• Nem Talált Eredményt

ThenRRis g-radical supplemented if and only if every finitely generatedR-module is g-radical supplemented

N/A
N/A
Protected

Academic year: 2022

Ossza meg "ThenRRis g-radical supplemented if and only if every finitely generatedR-module is g-radical supplemented"

Copied!
8
0
0

Teljes szövegt

(1)

Vol. 20 (2019), No. 1, pp. 345–352 DOI: 10.18514/MMN.2019.2586

A GENERALIZATION OF g-SUPPLEMENTED MODULES

BERNA KOS¸AR, CELIL NEBIYEV, AND AYTEN PEKIN Received 07 April, 2018

Abstract. In this work g-radical supplemented modules are defined which generalize g- supplemented modules. Some properties of g-radical supplemented modules are investigated.

It is proved that the finite sum of g-radical supplemented modules is g-radical supplemented. It is also proved that every factor module and every homomorphic image of a g-radical supplemen- ted module is g-radical supplemented. LetRbe a ring. ThenRRis g-radical supplemented if and only if every finitely generatedR-module is g-radical supplemented. In the end of this work, it is given two examples for g-radical supplemented modules separating with g-supplemented modules.

2010Mathematics Subject Classification: 16D10; 16D70

Keywords: small submodules, radical, supplemented modules, radical (generalized) supplemen- ted modules

1. INTRODUCTION

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.

LetRbe a ring andM be anR -module. We will denote a submoduleN ofM byN M. LetM be anR-module andN M. IfLDM for every submoduleL ofM such thatM DNCL, thenN is called asmall submoduleofM and denoted byN M. LetM be anR -module andN M. If there exists a submoduleK ofM such thatM DNCK andN\KD0, thenN is called adirect summandof M and it is denoted by M DN˚K. For any module M;we haveM DM˚0.

RadM indicates the radical ofM. A submoduleN of an R -moduleM is called an essential submodule of M, denoted by N EM, in case K\N ¤0 for every submodule K¤0. Let M be an R -module and K be a submodule of M. K is called a generalized small (briefly, g-small) submodule ofM if for everyT EM withM DKCT implies thatT DM, this is written byKgM (in [6], it is called an e-small submoduleofM and denoted byKe M). It is clear that every small submodule is a generalized small submodule but the converse is not true generally.

LetM be anR module. M is called anhollow moduleif every proper submodule ofM is small inM.M is called alocal moduleifM has the largest submodule, i.e.

c 2019 Miskolc University Press

(2)

a proper submodule which contains all other proper submodules. Let U andV be submodules ofM. IfM DUCV andV is minimal with respect to this property, or equivalently,M DU CV andU\V V, then V is called asupplementofU in M. M is called asupplemented moduleif every submodule ofM has a supplement inM. LetM be anR-module andU; V M. IfM DUCV andM DUCT with T EV implies thatT DV, or equivalently,M DUCV andU\V gM, thenV is called ag-supplementofU inM.M is calledg-supplementedif every submodule ofM has a g-supplement inM. The intersection of maximal essential submodules of anR-moduleM is called ageneralized radicalofM and denoted byRadgM (in [6], it is denoted byRadeM). IfM have no maximal essential submodules, then we denoteRadgM DM:

Lemma 1 ([2,4,6]). Let M be an R -module and K; L; N; T M. Then the followings are hold.

.1/IfKNandN is generalized small submodule ofM, thenKis a generalized small submodule ofM.

.2/IfK is contained inN and a generalized small submodule ofN, thenK is a generalized small submodule in submodules ofM which contains submoduleN.

.3/LetS be an R-module andf WM !S be anR-module homomorphism. If KgM, thenf .K/gS.

.4/IfKgLandN gT, thenKCN gLCT.

Corollary 1. LetM1; M2; :::; MnM,K1gM1,K2gM2, ...,KngMn. ThenK1CK2C:::CKngM1CM2C:::CMn.

Corollary 2. Let M be an R -module and K N M . If N g M, then N=KgM=K.

