• Nem Talált Eredményt

CENTRALRESEARCHINSTITUTE FORPHYSICSBUDAPEST

N/A
N/A
Protected

Academic year: 2022

Ossza meg "CENTRALRESEARCHINSTITUTE FORPHYSICSBUDAPEST"

Copied!
58
0
0

Teljes szövegt

(1)

3. G a d ó Z. Szatmáry

SOPHIE and CECILY

Two Codes for Calculating Space Dependent Fast Neutron Spectra

S x u n ^ m n n S i c a d e m S c i e n c e / ,

CENTRAL RESEARCH

INSTITUTE FOR PHYSICS

BUDAPEST

(2)
(3)

S O P H I E a n d C E C I L Y

TWO CODES FOR C A L C U L A T I N G SPACE DEPENDENT FAST NEUTRON SPECTRA

J. Gadó, Z. S z a t m á r y R e a c t o r R e s e a r c h D e p a r t m e n t

C e n t r a l R e s e a r c h I n s t i t u t e for Physics, B u d a p e s t Hungary

(4)

The codes SOPHIE and C E C I L Y are g e n e r a l i z e d v e r s i o n s of the a s y m p ­ totic slowing d o w n code G R A C E d e v e l o p e d at our Institute. Both codes are used for the c a l c u l a t i o n of the s l o wing d o w n n e u t r o n s p e c t r u m in o n e - d i m e n ­ sional /slab, cylind r i c a l , spherical/ g e ometries. The code SOP H I E is a c r i t i c a l i t y code, wh i l e C E C I L Y solves the s p a c e - d e p e n d e n t slowing down p r o b l e m w i t h i n the e l e m e n t a r y cell of the infin i t e fuel lattice. All three codes need the file c a l l e d R E A C T O R TAPE, c o n t a i n i n g the n u c lear data.

K I V O N A T

A S O P H I E és C E C I L Y k ó d o k a s z i n t é n i n t é z e t ü n k b e n k i f e j l e s z t e t t , a s z i m p t o t i k u s k ö z e l í t é s b e n m ű k ö d ő G R A C E kód á l t a l á n o s i t á s a i e g y d i m e n z i ó s g e o m e t r i á r a / sik, henger, gömb/. M i n d k é t kód l a s s u l á s i n e u t r o n s p e k t r u m s z á ­ m í t á s á r a szolgál. A S O P H I E kód k r i t i k u s s á g i s z á m í t á s o k r a alkalmas, mig a C E C I L Y kód a t é r f ü g g o la s s u l á s i p r o b l é m á t a v é g t e l e n f ü t o e l e m r á c s elemi c e l l á j á n belül o l d j a meg. M i n d h á r o m kód m ű k ö d é s é h e z a R E A C T O R T A P E nevű file h a s z n á l a t a s z ü kséges, a m e l y a n u k l e á r i s a d a t o k a t tartal m a z z a .

РЕЗЮМЕ

П р о г р а м м ы S O P H I E и C E C I L Y я в л я ю т с я о б о б щ е н и я м и а с и м п т о т и ч е с к о й п р о г р а м м ы з а м е д л е н и я GRACE, р а з в и т о й т о ж е в нашем И н с т и т у т е . Обе п р о г р а м м ы р а з р а б о т а н ы д л я р а с ч е т а н е й т р о н н о г о с п е к т р а з а м е д л е н и я в о д н о м е р н ы х / п л о с к о й , ц и л и н д р и ч е с к о й , с ф е р и ч е с к о й / г е о м е т р и я х . П р о г р а м м а S O P H I E с л у ж и т р а с ч е т а м к р и т и ч н о с т и , a п р о г р а м м а C E C I L Y р е ш а е т п р о б л е м у з а м е д л е н и я , з а в и с я щ у ю о т пр с т р а н с т в е н н о й к о о р д и н а т ы в э л е м е н т а р н о й я ч е й к е б е с к о н е ч н о й • р е ш е т к и Т В Э Л - о в . Для р а б о т ы о б е и х п р о г р а м м н у ж н а м а г н и т н а я л е н т а R E A C T O R ТАРЕ, с о д е р ж а щ а я не о б х о д и м ы е я д е р н ы е д а н н ы е .

(5)

sion a l - e q u a t i o n s a p p r o x i m a t i n g the n e u t r o n tr a n s p o r t e q u a t i o n in the fast e n e r g y range. The d i f f e r e n t i a l e q u a t i o n s are s u b s t i t u t e d by a finite d i f f e r e n c e scheme in the space variable. The m u l t i g r o u p picture is used w i t h a fixed 40 l e t h a r g y g r o u p s t r u c t u r e up to 10 M e V . The space interval c o r r e s p o n d i n g to the actual s y s t e m is d i v i d e d by m e s h points /max. 70 in S O P H I E and 25 in C E C I L Y / and into regi o n s /max. 15 and 6 resp./ c o n taining c e r t a i n m a t e r i a l c o m p o s i t i o n s .

The co d e s w o r k in three g e o m e t r i e s , name l y in the slab, c y l i n ­ d r i c a l and s p h e r i c a l ones. The two codes are d e v e l o p e d on the same basis as the m u l t i g r o u p z e r o - d i m e n s i o n a l code R J G 1 - G R A C E [1j . Quite similarly to it, the p r e s e n t v e r s i o n s of the codes do not take into account the t h e r m a l s p e c t r u m v a r i a t i o n in space immanently, but make use of the r e ­ su l t s of a p r e v i o u s T H E R M O S

[з]

run, c o n d e n s i n g the thermal ene r g y range i n t o one l e t h a r g y group.

