• Nem Talált Eredményt

INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL

N/A
N/A
Protected

Academic year: 2022

Ossza meg "INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL"

Copied!
18
0
0

Teljes szövegt

(1)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page

Contents

JJ II

J I

Page1of 18 Go Back Full Screen

Close

INEQUALITIES FOR THE POLAR DERIVATIVE OF A POLYNOMIAL

K.K. DEWAN C.M. UPADHYE

Department of Mathematics Gargi College

Faculty of Natural Science University of Delhi

Jamia Milia Islamia (Central University) Siri Fort Road,

New Delhi-110025 (INDIA) New Delhi-110049 (INDIA)

EMail: EMail:c_upadhye@rediffmail.com

Received: 17 April, 2007

Accepted: 15 May, 2008

Communicated by: D. Stefanescu 2000 AMS Sub. Class.: 30A10, 30C15.

Key words: Polynomials, Inequality, Polar Derivative.

Abstract: In this paper we obtain new results concerning maximum modules of the polar derivative of a polynomial with restricted zeros. Our results generalize and refine upon the results of Aziz and Rather [3] and Jagjeet Kaur [9].

(2)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page2of 18 Go Back Full Screen

Close

Contents

1 Introduction and Statement of Results 3

2 Lemmas 8

3 Proofs of the Theorems 11

(3)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page3of 18 Go Back Full Screen

Close

1. Introduction and Statement of Results

Letp(z)be a polynomial of degreenandp0(z)its derivative. It was proved by Turán [11] that ifp(z)has all its zeros in|z| ≤1, then

(1.1) max

|z|=1|p0(z)| ≥ n 2max

|z|=1|p(z)|.

The result is best possible and equality holds in (1.1) if all the zeros ofp(z)lie on

|z|= 1.

For the class of polynomials having all its zeros in |z| ≤ k, k ≥ 1, Govil [7]

proved:

Theorem A. Ifp(z) = Pn

v=0avzv is a polynomial of degreenhaving all the zeros in|z| ≤k,k≥1, then

(1.2) max

|z|=1|p0(z)| ≥ n

1 +knmax

|z|=1|p(z)|. Inequality (1.2) is sharp. Equality holds forp(z) =zn+kn.

LetDα{p(z)}denote the polar derivative of the polynomialp(z)of degreenwith respect toα, then

Dα{p(z)}=np(z) + (α−z)p0(z).

The polynomialDα{p(z)}is of degree at mostn−1and it generalizes the ordi- nary derivative in the sense that

α→∞lim

Dαp(z)

α =p0(z).

Aziz and Rather [3] extended (1.2) to the polar derivative of a polynomial and proved the following:

(4)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page4of 18 Go Back Full Screen

Close

Theorem B. If the polynomialp(z) = Pn

v=0avzvhas all its zeros in|z| ≤k,k≥1, then for every real or complex numberαwith|α| ≥k,

(1.3) max

|z|=1|Dαp(z)| ≥n

|α| −k 1 +kn

max

|z|=1|p(z)|.

The bound in Theorem Bdepends only on the zero of largest modulus and not on the other zeros even if some of them are close to the origin. Therefore, it would be interesting to obtain a bound, which depends on the location of all the zeros of a polynomial. In this connection we prove the following:

Theorem 1.1. Let

p(z) =

n

X

v=0

avzv =an n

Y

v=1

(z−zv), an6= 0,

be a polynomial of degreen,|zv| ≤kv,1≤v ≤n, letk= max(k1, k2, . . . , kn)≥1.

Then for every real or complex number|α| ≥k, (1.4) max

|z|=1|Dαp(z)|

≥(|α| −k)

n

X

v=1

k k+kv

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 kn+ 1

min

|z|=k|p(z)|

.

Dividing both sides of (1.4) by |α| and letting|α| → ∞, we get the following refinement of a result due to Aziz [1].

Corollary 1.2. Letp(z) =Pn

v=0avzv =anQn

v=1(z−zv),an6= 0, be a polynomial

(5)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page5of 18 Go Back Full Screen

Close

of degreen,|zv| ≤kv,1≤v ≤n, letk = max(k1, k2, . . . , kn)≥1. Then, (1.5) max

|z|=1|p0(z)|

n

X

v=1

k k+kv

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 kn+ 1

min|z|=k|p(z)|

.