Corollary 3. LetM be anR-module,KgM andLM. Then.KCL/ =Lg M=L.

Lemma 2. LetM be anR-module. ThenRadgM DP

LgML:

Proof. See [2].

Lemma 3. The following assertions are hold.

.1/IfM is anR module, thenRmgM for everym2RadgM. .2/IfNM, thenRadgN RadgM:

.3/IfK; LM, thenRadgKCRadgLRadg.KCL/ :

.4/Iff WM !Nis anR-module homomorphism, thenf RadgM

RadgN:

.5/IfK; LM, then RadgLKCLRadgKCL L :

Proof. Clear from Lemma1and Lemma2.

Lemma 4. LetM D ˚i2IMi:ThenRadgM D ˚i2IRadgMi:

(3)

Proof. Since Mi M, then by Lemma 3.2/, RadgMi RadgM and

˚i2IRadgMi RadgM: Let x 2 RadgM: Then by Lemma 3.1/, Rxg M:

Since x2M D ˚i2IMi, there exist i1; i2; :::; ik 2I andxi1 2Mi1, xi22Mi2, ..., xik2Mik such thatxDxi1Cxi2C:::Cxik. SinceRxgM , then by Lemma1.4/, under the canonical epimorphism it .tD1; 2; :::; k/ Rxit Dit.Rx/g Rxit: Thenxit2RadgMit .tD1; 2; :::; k/andxDxi1Cxi2C:::Cxik 2 ˚i2IRadgMi. HenceRadgM ˚i2IRadgMi and since˚i2IRadgMi RadgM,RadgM D

˚i2IRadgMi.

2. G-RADICAL SUPPLEMENTED MODULES

Definition 1. LetM be anR-module andU; V M. IfM DUCV andU\V RadgV, thenV is called a generalized radical supplement (briefly, g-radical supple- ment) ofU inM. If every submodule ofM has a generalized radical supplement in M, thenM is called a generalized radical supplemented (briefly, g-radical supple- mented) module.

Clearly we see that every g-supplemented module is g-radical supplemented. But the converse is not true in general. (See Example1and2.)

Lemma 5. LetM be anR-module andU; V M. ThenV is a g-radical supple- ment ofU inM if and only ifM DUCV andRmgV for everym2U\V.

Proof. .)/SinceV is a g-radical supplement ofU inM,M DUCV andU\ V RadgV. Let m2U \V. Since U\V RadgV, m2RadgV. Hence by Lemma3.1/,RmgV.

.(/SinceRmgV for everym2U\V, then by Lemma2,U\V RadgV

and henceV is a g-radical supplement ofU inM.

Lemma 6. LetM be an R-module, M1; U; X M andY M1. IfX is a g- radical supplement ofM1CU inM andY is a g-radical supplement of.U CX /\ M1inM1, thenXCY is a g-radical supplement ofU inM.

Proof. SinceX is a g-radical supplement ofM1CU inM, M DM1CU CX and.M1CU /\XRadgX:SinceY is a g-radical supplement of.U CX /\M1in M1,M1D.UCX /\M1CY and.UCX /\Y D.UCX /\M1\Y RadgY. Then M DM1CU CX D.U CX /\M1CY CU CX DU CXCY and, by Lemma3.3/,U\.XCY /.UCX /\YC.UCY /\XRadgYC.M1CU /\ X RadgY CRadgX Radg.XCY /. HenceXCY is a g-radical supplement

ofU inM.

Lemma 7. LetM DM1CM2. IfM1andM2are g-radical supplemented, then M is also g-radical supplemented.

Proof. LetU M. Then0 is a g-radical supplement of M1CM2CU inM. Since M1 is g-radical supplemented, there exists a g-radical supplement X of

(4)

.M2CU /\M1D.M2CUC0/\M1 inM1. Then by Lemma6, XC0DX is a g-radical supplement ofM2CU inM. SinceM2is g-radical supplemented, there exists a g-radical supplementY of.UCX /\M2inM2. Then by Lemma6,XCY

is a g-radical supplement ofU inM.