The h o m o g e n i z e d c r o s s - s e c t i o n s for r e s o n a n c e m a t e r i a l s in their r e s o n a n c e r e g i o n s h o u l d be g i v e n in input r e q u i r i n g a p r e v i o u s run of the code R I F F R A F F [2] . A n o t h e r w a y of t r e a t i n g r e s o n a n c e s is av a i l a b l e in the codes, i.e. by u s i n g H e l l s t r a n d 's single pin r e s o n a n c e integrals and mutual s h i e l d i n g fact o r s [ l , 4] as input d a t a and l e t h a r g y gr o u p d i s t r i b u t i o n s of the r e s o n a n c e i n t e g r a l s /taken from a l i b r a r y / .

T h e p u r p o s e of d e v e l o p i n g these codes was twofold.

F i r s t l y they are s u i t a b l e to m a k e t h e o r e t i c a l investigations, e . g .

st u d y of some c u r r e n t l y used a p p r o x i m a t i o n s /fast advantage factors, m u t u a l s h i e l d i n g factors/;

s t u d y of the v a l i d i t y of the a s y m p t o t i c r e a c t o r theory e s ­ p e c i a l l y the e n e r g y - d e p e n d e n t b u c k l i n g a p p r o x i m a t i o n for the r e f l e c t o r s /used in G R A C E [l] / .

S e c o n d l y they m a y be used to c a l c u l a t e f e w —gr o u p d i f f u s i o n c o n ­ sta n t s in s y s t e m s of a h i g h n u m b e r of d i f f e r e n t m a t e r i a l regions.

(6)

It is w o r t h to mention, that the code S O P H I E may be used for c r it i ca l it y c a l c u l a t i o n s in cases w h e r e the a s y m p t o t i c a p p r o x im a ti o n is suff ic ie nt for taking into a cc o u n t the e f f e c t of axial leakage.

The codes SOPHIE and C E C I L Y were w r i t t e n in I C L - F O R T R A N . Typical r un ni ng times on the ICL-1905 c o m p u t e r are in the range of 5 to 10 minutes.

II. B A S I C E Q U A T I O N S A N D C A L C U L A T I O N A L M E T H O D

1. Ba si c e q u a t i o n s

The e q u a t i o n s solved by the co d e s S O P H I E and C E C I L Y can be w r i t ­ ten in the f o l l o w i n g form

1 9r ra

/lb/

- I Ф

( r , u ) + ET (r,u) J z (r,u) = L z (r,u) /1с/

N o t a t i o n s

u - l e t h a r g y

r - space v a r i a b l e

a - g e o m e t r y indicator, 0 for slab g e o m e t r y

1 for c y l i n d r i c a l g e o m e t r y 2 for s p h e r i c a l g e o m e t r y ф(г,и) - d i r e c t i o n i n t e g r a t e d flux:

1

2TT j" f ( r , u , y ) dy

r ' -!

J (r,u) - . " r a d i a l " curre n t : 1

S ( r ,u) - f i s s i o n source:

dy

oo

L ( r , u ) - i s o t r o p i c e l a s t i c s c a t t e r i n g rate l(r,u) - i n e l a s t i c s l o w i n g d o w n rate

L ^ ( r , u } - "radial" c o m p o n e n t of the a n i s o t r o p i c e l a s t i c s c a t t é r i n g rate L ^ ( r , u } - "axial" c o m p o n e n t of the a n i s o t r o p i c e l a s t i c s c a t t e r i n g rate.a x i a

(7)

The e x a c t m e a n i n g of L q , L^ L Z and I is given in ref. [l] . T / \

E ^r,u) — total c r o s s section.

The cod e s S O P H I E and C E C I L Y c a l c u l a t e the space depe n d e n c e of the n e u t r o n flux o n l y in one spatial variable, wh i c h is call e d the "radial"

var i a b l e . Sp a c e d e p e n d e n c e on the other spatial c o - o r d i n a t e s is taken into a c c o u n t by the "axial" q u a n t i t i e s : axial c u r r e n t J Z (r,u) and axial b u c k l i n g В .

T h e axial l e a kage is c a l c u l a t e d a s y m p t o t i c a l l y , quite similarly to the l e a k a g e c a l c u l a t i o n in G R A C E [ l ] . A c t ually, one of the main d i f ­ f e r e n c e s b e t w e e n the m u l t i r e g i o n codes SOP H I E and C E C I L Y is in the way of h a n d l i n g the axial leakage. The code S O P H I E is m e a n t to c a l culate the c r i t i c a l i t y and the fast s p e c t r u m of c o r e - r e f l e c t o r systems. The user jnay give d i f f e r e n t ax i a l b u c k l i n g s for d i f f e r e n t r e g i o n s and the set of

e q u a t i o n s /1/ is s o l v e d by t a k i n g the actual value of E (r,u) at every p o i n t r . The code C E C I L Y is m e a n t for cell c a l c u l a t i o n s and the same b u c k l i n g m u s t be u s e d for all r e g i o n s of the cell. P r a c t i c e has shown that in r e g i o n s w i t h small E T this m e t h o d fails, t h e refore in eq./lc/

E (r,u) is n o t the a c t u a l total c r o s s s e c t i o n at poi n t r , but a cell- a v e r a g e d value. C o n s e q u e n t l y , eq./ l c / m u s t be r e w r i t t e n in case of CECILY

as Г

J ET (r,u) ф (r ,u ) d V

В x / \ . С в 11 ,Z / ч T Z / \

- -J Ф (r , u ) + --- J (r,u) = L1(r,vi) 1 Ф ( r ,u ) dV

cell

T h e same a v e r a g i n g p r o c e d u r e is c a r r i e d out for all c r o s s - s e c Lions a p p e a r ­ ing in L Z .

