elements in G and f is a complex- valued function onG. In the case whereGis a locally compact group, the form ofL(G)solutions of (1.1) (resp. (1.2)) are determined in [2] (resp. [6]). Some particular cases of these linear functional equations are:

• The linear functional equations

f(x+y+a) = f(x)f(y), x, y ∈G, (1.3)

f(x+y+a) +f(x−y−a) = 2f(x)f(y), x, y ∈G, (1.4)

f(x+y+a)−f(x−y+a) = 2f(x)f(y), x, y ∈G, (1.5)

f(x+y+a) +f(x−y+a) = 2f(x)f(y), x, y ∈G, (1.6)

see [1], [2], [6], [7] and [8].

• Cauchy’s functional equation

(1.7) f(x+y) =f(x)f(y), x, y ∈G,

(4)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page4of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

• D’Alembert’s functional equation

(1.8) f(x+y) +f(x+y) = 2f(x)f(y), x, y ∈G.

To complete our consideration, we give some applications.

We shall need the results below for later use.

(5)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page5of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

2. General Properties

Proposition 2.1. Letδ >0. LetGbe an abelian group and letfbe a complex- valued function defined onGsuch that

(2.1)

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤δ, x, y ∈G, then one of the assertions is satisfied

i) Iff is bounded, then

(2.2) |f(x)| ≤ m+√

m2+ 4δ

2 , x∈G.

ii) If f is unbounded, then there exists a sequence (zn)n∈N in G such that f(zn) 6= 0 andlimn|f(zn)| = +∞ and that the convergence of the se- quences of functions

(2.3) x→ 1

f(zn)

m

X

i=1

f(zn+x+ai), n∈N, to the function

x→f(x),

(2.4) x→ 1

f(zn)

m

X

i=1

f(zn+x+y+aj +ai),

n ∈N, 1≤j ≤m, y ∈G,

(6)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page6of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

to the function

x→f(x+y+aj), is uniform.

Proof. i) LetX = sup|f|, then for allx∈Gwe have

|f(x)f(x)| ≤mX+δ from which we obtain that

X2−mX−δ ≤0 hence

X ≤ m+√

m2+ 4δ

2 .

ii) Sincef is unbounded then there exists a sequence(zn)n∈NinGsuch that f(zn)6= 0andlimn|f(zn)|= +∞. Using (2.1) one has

1 f(zn)

m

X

i=1

f(zn+x+ai)−f(x)

≤ δ

|f(zn)|, x∈G, n∈N, by lettingn → ∞, we obtain

limn

1 f(zn)

m

X

i=1

f(zn+x+ai) =f(x)

(7)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page7of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

and

limn

1 f(zn)

m

X

i=1

f(zn+x+y+aj+ai) = f(x+y+aj).

Proposition 2.2. Letδ >0. LetGbe an abelian group and letfbe a complex- valued function defined onGsuch that

(2.5)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−2f(x)f(y)

≤δ, x, y∈G,

then one of the assertions is satisfied i) Iff is bounded, then

(2.6) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G.

ii) If f is unbounded, then there exists a sequence (zn)n∈N ∈ G such that f(zn) 6= 0 andlimn|f(zn)| = +∞ and that the convergence of the se- quences of functions

(2.7) x→ 1

f(zn)

m

X

i=1

[f(zn+x+ai) +f(zn−x−ai)], n∈N, to the function

x→2f(x),

(8)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page8of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

(2.8) x→ 1 f(zn)

m

X

i=1

[f(zn+x+y+aj +ai) +f(zn−x−y−aj−ai)],

n ∈N, 1≤j ≤m, y ∈G, to the function

x→2f(x+y+aj),

(2.9) x→ 1 f(zn)

m

X

i=1

[f(zn+x−y−aj +ai) +f(zn−x+y+aj −ai)],

n ∈N, 1≤j ≤m, y ∈G, to the function

x→2f(x−y−aj) is uniform.

Proof. The proof is similar to the proof of Proposition2.1.

i) LetX = sup|f|, then for allx∈Gwe have X2−mX− δ

2 ≤0 hence

X ≤ m+√

m2+ 2δ

2 .

(9)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page9of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

ii) Follows from the fact that

1 f(zn)

m

X

i=1

[f(zn+x+ai) +f(zn−x−ai)]−2f(x)

≤ δ

|f(zn)|, x∈G, n∈N.