Since k+kk

v12 for1≤ v ≤ n, Theorem1.1gives the following result, which is an improvement of TheoremB.

Corollary 1.3. If p(z) = anQn

v=1(z −zv), an 6= 0, is a polynomial of degree n, having all its zeros in |z| ≤ k, k ≥ 1, then for every real or complex number

|α| ≥k, (1.6) max

|z|=1|Dαp(z)|

≥n(|α| −k) 1

1 +kn max

|z|=1|p(z)|+ 1 2kn

kn−1 kn+ 1

min|z|=k|p(z)|

. Dividing both sides of (1.6) by|α|and letting|α| → ∞, we obtain the following refinement of TheoremAdue to Govil [7].

Corollary 1.4. If p(z) = anQn

v=1(z −zv), an 6= 0, is a polynomial of degree n, having all its zeros in|z| ≤k,k ≥1, then

(1.7) max

|z|=1|p0(z)| ≥n 1

1 +knmax

|z|=1|p(z)|+ 1 2kn

kn−1 kn+ 1

min

|z|=k|p(z)|

. The bound in Theorem 1.1 can be further improved for polynomials of degree n≥2. More precisely, we prove the following:

(6)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page6of 18 Go Back Full Screen

Close

Theorem 1.5. Letp(z) =Pn

v=0avzv =anQn

v=1(z−zv), an 6= 0, be a polynomial of degreen ≥2,|zv| ≤ kv,1 ≤v ≤n, and letk = max(k1, k2, . . . , kn) ≥1. Then for every real or complex number|α| ≥k,

(1.8) max

|z|=1|Dαp(z)| ≥(|α| −k)

n

X

v=1

k k+kv

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 kn+ 1

×min

|z|=k|p(z)|+ 2|an−1| k(1 +kn)

kn−1

n −kn−2−1 n−2

+

1− 1 k2

|na0+αa1| for n >2 and

(1.9) max

|z|=1|Dαp(z)| ≥(|α| −k)

n

X

v=1

k k+kv

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 kn+ 1

×min

|z|=k|p(z)|+|a1| (k−1)n k(1 +kn)

+

1− 1

k

|na0+αa1| for n= 2. Since k+kk

v12 for1≤v ≤n, the above theorem gives in particular:

Corollary 1.6. Ifp(z) =anQn

v=1(z−zv),an6= 0, is a polynomial of degree nhaving all its zeros in|z| ≤k,k≥1, then for every real or complex number|α| ≥k,

(1.10) max

|z|=1|Dαp(z)| ≥n(|α| −k) 1

1 +knmax

|z|=1|p(z)|+ 1 2kn

kn−1 kn+ 1

× min

|z|=k|p(z)|+ |an−1| k(1 +kn)

kn−1

n −kn−2−1 n−2

+

1− 1 k2

|na0+αa1| for n >2,

(7)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page7of 18 Go Back Full Screen

Close

and

(1.11) max

|z|=1|Dαp(z)| ≥(|α| −k) 2

1 +kn max

|z|=1|p(z)|+ 1 kn

kn−1 kn+ 1

× min

|z|=k|p(z)|+|a1|(k−1)n k(1 +kn)

+

1− 1

k

|na0+αa1|, for n= 2. Now it is easy to verify that if k > 1 and n > 2, then

kn−1

nkn−2n−2−1

> 0.

Hence for polynomials of degree n ≥ 2, the above corollary is a refinement of Theorem1.1. In fact, except the case whenp(z)has all the zeros on|z|=k,a0 = 0, a1 = 0, andan−1 = 0, the bound obtained by Theorem 1.5is always sharper than the bound obtained by Theorem1.1.

Remark 1. Dividing both sides of inequalities (1.8), (1.9), (1.10) and (1.11) by|α|

and letting|α| → ∞, we get the results due to Jagjeet Kaur [9]. In addition to this, if min

|z|=k|p(z)| = 0i.e. if a zero of a polynomial lies on |z| = k, then we obtain the results due to Govil [8].