T h e f o r m a l i s m d e s c r i b e d in the f o l l o w i n g holds for both codes w i t h m i n o r d i f f e r e n c e s . T h e r e f o r e the d e r i v a t i o n s fol l o w the line c o r e s ­ p o n d i n g to SOPHIE. W h e n n e c e s s a r y , the d i f f e r e n c e s b e t w e e n the two codes are indicated.

T h e e l a s t i c s l o w i n g d o w n source is a p p r o x i m a t e d in the same way as in G R A C E fl|. For e l e m e n t s h a v i n g mass numb e r s g r e ater than the a l u ­ m i n i u m /F- е lements/ the F e r m i - a g e a p p r o x i m a t i o n is used, while for a l u m i ­ n i u m and the l i g h t e r e l e m e n t s /f-elements/ the G r e a t l i n g - G o e r t z e l a p p r o x i ­ m a t i o n is used. The a n i s o t r o p i c s l o w i n g down source is taken into account

for h y d r o g e n e , d e u t e r i u m and b e r y l l i u m /h-elements/ a c c o u n t i n g for a lin e a r a n i s o t r o p y in the l a b o r a t o r y system.

(8)

2.• The m u l t i g r o u p e q u a t i o n s

The c o n t i n u o u s e n e r g y - d e p e n d e n c e of the n e u t r o n flux and c u r r e n t is s u b s t i t u t e d by a m u l t i g r o u p picture. The g r o u p str u c t u r e is identical w i t h that of GR A C E [l]. The j ^ gro u p s has the l e t h a r g y limits U j-i and u_. , and l e t h a r g y w i d t h Au_. = u_. - u_, ^ . The s u b s c r i p t j of

the thermal g r o u p is d e n o t e d by ^th * As t^ie last e n e r g y group,

= NTH, i.e. The g r o u p i n t e g r a l s of flux and c u r r e n t are the total numb e r of e n e r g y gro u p s / < 40/ u j

Ф . (r) = ^ ф ( r , u ) d u and

3 u j-i

u j

J j , Z (r) = J J r 'Z (r,u) du u j-l

w h i l e the o t h e r q u a n t i t i e s are a v e r a g e d for l e t h a r g y gro u p s in the same w a y as in G R A C E /see e q s . / 2 1 / - /33/, /35/ - /40/, /42/ of ref. [l] / . A f t e r simple t r a n s f o r m a t i o n s , e q s ./l/ c a n be w r i t t e n as follows!

d r a J r (r)

----^ --- + r a A . ( r ) ф.(г) = ra B . ( r )

/2а/

. d ф . ( r )

i + c-(r) о-(г) / 2b /

- § ф . ( г ) + C ^ (r ) J Z (r )= D ^ (r )

/2с/

w h e r e

Aj (r )

Bj(r)

C j ( Г )

Z h

h j

N. 5,.

, v f fj + 1 £ N.

Lj F

r: AU .

f r fj ♦

V

AUj q F • T "

J-1 f r Au . q fj

r fj + T 1

£T - IN, M, . + £ 3 к k k 3 h

N h H k j Zhj + 2 Au .

3 n r 'Z

RA .

_____ 1_ T

Au. P h j-1 + T 1

V l (r)

B ‘

D 3Cj (r )

h B P h j-1

C * ( r )

- RA

(9)

The nomenclature is given in ref. [l].

The r-dependence of the cross-section, slowing down densities and the BIGG-type resonance absorption rate RA^ is not written here explicitly. Equations /2а-с/ are completed now with the slowing down e q u a t i o n s :

9 f j (r ) - -

q . j ( r ) - 1

A--- ф . (r) +

Л и . ~i '

r fj + 2

Ди .

_ £ J " Ди. q fj-i(r)

F(j + V

L N 5_. Ф •(r ) F j V"' E Ü T p "F “Fj

/За/

/ ЗЬ/

_ „ N. H, .

P '

(r)

=

---^

--

J r , Z (r)

hj u. J

Z. . 4- -5Г-

h j 2

и .

+ — hJ ' l 2 Pr 'Z C r )

Z . + h'i-1

h] 2

/ Зс/

The expressions of С , 2 (г) and p5.(r) are modified in CECILY:

J h 3

z „z, N cell

c ‘ = C j ( r ) =

N. H. . h hj

Ди zhi +

j

Ф j(r ) dV

j

ф_.(г) dV cell

N. H. .

h h 3 - ф . (r ) dV Ди . j v

„z , N cell Zhj + 2 p h j (r> ' --- r ---

z h

Jj(r) + --

Ди

1--- P Z

Ди .