(10)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page10of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

3. The Main Results

The main results are the following theorems.

Theorem 3.1. Let δ > 0. Let Gbe an abelian group and let f be a complex- valued function defined onGsuch that

(3.1)

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤δ, x, y∈G,

then either

(3.2) |f(x)| ≤ m+√

m2+ 4δ

2 , x∈G, or

(3.3)

m

X

i=1

f(x+y+ai) =f(x)f(y), x, y ∈G.

Proof. The idea is inspired by the paper [3].

If f is bounded, then from (2.2) we obtain the first case of the theorem. For the remainder, we get by using the assertion ii) in Proposition2.1, for allx, y ∈ G, n∈N

m

X

j=1

1 f(zn)

m

X

i=1

f(zn+x+y+aj +ai)−f(x) 1 f(zn)

m

X

j=1

f(zn+y+aj)

(11)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page11of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

m

X

j=1

1 f(zn)

( m X

i=1

f(zn+x+y+aj+ai)−f(x)f(zn+y+aj) )

≤ mδ

|f(zn)|,

since the convergence is uniform, we have

m

X

i=1

f(x+y+ai)−f(x)f(y)

≤0.

i.e. f is a solution of the functional equation (1.1).

Theorem 3.2. Let δ > 0. Let Gbe an abelian group and let f be a complex- valued function defined onGsuch that

(3.4)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−2f(x)f(y)

≤δ, x, y∈G,

then either

(3.5) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G.

or

(3.6)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G.

(12)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page12of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

Proof. By the assertion i) in Proposition2.2we get the first case of the theorem.

For the second case we have by the inequality (3.4) that

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj +ai) +f(zn−x−y−aj −ai)]

)

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj +ai) +f(zn−x+y+aj−ai)]

)

− 2f(x) 1 f(zn)

m

X

j=1

[f(zn+y+aj) +f(zn−y−aj)]

=

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj+ai) +f(zn−x+y+aj −ai)]

−2f(x)f(zn+y+aj)

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj +ai) +f(zn−x−y−aj −ai)]

−2f(x)f(zn−y−aj)

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x+y+aj +ai) +f(zn−x+y+aj−ai) ]

−2f(x)f(zn+y+aj)

(13)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page13of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

+

m

X

j=1

1 f(zn)

( m X

i=1

[f(zn+x−y−aj +ai) +f(zn−x−y−aj −ai)]

−2f(x)f(zn−y−aj)

≤ 2mδ

|f(zn)|,

since the convergence is uniform, we have

2

m

X

i=1

[f(x+y+ai) +f(x−y−ai)]−4f(x)f(y)

≤0.

i.e. f is a solution of the functional equation (1.2).

(14)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page14of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

4. Applications

From Theorems3.1and3.2, we easily obtain .

Corollary 4.1. Let δ > 0. LetGbe an abelian group and letf be a complex- valued function defined onGsuch that

(4.1) |f(x+y+a)−f(x)f(y)| ≤δ, x, y∈G, then either

(4.2) |f(x)| ≤ 1 +√

1 + 4δ

2 , x∈G.

or

(4.3) f(x+y+a) = f(x)f(y) x, y ∈G.

Remark 4.1. Takinga= 0in Corollary4.1, we find the result obtained in [4].

Corollary 4.2. Let δ > 0. LetGbe an abelian group and letf be a complex- valued function defined onGsuch that

(4.4) |f(x+y+a) +f(x−y−a)−2f(x)f(y)| ≤δ, x, y ∈G, then either

(4.5) |f(x)| ≤ 1 +√

1 + 2δ

2 , x∈G, or

(4.6) f(x+y+a) +f(x−y−a) = 2f(x)f(y), x, y ∈G.

(15)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page15of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

Remark 4.2. Takinga= 0in Corollary4.2, we find the result obtained in [5].

Corollary 4.3. Let δ > 0. LetGbe an abelian group and letf be a complex- valued function defined onGsuch that

(4.7)

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]−2f(x)f(y)

≤δ, x, y∈G,

then either

(4.8) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G, or

(4.9)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y), x, y ∈G.