Finally, as an application of Theorem1.1we prove the following:

Theorem 1.7. Ifp(z) =Pn

v=0avzv =anQn

v=1(z−zv),an 6= 0, is a polynomial of degree n, |zv| ≥ kv, 1 ≤ v ≤ n, andk = min(k1, k2, . . . , kn) ≤ 1, then for every real or complex numberδwith|δ| ≤k,

(1.12) max

|z|=1|Dδp(z)|

≥(k− |δ|)kn−1

n

X

v=1

kv k+kv

2

1 +knmax

|z|=1|p(z)|+ 1−kn

kn(1 +kn)m

, wherem = min

|z|=k|p(z)|.

(8)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page8of 18 Go Back Full Screen

Close

2. Lemmas

For the proofs of the theorems, we need the following lemmas.

Lemma 2.1. Ifp(z)is a polynomial of degreen, then forR ≥1

(2.1) max

|z|=R|p(z)| ≤Rnmax

|z|=1|p(z)|.

The above lemma is a simple consequence of the Maximum Modulus Princi- ple [10].

Lemma 2.2. Ifp(z) = Pn

v=0avzv is a polynomial of degreen, then for allR >1, (2.2) max

|z|=R|p(z)| ≤Rnmax

|z|=1|p(z)| −(Rn−Rn−2)|p(0)| for n ≥2

and

(2.3) max

|z|=1|p(z)| ≤Rmax

|z|=1|p(z)| −(R−1)|p(0)| for n= 1.

This result is due to Frappier, Rahman and Ruscheweyh [5].

Lemma 2.3. Ifp(z) = anQn

v=1(z−zv), is a polynomial of degree n ≥2,|zv| ≥ 1 for1≤v ≤n, then

(2.4) max

|z|=R≥1|p(z)| ≤ Rn+ 1 2 max

|z|=1|p(z)|

− |a1|

Rn−1

n − Rn−2 n−2

− Rn−1 2 min

|z|=1|p(z)|, if n >2

(9)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page9of 18 Go Back Full Screen

Close

and

(2.5) max

|z|=R≥1|p(z)| ≤ R2+ 1 2 max

|z|=1|p(z)|

− |a1|(R−1)2

2 − R2−1 2 min

|z|=1|p(z)|, if n= 2.

The above lemma is due to Jagjeet Kaur [9].

Lemma 2.4. Ifp(z) = anQn

v=1(z−zv), an 6= 0, is a polynomial of degreen, such that|zv| ≤1,1≤v ≤n, then

(2.6) max

|z|=1|p0(z)| ≥

n

X

v=1

1

1 +|zv|max

|z|=1|p(z)|.

This lemma is due to Giroux, Rahman and Schmeisser [6].

Lemma 2.5. Ifp(z)is a polynomial of degree n, which has all its zeros in the disk

|z| ≤k,k ≥1, then

(2.7) max

|z|=k|p(z)| ≥ 2kn 1 +knmax

|z|=1|p(z)|.

Inequality (2.7) is best possible and equality holds forp(z) =zn+kn. The above result is due to Aziz [1].

Lemma 2.6. If p(z) is a polynomial of degree n, having all its zeros in the disk

|z| ≤k,k ≥1, then

(2.8) max

|z|=k|p(z)| ≥ 2kn 1 +knmax

|z|=1|p(z)|+kn−1 1 +kn min

|z|=k|p(z)|.

The result is best possible and equality holds forp(z) =zn+kn.

(10)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page10of 18 Go Back Full Screen

Close

Proof of Lemma2.6. Fork = 1, there is nothing to prove. Therefore it is sufficient to consider the casek > 1.

Letm = min

|z|=k|p(z)|.Thenm≤ |p(z)|for|z|=k.

Since all the zeros ofp(z)lie in|z| ≤ k, k > 1, by Rouche’s theorem, for everyλ with|λ|<1, the polynomialp(z) +λmhas all its zeros in|z| ≤k,k >1. Applying Lemma2.5to the polynomialp(z) +λm, we get

max

|z|=k|p(z) +λm| ≥ 2kn

1 +knmax

|z|=1|p(z) +λm|.