Corollary 4. LetM DM1CM2C:::CMk. IfMi is g-radical supplemented for everyi D1; 2; :::; k, thenM is also g-radical supplemented.

Proof. Clear from Lemma7.

Lemma 8. LetM be anR module,U; V M andKU. IfV is a g-radical supplement ofU inM, then.V CK/ =Kis a g-radical supplement ofU=KinM=K. Proof. Since V is a g-radical supplement of U in M, M DU CV and U \ V RadgV. Then M=K DU=KC.V CK/ =K and by Lemma 3.5/, .U=K/\ ..V CK/ =K/ D .U \VCK/ =K RadgVCK

=K RadgŒ.V CK/ =K.

Hence.VCK/ =K is a g-radical supplement ofU=KinM=K.

Lemma 9. Every factor module of a g-radical supplemented module is g-radical supplemented.

Proof. Clear from Lemma8.

Corollary 5. The homomorphic image of a g-radical supplemented module is g- radical supplemented.

Proof. Clear from Lemma9.

Lemma 10. Let M be a g-radical supplemented module. Then every finitely M generated module is g-radical supplemented.

Proof. Clear from Corollary4and Corollary5.

Corollary 6. LetRbe a ring. ThenRRis g-radical supplemented if and only if every finitely generatedR module is g-radical supplemented.

Proof. Clear from Lemma10.

Theorem 1. Let M be an R module. If M is g-radical supplemented, then M=RadgM is semisimple.

Proof. LetU=RadgM M=RadgM. SinceM is g-radical supplemented, there exists a g-radical supplementV ofU in M. ThenM DUCV andU\V RadgV. ThusM=RadgM DU=RadgMC VCRadgM

=RadgM and U=RadgM

\ V CRadgM

=RadgM

D U\V CRadgM

=RadgM RadgVCRadgM

=RadgM DRadgM=RadgM D0:

HenceM=RadgM DU=RadgM˚ VCRadgM

=RadgM andU=RadgM is a

direct summand ofM.

(5)

Lemma 11. LetM be a g-radical supplemented module andLM withL\ RadgM D0. ThenLis semisimple. In particular, a g-radical supplemented module M withRadgM D0is semisimple.

Proof. LetX L. Since M is g-radical supplemented, there exists a g-radical supplement T ofX inM. Hence M DXCT andX\T RadgT RadgM. SinceM DXCT andXL, by Modular Law,LDL\M DL\.XCT /DXC L\T. SinceX\T RadgM andL\RadgM D0,X\L\T DL\X\T L\RadgM D0. HenceLDX˚L\T andX is a direct summand ofL.

Proposition 1. LetM be a g-radical supplemented module. ThenM DK˚Lfor some semisimple moduleKand some moduleLwith essential generalized radical.

Proof. Let K be a complement of RadgM in M: Then by [5, 17.6], K˚RadgM EM. SinceK\RadgM D0, then by Lemma11,K is semisimple.

SinceM is g-radical supplemented, there exists a g-radical supplementLofKinM. HenceM DKCLandK\LRadgLRadgM. Then byK\RadgM D0, K\LD0. HenceM DK˚L:SinceM DK˚L, then by Lemma4,RadgM D RadgK˚RadgL. Hence K˚RadgM DK˚RadgL. Since K˚RadgLD K˚RadgM EM DK˚L, then by [1, Proposition 5.20],RadgLEL.

Proposition 2. LetM be anR module andU M. The following statements are equivalent.

.1/There is a decompositionM DX˚Y withX U andU\Y RadgY. .2/There exists an idempotente2End .M /withe .M /U and.1 e/ .U / Radg.1 e/ .M /.

.3/There exists a direct summandXofM withXU andU=XRadg.M=X /.

.4/ U has a g-radical supplementY such thatU\Y is a direct summand ofU. Proof. .1/).2/ For a decompositionM DX˚Y, there exists an idempotent e 2End .M / withX De .M /and Y D.1 e/ .M /. Sincee .M /DX U, we easily see that.1 e/ .U /DU\.1 e/ .M /. Then byY D.1 e/ .M /andU\Y RadgY,.1 e/ .U /DU \.1 e/ .M /DU \Y RadgY DRadg.1 e/ .M /.