(r)

cell

Ф j(r) dV

Z hi +

h,j-l

Equations /2а/ - /2с/ and /За/ - /Зс/ are valid for every fast energy group /j = 1,2....N T H - 1 / with the initial conditions

q £ j (r) - q F j (r> - P hjr 'Z C O = 0 for j = 0 The equations of the thermal group are

d r “ (r) 2 th

dr + ra EA (r) + — ---

3 th 3CZ Cr)

3 th

Ф • ( r )

3 th

a

Z q fi - l (r) + q Fi - 1 (Г) "

f £3 th 1 1

£ В P Z , ( r )

h ^ t h “1

(r ) 3 th

/4а/

1 3

йф • (г)

Dth

dr C r. (r) Jj (r) =

'th th

E р Г . , ( r ) h h 3th-i

/ 4b /

- I ф. (r) + C Z (r) J* (r) = E p" - i ( r )

3 3th 'th 'th h3th_1

/4с/

(10)

where

C* (r) = Cr. (r) = Y T Cr ) - и- Í? (r )

th 3 th Jth Jth Jth

or in CECILY

C* = C* (r) 3 th 3 th

cell

^ (r ) - p. Y S. (r)

3 th 3 th 3 th

i Ф-: (Г) dV cell ]th

ф . (r ) dV 3 th

3. Finite differencing of the multigroup equations

The differential equations /2/, /3/, /4/ are defined on the space interval О < r < R , where R is the radius of the cylinder or sphere, or the thickness of a slab /half-thickness of a symmetric slab/.

The (P^-) boundary conditions for every group j are specified as a . / at the middle point of a symmetric slab, cylinder or sphere:

(О) = О /5а/

b . / at the left hand side of an asymmetric slab:

J j ( ° ) = ---j - Ф j ( О ) /5Ъ/

c./ at the right hand side of a slab, cylinder or sphere in the case of zero current /symmetry/ condition:

J^ (r ) = О /5с/

d ./ at the right hand side of a slab, cylinder or sphere in the case of a vacuum boundary:

J j (R) = 4>j(R) /5d/

Obviously, in CECILY always the conditions a./ and c./ apply.

In order to form a finite difference scheme from e q s . /2/ and /3/ the interval (0,R) is divided by N + 1 mesh points and the e q u a ­ tions are integrated for suitably chosen mesh intervals. The first mesh point r^ is at r = 0, while the last one rN + ^ is at r = R. The middle point of the interval гк+1 ^ denoted by г к +1/2‘ T ^e

and right boundaries lie at different mesh points depending on the bound-

(11)

ary conditions. The left boundary lies at r-^ in case a./ while at r 3y2 in case b ./. The right boundary lies at rN+1 in case c./, while at rN+l/2 in case d */* It is noted, the points r^ and/or rN+1 are fic­

titious points when boundary conditions b./ and/or d./ apply.

The mesh must be chosen in such a way, that the boundary of d if ­ ferent material compositions lies at the middle point of one of the mesh intervals /i.e. at some гк + 1 / 2 ^ ‘

I

Now integrating e q s . /2а/ and /2с/ between гк~1/2 and rK+l/2

= 2,3,...N/, the following set of equations are obtained:

a 7r - ra J r + ra ГК-И ГК-1

ГК+1/2 J j,K+l/2 ГК-1/2 J j ,K - l /2 rK 2 A j,K(fc)4>j,K

■ ГК Г - - - - - В (t) /K-2,3,...N/ /6а/

1 ф . + Г К-И " ГК C j,K+!(*') + U j,K(&) a r+ C.

1 ^j,K+l “ 3 <i>j,K j » K + l /2

ГК+1 ~ ГК D -j,K+lU') * D i , K q ) /K = 1 ,2,...N/ / 6b /

В rK+l " rK-l

Ч к +

rK+l " rK-l „ Z Tz _ rK+l rK-l n z

2 C j , К (Л) J j,K 2 j,K(JO

/6с/

/К = 2 , 3 , . . .N/

where

A .j,K(A)

+ M j.t + f

Nf + _ i_ I м

В Д и . Au. p F F j , Ü opZ

r£j, Л + “21 3 J'KU)

_ Z _ r r

C j , K U ) j , K U ) zT j Д

. N h Hhj,*

£ N k 4 - - - ^

Zhj,£ + 2

B j , K U ) “ S j,k+ I j,K+qFj-l,K f

Au .

__ IAu. q fj-l,K

h B P >^ lTiS - RA . rfj,2+ 2

r zC j , K U )

j » K

(12)

Dj , K í O

Ди RA

E

h Д и . P hj-l,K+l/2 j/g— J r

Zh j , Л + 2

♦j-i.K 3- b K + l/2

D j , K U )

Ди RA .

E

h Ди. P h j - 1 ,К lziL

Zh j , Л + 2

4>j-l»K J j-i,K

Ди RA

D j,K+l(í.') E

h Ди. p hj-l,K+l/2 j ' K + l j*

Zh j ,Л ' + 2

♦j-l.K+i j-1'K + i/2

Here Л and Л ' indicate the material compositions at the mesh points К and К + 1 respectively.