Choosing the argument of λ such that |p(z) + λm| = |p(z)| +|λ|m and letting

|λ| →1, we get max

|z|=k|p(z)| ≥ 2kn 1 +knmax

|z|=1|p(z)|+kn−1 1 +kn min

|z|=k|p(z)|.

This completes the proof of Lemma2.6.

Lemma 2.7. Ifp(z)is a polynomial of degreenandαis any real or complex number with|α| 6= 0, then

(2.9) |Dαq(z)|=|nαp(z) + (1−αz)p0(z)| for|z|= 1.

Lemma2.7is due to Aziz [2].

(11)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page11of 18 Go Back Full Screen

Close

3. Proofs of the Theorems

Proof of Theorem1.1. LetG(z) = p(kz). Since the zeros ofp(z)arezv,1≤v ≤n, the zeros of the polynomialG(z)arezv/k,1 ≤v ≤ n, and because all the zeros of p(z) lie in|z| ≤ k, all the zeros ofG(z)lie in |z| ≤ 1, therefore applying Lemma 2.4to the polynomialG(z), we get

(3.1) max

|z|=1|G0(z)| ≥

n

X

v=1

1

1 + |zkv| max

|z|=1|G(z)|.

LetH(z) =znG(1/z). Then it can be easily verified that (3.2) |H0(z)|=|nG(z)−zG0(z)|, for |z|= 1.

The polynomialH(z)has all its zeros in |z| ≥ 1and|H(z)| = |G(z)|for|z| = 1, therefore, by the result of de Bruijn [4]

(3.3) |H0(z)| ≤ |G0(z)| for |z|= 1.

Now for every real or complex numberαwith|α| ≥k, we have

|Dα/kG(z)|=

nG(z)−zG0(z) + α kG0(z)

≥ |α/k||G0(z)| − |nG(z)−zG0(z)|.

This gives with the help of (3.2) and (3.3) that

(3.4) max

|z|=1|Dα/kG(z)| ≥ |α| −k

k max

|z|=1|G0(z)|. Using (3.1) in (3.4), we get

max|z|=1|Dα/kG(z)| ≥ |α| −k k

n

X

v=1

k

k+|zv|max

|z|=1|G(z)|.

(12)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page12of 18 Go Back Full Screen

Close

ReplacingG(z)byp(kz), we get

max|z|=1|Dα/kp(kz)| ≥(|α| −k)

n

X

v=1

1

k+|zv|max

|z|=1|p(kz)|

which implies max

|z|=1

np(kz) +α k −z

kp0(kz)

≥(|α| −k)

n

X

v=1

1

k+|zv|max

|z|=1|p(kz)|, which gives

max|z|=k|Dαp(z)| ≥(|α| −k)

n

X

v=1

1

k+|zv|max

|z|=k|p(z)|.

Using Lemma2.6in the above inequality, we get

(3.5) max

|z|=k|Dαp(z)| ≥(|α| −k)

n

X

v=1

1 k+|zv|

2kn 1 +knmax

|z|=1|p(z)|

+

kn−1 1 +kn

min|z|=k|p(z)|

. SinceDαp(z)is a polynomial of degree at mostn−1andk ≥1, applying Lemma 2.1to the polynomialDαp(z), we get

(3.6) max

|z|=k|Dαp(z)| ≤kn−1max

|z|=1|Dαp(z)|.

(13)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page13of 18 Go Back Full Screen

Close

Combining (3.5) and (3.6), we get max

|z|=1|Dαp(z)|

≥(|α| −k)

n

X

v=1

k k+|zv|

2

1 +kn max

|z|=1|p(z)|+ 1 kn

kn−1 1 +kn

min

|z|=k|p(z)|

≥(|α| −k)

n

X

v=1

k k+kv

2

1 +kn max

|z|=1|p(z)| + 1 kn

kn−1 1 +kn

min|z|=k|p(z)|

which is the required result. Hence the proof Theorem1.1is complete.

Proof of Theorem1.5. LetG(z) = p(kz). Since the zeros ofp(z)arezv,1≤v ≤n, the zeros of the polynomialG(z)arezv/k,1 ≤v ≤ n, and because all the zeros of p(z) lie in|z| ≤ k, all the zeros ofG(z)lie in |z| ≤ 1, therefore applying Lemma 2.4to the polynomialG(z)and proceeding in the same way as in Theorem1.1, we obtain

(3.7) max

|z|=k|Dαp(z)| ≥(|α| −k)

n

X

v=1

1

k+|zv|max

|z|=k|p(z)|.