.2/).3/ LetX De .M /and Y D.1 e/ .M /. Since e 2End .M / is idem- potent, we easily see thatM DX˚Y. ThenM DUCY. Sincee .M /DX U, we easily see that.1 e/ .U /DU\.1 e/ .M /. SinceM DUCY andU\Y D U\.1 e/ .M /D.1 e/ .U /Radg.1 e/ .M /DRadgY,Y is a g-radical sup- plement ofU inM. Then by Lemma8,M=X D.Y CX / =X is a g-radical supple- ment ofU=X inM=X. HenceU=XD.U=X /\.M=X /Radg.M=X /.

.3/).4/ Let M DX˚Y. Since X U, M DU CY. Let t 2U \Y and RtCT DY for an essential submoduleT ofY. Let..TCX / =X /\.L=X /D0for a submoduleL=XofM=X. Then.L\TCX / =XD..TCX / =X /\.L=X /D0and L\T CX DX. HenceL\T X and sinceX\Y D0,L\T \Y X\Y D0.

Since L\Y \T DL\T \Y D0 and T EY, L\Y D0. Since X L and

(6)

M DXCY, by Modular Law,LDL\M DL\.XCY /DXCL\Y DXC0D X. Hence L=XD0 and.TCX / =XEM=X. Since RtCT DY, R.tCX /C .TCX / =XD.RtCX / =XC.TCX / =XD.RtCT CX / =XD.Y CX / =XD M=X. Sincet2U,tCX2U=X Radg.M=X /and henceR .tCX /gM=X. Then byR.tCX /C.TCX / =XDM=Xand.TCX / =XEM=X,.TCX / =XD M=X and then XCT DM. Since XCT DM and T Y, by Modular Law, Y DY \M DY \.XCT /DX\Y CT D0CT DT. HenceRt gY and by Lemma5,Y is a g-radical supplement ofU inM. SinceM DX˚Y andXU, by Modular Law,U DU\M DU \.X˚Y /DX˚U \Y. HenceU \Y is a direct summand ofU.

.4/).1/ LetU DX˚U\Y for a submoduleX ofU. SinceY is a g-radical supplement of U in M, M DU CY andU \Y g Y. Hence M DU CY D

.X˚U \Y /CY DX˚Y.

Lemma 12. LetV be a g-radical supplement ofU in M:If U is a generalized maximal submodule ofM, thenU\V is a unique generalized maximal submodule ofV.

Proof. Since U is a generalized maximal submodule of M and V = .U\V /' .V CU / =U DM=U, U \V is a generalized maximal submodule of V. Hence RadgV U\V and sinceU\V RadgV,RadgV DU \V. ThusU\V is a

unique generalized maximal submodule ofV.

Definition 2. LetM be anR module. If every proper essential submodule ofM is generalized small inM orM has no proper essential submodules, thenM is called a generalized hollow module.

Clearly we see that every hollow module is generalized hollow.

Definition 3. LetM be anR module. If M has a large proper essential sub- module which contain all essential submodules ofM orM has no proper essential submodules, thenM is called a generalized local module.

Clearly we see that every local module is generalized local.

Proposition 3. LetM be anR module andRadgM ¤M. ThenM is general- ized hollow if and only ifM is generalized local.

Proof. .H)/Let M be generalized hollow and letL be a proper essential sub- module ofM. ThenLgM and by Lemma2,LRadgM. ThusRadgM is a proper essential submodule ofM which contain all proper essential submodules of M.

.(H/ Let M be a generalized local module, T be the largest proper essential submodule ofM andLbe a proper essential submodule ofM. LetLCSDM with SEM. IfS¤M, thenLCS T ¤M:ThusSDM andLgM:

(7)

Definition 4. LetM be anR-module andU; V M. If M DU CV andU \ V gM, then V is called a weak g-supplement ofU inM. If every submodule ofM has a weak g-supplement inM, then M is called a weakly g-supplemented module. (See [3]).