The expression of is modified in CECILY as

N+l K=1

I

c j = c j , K U )

T

Z j , K U ) - E N M . + E к k K 3 ' ^ h

N. H, . . h hj , Л

N+l

Ди 2М , Л * 2

r K+l rK-l

l <f>j K=1 J

rK+l " rK-l ,K

Now we introduce some quantities in order to get a well arranged set of equations

Al(j,K) =

-ra K+l/2

X r

, rK+l " rK C j , K +lU') ~ с 1,к(л)

3 2--- --- 2--- ----

/К = 1 , 2 , . . .N/

a ГК+1 rK-l

A0(J,K) = -A1(J,K) - A1(J,K-1) + r£ — V + 2 - - A j / K (£) /K = 2 , 3 , . . .N/

A V (J , К 'J - r “ - -K-! B j ( K ( 0 . ra+i/2 ° J fKtl(t*) ^ , . a ) +

J , K+l (Л') + C j,K(A)

Drj , K U O + D j , K - l U )

K - l / 2 r r

c j ,к (л') + c j , K-l( Л)

/К = 2,3,...N/

(13)

FI(J,K) = ф.^к

Y(J,I0 = J$,K+1/2

y y(j ,k ) = J ^ _ K

/К = 1,2,...N+1/ /К = 1 , 2 , . . .N/

/К = 1,2,...N+1/

Substituting /6Ь/ to /6а/ and using the notations in eq./7/ the following equation is obtained

Al(j,K>FI(j,K+l) + AO(j,K>Fl(j,K) + Al(j,K - l > F I ( j ,K-l) = AV(j,K)

/К = 2,3,...N; J = 1 , 2 , . . .NTH-1/ /8/ In the thermal group, one gets the same set of equations, using the nota­

tions

jj_u»K U ) 3<-h' ^

В

'th th' 3C

jt h ,K(°

£ B Рьч B jt h .K(l) = \ 4fjth-l.K + 4F j th-l.K

h Jth-1 'K C 3 th-K < 0

- c * T

= E

c jt h . K()0 c j t h . K ( D ^ t h'1 " Ujth £4 h .i

D jt h . K f l U ' ) = D jt h ,K(t) ■ I P hjth-l,K+ l/2

D it h 'K(° ■ h P h ith-1 'K

In CECILY, the expression of C jth ' K ^ is modified to

C Z = C Z

N+l l K=1

ET - ц .

^ t h ' *

3 th _3th'*J

L -i о

j t h N+l

l ф ч к

K=1 3th'K

ф j

Jth,K

ГК+1 ” ГК-1 rK+l " ГК-1

Equations /3/ are integrated in the same way as e q s . / 2 / and /4/, i.e.

e q s ./3 a / and /3 b / and the axial component of e q . /Зс/ from rK _ i/2 to rK+l/2 ( K = 2 , 3 , ...N), and the radial component of e q . /Зс/ between rv and

rK+l = 1 '2 /***N )r giving

Ди .

‘f j,K

N f H f i , K ( Q

Au . f i

(

j

,

k

) +

f j,K(>e)

rfj,K(H) + 2

.Au.

rfj,K(€) + ~2

q fj-l,K

/9а/

/К = 1,2,...N+1/

(14)

V b K - é r $ n f EFj,K(t) F I (J 'K) /К = 1,2,...N+1/ / 9b/

r 1

P h j ,K + l/2 2

Nh Hh j , K ( Z ) Au .

"h j , К (í. ) + 2

Nh Hhj,K+l(&*) Au . 'hj,K+l(>') + 2

1

2

Ли. Ли,

h j , K+l (í.') Jhj,K(£) " 2

Л и . +

!hj,K(ü) + 2 Zh j , K+l (l ') + Ли

Y (J , К )

5h j-1,K + l /2 1 9 c

Ли . hj,K

Nh Hh j , К (Й.) Ли, Zh j , К (Ä.) + ~ T L

y y(j ,k) +

' h j , K ( M

Ли.

Zhj,K(£> + ~ T

P h j -1,K /9d/

/ К =

1

,

2

, . . . N +

1

/ where

Y (j , к ) = (J /к ) ^ F i ( j ,к+i') - f i(j ,k)) + — + D j f K 0 B /9e/

YY(J,K) =

K + l /2

В F I

3C j,K(i) In CECILY, of course

2

(J,K) + —

UJLiil

C Z , /„ X

Г Г

c j I K+l (i-') + c j , K ( 0 /К = 1,2, . . .N/

/ К =

1

,

2

, . . . N +

1

/ j , k (í, )

/ 9f /

hj ,K

N+l N, H. . .. ,

У __ !3__b j f K ( M ,

K

=1

_ ^ J ' K

hj,KU) 2______

rK+l r K-l

Ли . N+l

l

rK+l rK-l

y y(j ,k ) +

'hj,K(* )

K=1 j»K

Ли.

Zh j , К (S- ) + ~~2

z

P h j -1,К

/К = 1,2,...N+1/ / 9g /

These latter expressions of currents and slowing down densities are valid for j = 1, 2,... N T H - 1 , with the initial values

- _ r _ z _

q fo,K “ qFo,K “ Ph o ,K+l

/2

" Ph o ,К ~ °

/ 9 h / Before detailed considerations on solving e q s . /8/ - /9 / ,.we have to take into account the boundary conditions, which make the system of e q u a ­ tions complete.