Now letq(z) = znp 1z

be the reciprocal polynomial ofp(z). Since the polyno- mialp(z)has all its zeros in|z| ≤k,k ≥1the polynomialq zk

has all its zeros in

|z| ≥1. Hence applying (2.4) of Lemma2.3to the polynomialq zk

,k≥1, we get max

|z|=k

qz

k

≤ kn+ 1 2 max

|z|=1

qz

k

kn−1 2

min

|z|=1

qz

k

− |an−1| k

kn−1

n − kn−2−1 n−2

,

(14)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page14of 18 Go Back Full Screen

Close

which gives max

|z|=1|p(z)| ≤ kn+ 1 2kn max

|z|=k|p(z)| −

kn−1 2kn

min

|z|=k|p(z)|

− |an−1| k

kn−1

n − kn−2−1 n−2

,

which is equivalent to

(3.8) max

|z|=k|p(z)| ≥ 2kn 1 +knmax

|z|=1|p(z)|+

kn−1 1 +kn

min|z|=k|p(z)|

+ 2|an−1|kn−1 1 +kn

kn−1

n − kn−2−1 n−2

.

Using (3.8) in (3.7) we get

(3.9) max

|z|=k|Dαp(z)| ≥(|α| −k)

n

X

v=1

1 k+|zv|

2kn 1 +knmax

|z|=1|p(z)|+

kn−1 1 +kn

×min

|z|=k|p(z)|+2|an−1|kn−1 1 +kn

kn−1

n − kn−2−1 n−2

if n >2. SinceDαp(z)is a polynomial of degreen−1andk≥1, from (2.2) of Lemma2.2, we get

(3.10) max

|z|=k|Dαp(z)| ≤kn−1max

|z|=1|Dαp(z)| −(kn−1−kn−3)|Dαp(0)|, ifn >2.

(15)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page15of 18 Go Back Full Screen

Close

Combining (3.9) and (3.10) we have max

|z|=1|Dαp(z)| ≥(|α| −k)

n

X

v=1

k k+|zv|

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 1 +kn

min

|z|=k|p(z)|

+ 2|an−1| k(1 +kn)

kn−1

n −kn−2−1 n−2

+

1− 1 k2

|na0+αa1|, if n >2

≥(|α| −k)

n

X

v=1

k k+kv

2

1 +knmax

|z|=1|p(z)|+ 1 kn

kn−1 1 +kn

|z|=kmin|p(z)|

+ 2|an−1| k(1 +kn)

kn−1

n −kn−2−1 n−2

+

1− 1 k2

|na0+αa1|, if n >2 which completes the proof of (1.8).

The proof of (1.9) follows on the same lines as the proof of (1.8) but instead of (2.2) and (2.4) we use inequalities (2.3) and (2.5) respectively. We omit the details.

Proof of Theorem1.7. By hypothesis, the zeros of p(z) satisfy |zv| ≥ kv for 1 ≤ v ≤ n such that k = min(k1, k2, . . . , kn) ≤ 1. It follows that the zeros of the polynomialq(z) = znp(1/z)satisfy 1/|zv| ≤ 1/kv, 1 ≤ v ≤ n such that1/k = max(1/k1,1/k2, . . . ,1/kn) ≥1. On applying Theorem 1.1to the polynomialq(z),

(16)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page16of 18 Go Back Full Screen

Close

we get

(3.11) max

|z|=1|Dαq(z)| ≥kn−1(|α| −1/k)

n

X

v=1

1 1/k+ 1/kv

2/kn

1 + 1/knmax

|z|=1|q(z)|

+1/kn−1 1 + 1/kn min

|z|=1/k|q(z)|

, |α| ≥ 1 k. Now from Lemma2.7it follows that

|Dαq(z)|=|α||D1/α¯p(z)| for |z|= 1. Using the above equality in (3.11), we get for|α| ≥1/k, (3.12) |α|max

|z|=1|D1/¯αp(z)| ≥kn−1(|α| −1/k)

n

X

v=1

kkv k+kv

2

1 +knmax

|z|=1|p(z)|

+ 1−kn (1 +kn)knmin

|z|=k|p(z)|

.