Clearly we can see that if M is a weakly g-supplemented module, thenM is g- semilocal (M=RadgM is semisimple, see [3]).

Proposition 4. Generalized hollow and generalized local modules are weakly g- supplemented, so are g-semilocal.

Proof. Clear from definitions.

Proposition 5. LetM be a g-radical supplemented module withRadgM gM. ThenM is weakly g-supplemented.

Proof. Clear from definitions.

Example 1. Consider theZ module Q: Since RadgQDRadQDQ, ZQ is g-radical supplemented. But, sinceZQis not supplemented and every nonzero sub- module ofZQis essential inZQ,ZQis not g-supplemented.

Example2. Consider theZ moduleQ˚Zp2 for a primep. It is easy to check thatRadgZp2 ¤Zp2. By Lemma4,Radg Q˚Zp2

DRadgQ˚RadgZp2¤ Q˚Zp2. SinceQandZp2 are g-radical supplemented, by Lemma7,Q˚Zp2 is g-radical supplemented. ButQ˚Zp2is not g-supplemented.

REFERENCES

[1] F. W. Anderson and K. R. Fuller,Rings and Categories of Modules (Graduate Texts in Mathemat- ics). New York: Springer, 1998.

[2] B. Kos¸ar, C. Nebiyev, and N. S¨okmez, “G-supplemented modules,” Ukrainian Mathematical Journal, vol. 67, no. 6, pp. 861–864, 2015, doi:10.1007/s11253-015-1127-8.

[3] C. Nebiyev and H. H. ¨Okten, “Weakly g-supplemented modules,”European Journal of Pure and Applied Mathematics, vol. 10, no. 3, pp. 521–528, 2017.

[4] N. S¨okmez, B. Kos¸ar, and C. Nebiyev, “Genelles¸tirilmis¸ k¨uc¸¨uk alt mod¨uller,” inXIII. Ulusal Matem- atik Sempozyumu. Kayseri: Erciyes ¨Universitesi, 2010.

[5] R. Wisbauer,Foundations of Module and Ring Theory. Philadelphia: Gordon and Breach, 1991.

[6] D. X. Zhou and X. R. Zhang, “Small-essential submodules and morita duality,”Southeast Asian Bulletin of Mathematics, vol. 35, pp. 1051–1062, 2011.

Authors’ addresses

Berna Kos¸ar

Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit-Atakum, Samsun, Tur- key

E-mail address:bernak@omu.edu.tr

(8)

Celil Nebiyev

Department of Mathematics, Ondokuz Mayıs University, 55270, Kurupelit-Atakum, Samsun, Tur- key

E-mail address:cnebiyev@omu.edu.tr

Ayten Pekin

Department of Mathematics, ˙Istanbul University, ˙Istanbul, Turkey E-mail address:aypekin@istanbul.edu.tr

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

If every cofinite element of L has a Rad-supplement in L, then L is called a cofinitely radical supplemented (or cofinitely Rad-supple- mented) lattice.. Clearly we can see that

LXXXIV. G., Nemes V., Bíró Zs., Ludány A., Wagner Z., Wittmann I.: Accumulation of the hydroxil free radical markers meta-, ortho-tyrosine and DOPA in cataractous lenses

Goto, Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle, Pflug. Goto, Regular

Motivating on this class of submodules, a module M is said to be -extending [3], if every projection invariant submodule of M is essential in a direct summand of M.. Hence it

És szerinte elbb át kell esni az elkészítés stádiumán, például elbb nevelni kell a magyar hadsereg számára magyar tiszteket s majd csak akkor, ha meg lesz minden, mi

L is called a strongly ˚ supp- lemented lattice if every supplement element in L is a direct summand of L.. Clearly we see that every strongly ˚ supplemented lattice is ˚

Methyl mercuric fluoride, CH3HgF, may be prepared by the reaction of methyl mercuric hydroxide with hydrofluoric acid in an ethyl alcohol-water solution (34).. The product is a

Survey: Advanced Oxidation Technologies The Hydroxyl Radical..