(15)

4. Boundary conditions

Two types of boundary conditions were specified in II. 4. at both ends of the interval (,0,r). A finite difference form of these conditions may be obtained in the following way.

a./ If r = 0 is the middle point of a symmetric slab, cylinder or sphere, then eq. /2а/ is integrated between ^ and r 2 / 2 ' Usin9 eq./5a/ and the notations

a

+1

A0(J,1) = A1(J,1) + A jj2(l)

a+1 D

AV(J,1) - B j , K D - r3/2 the following equation is obtained:

/ j=l,2 , . . .NTH /

C j,2(£)

Al ( J , 1) * FI ( J , 2) + A0(J,1) * FI ( J , 1) = AV ( J , 1) (J = 1, 2, ... NTH)

/ Ю а /

b./ If r 2 / 2 is the left boundary of an asymmetric slab, one may write

that

FI (J , 1) + FI (J , 2) =

2 - 2 Y C J , 1)

An equation formally identical to eq./lOa/ can be obtained with the notations

A O (J ,1) =

1 - 4

Al ( J , 1)

a r 3 / 2

A1(J,1)

1

+

4

A

1

( J A >

a r 3 / 2

and

A V ( J ,

1

) 4 A 1

1

Г О Д )

1+4 1U (j ,d a Г 3 / 2

pj: ,

2

q )

c jr , 2(&)

(J = 1 , 2 , . . .NTH)

c ./ if r = R is a symmetry boundary, then integrating eq./2a/ between r , and r using eq./5c/ and the definitions

N + l /2 N

(16)

a - гa

А О (J ,N + 1) = - A l (J ,N) + N+l N+l/2

a + 1 ‘j fN ( jj,) .a

AV(j,N+l) = " r.4tl

a a D

a + 1 B j , N ( Й,) + *N+1/2

(J = 1 , 2 , . . .NTH)

C j , N

( 0

one obtains that

A O (J ,N+l) * FI (J ,N+l) + A1(J,N)#FI(J,N) = AV(j,N+l)

/ ю ь /

(j = 1, 2, ... NTH)

d./ In case of a v a c u u m b o u n d a r y at r = rN + ^^2 one

can Proceecle

in an a n a l o g o u s way as in case b./ to get forma l l y the same e q u a t i o n as e q .

/ Ю Ь / w i t h

A O (J ,N + l ) =

1 - 4

Al ( J ,N)

a 1N+l / 2

A V (J ,N + l ) =

A l (J ,N) 1+ 4

a N+l/2

A l (J ,N)

1 M a Í(j ,nT a

N+l/2

/ J =

1

,

2

, NTH/

D . j . N

( 0

C j,N<ll)

E q u a t i o n s /10а/ and / Ю Ь / t o g e t h e r w i t h e q s . /8/ give NTH by /N+1/

e q u a t i o n s for the NTH by /N+1/ u n k n o w n FI/K,J/ flux values. This set of e q u a t i o n s can be r e w r i t t e n as

a(j) $ (J) = V(J) (J = 1, 2, ... NTH) /11/

w h e r e the e l e m e n t s of the c o l u m n v e c t o r s and V(j) are the FI/J,K/ and A V /J ,К / q u a n t i t i e s (K = 1 , 2 , . . . N+l), w h i l e the /N+1/ by

/N+1/ m a t r i x A(j) has the form

(17)

А О (J ,1) Al (J ,1) 0 0

A O (J ,2) Al ( J ,2) 0

о

о A l (J , N-l) А О ( J , N ) Al ( J ,N)

О О A1(J,N) AO(j,N+l)

Eq. /11/ c o u p l e d w i t h eqs. /9/ can be solved starting from J = 1 and g o i n g on g r o u p by g r o u p to the thermal e n e r g y group.

5. S o l u t i o n of the e q u a t i o n s

The s o l u t i o n of eq. /11/ is q u i t e s t r a i g h t f o r w a r d by factorizing the m a t r i x A as

£ ( j ) = g(j) g(j)

Here

BO.(\J,l)

A l (J ,l) B O (J , 2)

!(j) =

о a i(j ,n) b o(j ,n+i)

w h e r e

B 0 ( J , 1)

b o(j ,k)

= A O (J ,1)

= a o (j ,k) A l (J ,K - l ) * A1 ( J , K - 1 $ B0(J,K-1)

/12а/

(К = 2,3, . . .N+1)

(18)

and

C ( J )

1 Cl(j,l)

1

О

C l ( j , N )

1

whe r e

c i(j ,iO = Al(j,K)

BO(J,K) /К = 1, 2, . . . N/ /

12

b / The e q u a t i o n

!(J) c (j ) ф (л ) = | (j ) Ф ( j) = v (j )

is i n v e r t e d in two steps as / d e noting the c o m p o n e n t s of Ф (,J ) by P S l (j,K)/

PSl(j,l) AV(J,1)

B 0 ( J , 1 )

PSI (j ,k ) A V ( j , K ) - A l ( j fK - l ) * P S l ( j fK-l) B O ( j fK)

/К = 2 , 3

,

/12с/

. . . N +

1

/

and

FI (J ,N+1) = P S l ( j , N + l )

F l ( j , N + l - L ) = P S I ( J , N + 1 - L ) - C l ( j , N + l - L ) * F I ( j ,N+2-l) /1 2 d /

I

/

l

= 1 , 2 , . . . N /

for e v e r y J /J = 1 , 2 , ... NTH/.

The n u m e r i c a l o p e r a t i o n s n e c e s s a r y to get the final s o l u t i o n gi v e n by eq. /12d / are c a r r i e d o u t in the f o l l o w i n g o r d e r / a s suming the source d i s t r i b u t i o n S . „ to be known/:

D I *

a./ F i r s t the q u a n t i t i e s A O / J , K / and A l / J , K / are c a l u c l a t e d ; they d e p e n d on the m i c r o s c o p i c c r o s s - s e c t i o n s , n u m b e r d e n s i t i e s and g e o m e t r y only.