Replacing α1 byδ, so that|δ| ≤k, we get from (3.12)

|1/δ|max

|z|=1|Dδp(z)| ≥kn−1(|1/δ| −1/k)

n

X

v=1

kkv k+kv

2

1 +knmax

|z|=1|p(z)|

+ 1−kn (1 +kn)knmin

|z|=k|p(z)|

,

(17)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page17of 18 Go Back Full Screen

Close

or max

|z|=1|Dδp(z)|

≥kn−1(k− |δ|)

n

X

v=1

kv k+kv

2

1 +knmax

|z|=1|p(z)|+ 1−kn

(1 +kn)kn min

|z|=k|p(z)|

,

≥kn−1(k− |δ|)

n

X

v=1

kv k+kv

2

1 +knmax

|z|=1|p(z)|+ 1−kn

(1 +kn)kn min

|z|=k|p(z)|

, which is (1.12). Hence the proof of Theorem1.7is complete.

(18)

Polar Derivative of a Polynomial K.K. Dewan and C.M. Upadhye

vol. 9, iss. 4, art. 119, 2008

Title Page Contents

JJ II

J I

Page18of 18 Go Back Full Screen

Close

References

[1] A. AZIZ, Inequalities for the derivative of a polynomial, Proc. Amer. Math.

Soc., 89 (1983), 259–266.

[2] A. AZIZ, Inequalities for the polar derivative of a polynomial, J. Approx. The- ory, 55 (1988), 183–193.

[3] A. AZIZ ANDN.A. RATHER, A refinement of a theorem of Paul Turán con- cerning polynomials, J. Math. Ineq. Appl., 1 (1998), 231–238.

[4] N.G. de BRUIJN, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetench. Proc. Ser. A, 50 (1947), 1265–1272; Indag. Math., 9 (1947), 591–598.

[5] C. FRAPPIER, Q.I. RAHMANANDSt. RUSCHEWEYH, New inequalities for polynomials, Trans. Amer. Math. Soc., 288 (1985), 69–99.

[6] A. GIROUX, Q.I. RAHMANANDG. SCHMEISSER, On Bernstein’s inequal- ity, Canad. J. Math., 31 (1979), 347–353.

[7] N.K. GOVIL, On the derivative of a polynomial, Proc. Amer. Math. Soc., 41 (1973), 543–546.

[8] N.K. GOVIL, Inequalities for the derivative of a polynomial, J. Approx. Theory, 63 (1990), 65–71.

[9] J. KAUR, Inequalities for the derivative of a polynomial, Pure and Applied Mathematical Sciences, XIL (1–2) (1995), 45–51.

[10] PÓLYA ANDG. SZEGÖ, Ausgaben und Lehratze ous der Analysis, Springer- Verlag, Berlin, 1925.

[11] P. TURÁN, Über die ableitung von polynomen, Compositio Math., 7 (1939), 89–95.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Abstract: In this paper, we present some basic results concerning an extension of Jensen type inequalities with ordered variables to functions with inflection points, and then

SHAH, Some inequalities for the polar derivative of a polynomial, Indian Acad. BERNSTEIN, Sur la limitation des derivees des

CHANDRA, On the degree of approximation of a class of functions by means of Fourier series, Acta Math.. CHANDRA, A note on the degree of approximation of continuous function,

In this paper we obtain new results concerning maximum modules of the polar derivative of a polynomial with restricted zeros.. Our results generalize and refine upon the results of

Abstract: In this paper we will give the behavior of the r−derivative near origin of sine series with convex coefficients.... Sine Series With Convex

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

An analysis of the derivative of h(s, s) shows that it has ex- actly two zeros for s &gt; 1/2, and since the function initially increases (with infinite derivative at s = 1/2),

BERNSTEIN, Sur l’ ordre de la meilleure approximation des fonctions con- tinues pardes polynômes de degré donné, Mémoires de l’Académie Royale de Belgique, 4 (1912), 1–103.