Proof. Let f be a complex-valued function defined on G which satisfies the inequality (4.7), then for allx, y ∈Gwe have

2|f(x)||f(y) +f(−y)|

=|2f(x)f(y) + 2f(x)f(−y)|

=

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]

m

X

i=1

[f(x+y+ai)−f(x−y+ai)] + 2f(x)f(y) + 2f(x)f(−y)

(16)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page16of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

2f(x)f(y)−

m

X

i=1

[f(x+y+ai)−f(x−y+ai)]

+

2f(x)f(−y)−

m

X

i=1

[f(x−y+ai)−f(x+y+ai)]

≤2δ.

Since f is unbounded it follows that f(−y) = −f(y), for ally ∈ G. Conse- quentlyf satisfies the inequality (3.4) and one has the remainder.

Corollary 4.4. Let δ > 0. LetGbe an abelian group and letf be a complex- valued function defined onGsuch that

(4.10)

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]−2f(x)f(y)

≤δ, x, y∈G,

then either

(4.11) |f(x)| ≤ m+√

m2+ 2δ

2 , x∈G, or

(4.12)

m

X

i=1

[f(x+y+ai) +f(x−y−ai)] = 2f(x)f(y) x, y ∈G.

(17)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page17of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

Proof. Let f be a complex-valued function defined on G which satisfies the inequality (4.10), then for allx, y ∈Gwe have

2|f(x)||f(y)−f(−y)|

=|2f(x)f(y)−2f(x)f(−y)|

=

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]

+ 2f(x)f(y)−2f(x)f(−y)

m

X

i=1

[f(x−y+ai) +f(x+y+ai)]−2f(x)f(−y)

+

m

X

i=1

[f(x+y+ai) +f(x−y+ai)]−2f(x)f(y)

≤2δ.

Since f is unbounded it follows that f(−y) = f(y), for all y ∈ G. Conse- quentlyf satisfies the inequality (3.4) and one has the remainder.

(18)

The Stability of Some Linear Functional Equations

Belaid Bouikhalene

Title Page Contents

JJ II

J I

Go Back Close

Quit Page18of18

J. Ineq. Pure and Appl. Math. 5(2) Art. 49, 2004

http://jipam.vu.edu.au

References

[1] J. ACZÉL, Lectures on Functional Equations and their Applications, Aca- demic Press, New York-Sain Francisco-London, 1966.

[2] R. BADORA, On a joint generalization of Cauchy’s and d’Alembert func- tional equations, Aequations Math., 43 (1992), 72–89.

[3] R. BADORA, On Heyers-Ulam stability of Wilson’s functional equation, Aequations Math., 60 (2000), 211–218.

[4] J. BAKER, J. LAWRENCE ANDF. ZORZITTO, The stability of the equa- tionf(x+y) = f(x)f(y), Proc. Amer. Math. Soc., 74 (1979), 242–246.

[5] J. BAKER, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(3) (1980), 411–416.

[6] Z. GAJDA, A generalization of d’Alembert’s functional equation, Funkcial.

Evac., 33 (1990), 69–77.

[7] B. NAGY, A sine functional equation in Banach algebras, Publ. Math. De- brecen, 24 (1977), 77–99.

[8] E.B. VAN VLECK, A functional equation for the sine, Ann. Math., 11 (1910), 161–165.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Oxford University Press, New York 2000... (szerk.): Essays on the Philosophy

Ennek nyomán tanulmányunkban arra a kérdésre keressük a választ, hogy a globális városhierarchia csúcsán elhelyezkedő London, New York és Tokió esetében milyen

21 Porras, Francisco: U n texto inédito para títeres, de Federico García Lorca, in: Títere, Madrid, n°. New York, Society o f Spanish and Spanish-American Studies,

Burton, Stability and Periodic Solutions of Ordinary and Functional Differ- ential Equations, Academic Press, Orlando, Florida, 1985..

Sobolev spaces of fractional order, Nemytskij operators and nonlinear partial differential equations, 1996, New York.. [4]

Kieran Cashell, Aftershock: The Ethics of Contemporary Transgressive Art (London and New York: I. Tauris, 2009) Aftershock is a novel, unique and slightly provoking attempt

Lectures: Participation at 67 % (2/3) on the lectures is obligatory occasional short tests and 2 comprehensive tests.. 16 October

BUILDING RESEARCH AHD PfiACTICE London, Leyden Pnbl.Co... JOUBNAL OP STBDCTUEAL KECHANICS New