(19)

b . / A V / 1 , K / is c a l c u l a t e d , then us i n g eqs./12/ the flux distri b u t i o n F I /J ,К/ is d e t e r m i n e d in the first m i crogroup.

c . / By the h e l p of eqs. / 9 / the s l o w i n g d o w n d e n s i t i e s and then the AV/J,K/

are c a l c u l a t e d for the next m i c r o g r o u p , and this p r o cedure is repeated un t i l the t h e r m a l g r o u p is r e a c h e d /i n c luding this, too/.

T h e o n l y p r o b l e m r e m a i n e d is that the source d i s t r i b u t i o n is not k n o w n as it can be c a l c u l a t e d o n l y from the FI/J,K/ flux distribution.

T h e r e f o r e a s o u r c e i t e r a t i o n m u s t be appl i e d w h i c h gives the flux and source d i s t r i b u t i o n s at the e n d of the p r o cedure. As far as C E C I L Y is concerned, a

f u r t h e r p r o b l e m of c a l c u l a t i n g the flux a v e r a g e d value of the total cross s e c t i o n s o c c u r s there. /See II. 7./.

6. S o u r c e i t e r a t i o n

In the c o d e G R A C E [l] the e n e r g y d i s t r i b u t i o n of the source was g i v e n by

S(u) = f(u)

i.e. by the f i s s i o n spectrum, b e c a u s e of the n o r m a l i z a t i o n

oo

j

v E f (u) ф (u)du = k eff о

w h e r e к .. is the e f f e c t i v e m u l t i p l i c a t i o n factor of the system. As in ef f

the p r e s e n t o n e - d i m e n s i o n a l space d e p e n d e n t codes the source is not c o n ­ st a n t in space b u t is g i v e n by

S(r.u) = - p i . ef f

(r,u') ф (r,u') du' /13/

an i t e r a t i o n p r o c e d u r e is nece s s a r y . The it e r a t i o n formula reads as

(i) = f(u)

( r , u ) k ( i " D ef f

v £ f ( r ,u ')ф (i-1) (r,u') du' ,

or in terms of the finite d i f f e r e n c e d m u l t i g r o u p quantities:

s (i\j,K)

NTH

b r - , 4 P I ^J ''K)

(i-1) /14а/

"eff

(20)

where

V syst e m and w i t h the initial value

/14b/

/ lo)

F l ( j , K J E 1 /J = 1, 2 , . . .N T H ; K = l , 2 , . . . N + 1 / /14с/

Thus the source d i s t r i b u t i o n is n o r m a l i z e d to u n i t y and the m a x i ­ m u m d e v i a t i o n of the source valu e s froTn those c o m p u t e d in the p r e v i o u s i t e r a ­ tion step gives the d e g r e e of c o n v e r g e n c e as

E s^-1^ ( j , k )

e . = m a x 1 - — ---77-r---

1 К

Z

S ^ ' O j f K )

J

The source i t e r a t i o n is t e rminated, if the va l u e of is less than a small e s p e c i f i e d in the input.

It is w o r t h to remark, that the code c a l c u l a t e s the total d e s t r u c ­ tion rate

,(i) df Jr(i')

( r f ,u')

+ в

d V J' ( i b

(r

,u') + \ d V Z (r,u') ф (1\г,и') du'

w h e r e V is the v o l u m e of the system, w h i l e F is the o u t e r s u r f a c e of it and r^ is some p o i n t of this s u r f a c e / o b v i o u s l y if there is any v a c u u m b o u n d a r y of the s y s t e m / . The total d e s t r u c t i o n rates m u s t be equal to unity in e v e r y i t e r a t i o n step b e c a u s e of the n o r m a l i z a t i o n /14/, p r o v i d i n g a test

»

of the c a l c u l a t i o n .

7. C a l c u l a t i o n of the axial l e a k a g e in C E C I L Y

As it was m e n t i o n e d above, in the e q u a t i o n for the ax i a l c u r r e n t /see e q . / 2 c / / the c r o s s s e c t i o n s are a v e r a g e d o v e r the cell. S t r i c t l y s p e a k ­ ing, an inner i t e r a t i o n w o u l d be n e c e s s a r y in e a c h source i t e r a t i o n step to get the shape of the flux in e a c h group. It has b e e n found, however, that it is s u f f i c i e n t to c a l c u l a t e the cross s e c t i o n a v e r a g e s u s i n g the flux shapes o b t a i n e d in the p r e v i o u s sou r c e i t e r a t i o n step. The c o n v e r g e n c e rate of the source i t e r a t i o n is p r a c t i c a l l y not e f f e c t e d by that.

(21)

The u s e r m u s t s p e c i f y an axial b u c k l i n g value in the input which m a y be zero. As a first step the code solves the p r o b l e m for this value of the buckling.

At the user s o p t i o n a SEA R C H r o u tine can be switched on which finds the m a t e r i a l b u c k l i n g of the gi v e n fuel lattice, i.e. such a В v a l u e for w h i c h k eff = !• The user is warned, that the code is not p r o ­ t e c t e d f r o m c a s e s w h e r e к < 1.

oo

8. D e t e r m i n a t i o n of the c r i t i c a l sizes in SOPHIE

The code S O P H I E p e r m i t s to c a l c u l a t e the k e f f , the flux d i s t r i ­ b u t i o n and f e w - g r o u p c o n s t a n t s of a given c o r e - r e f l e c t o r system. If the u s e r is i n t e r e s t e d in the c r i t i c a l value of some parameters, a successive c h a n g e of the size of one or m o r e r e g ions is c a r ried out by the SEARCH r o u t i n e un t i l k 0 ff = 1 is reached. Of course, this c r i t i c a l i t y iteration can a l s o be c a r r i e d out by c h a n g i n g the b u c k l i n g values of one or more r e ­ g i o n s in SOPHIE.

9. Some r e m a r k s on t r e a t i n g r e s o n a n c e s

The user of b o t h co d e s S O P H I E and C E C I L Y has the option to make use of the two m e t h o d s for t r e a t i n g r e s o n a n c e s that were d e s c r i b e d in G R A C E [l] in detail.

T h e first m e t h o d c o n s i s t s in us i n g the h o m o g e n i z e d absorption, f i s s i o n and s c a t t e r i n g cr o s s s e c t i o n s of r e s o n a n c e e l e m e n t s in their r e ­

s o n a n c e regions, g i v e n by a R I F F R A F F [2] c a lculation. The outp u t of RIFFRAFF c o n t a i n s not o n l y the c e l l - h o m o g e n i z e d val u e s of these cross sections, but t h e i r v a l u e s in the fuel rod as well.

The so c a l l e d B I G G - t y p e r e s o n a n c e t r e a t m e n t [l, 4j m a k i n g use of H e l l s t r a n d 's r e s o n a n c e i n t e g r a l s and their e n e r g y gr o u p d i s t r i b u t i o n s are o b v i o u s l y u s a b l e o n l y in SOPHIE. In CECILY, further d e t a i l e d c o n s i d erations c o n c e r n i n g the ф - f u n c t i o n library, etc. are necessary. Here the quest i o n of m u t u a l s h i e l d i n g factors and fast a d v e n t a g e factor does not arise at all, b e c a u s e the code itself a c c o u n t s for the lattice structure of the system.

(22)

III. O R G A N I Z A T I O N OF T H E C O D E S

In this section a short a c c o u n t on the o r g a n i z a t i o n of the codes SOPHIE and C E C I L Y is b r i e f l y given. The flow d i a g r a m can be seen in A p ­ pen d i x 1.

Fi r s t of all it seems to be obvious, that this type of c a l c u l a ­ tion needs not only a w e l l - a r r a n g e d o v e r l a y st r u c t u r e of subroutines, but a suitable c o m m o n blo c k str u c t u r e b e c a u s e of the e n o r m o u s l y high number of the v a r i a b l e s to be stored. Practi c a l l y , 40 m a t r i c e s £ /see 11.4/

ou g h t to be stored each w i t h 141 e l e m e n t s /in the case of 70 m e s h points, w h i c h is a c t u a l l y p e r m i t t e d in SOPHIE/, al o n g w i t h the c o m p u t e d q u a n t i ­

ties /flux, current, etc./, e a c h w i t h 40 * 70 elements. This is impossible, u n l e s s m a g n e t i c tapes are u s e d for s t o ring the c o e f f i c i e n t s of the e q u a t i o n s to be solved and the c o m p u t e d q u a n t i t i e s . The storage is o r g a n i z e d in such a w a y that one or two reco r d s c o r r e s p o n d to e a c h m i c r o g r o u p .

The o v e r l a y s t r u c t u r e and the o r d e r of s u b r o u t i n e ca l l s satisfy the r e q u i r e m e n t s of e c o n o m i z i n g the r u n n i n g time.

The s u b r o u t i n e s m a y be d i v i d e d into three groups. The M A S T E R s e g ­ m e n t cal l s the i n p u t - o u t p u t s u b r o u t i n e s INPUT, T A P E M A K E R and ANITRA. The

INPUT s u b r o u t i n e reads in the b a s i c o p t i o n data, the g e o metry, and the e n e r g y g r o u p limits.

The T A P E M A K E R s u b r o u t i n e re a d s in the e l e m e n t - w i s e n u c l e a r d e n s i ­ ties, the r e s o n a n c e and t h e rmal data. A f t e r w a r d s it reads in the m i c r o ­ g r o u p c r o s s - s e c t i o n s for e a c h e l e m e n t o c c u r i n g in the actu a l p r o b l e m from the G R A C E L I B R A R Y T A P E and p r e p a r e s the m a g n e t i c tape MTl c o n t a i n i n g all m i x t u r e d e p e n d e n t q u a n t i t i e s n e e d e d for the s o l u t i o n of the equ a t i o n s , us i n g two r e c o r d s for e a c h m i c r o g r o u p .

For s a v i n g w i t h storage, T A P E M A K E R w r i t e s the H e l l s t r a n d - t y p e r e ­ sona n c e d a t á on the m a g n e t i c tape MT2, and a f t e r w a r d s it reads t h e m in from t h e r e .

T h i s s u b r o u t i n e sets a l s o the i n i tial source value. A f t e r e x e c u t i n g the s u b r o u t i n e g r o u p c o n t r o l l e d by S O L V E I G /i.e. the source i t e r a t i o n and the w h o l e c a l c u l a t i o n / s u b r o u t i n e A N I T R A p r i n t s out all the i n t e r e s t i n g

q u a n t i t i e s w h i c h can be o b t a i n e d from the s o l u t i o n c o n t a i n e d by the m a g n e t i c tape M T 2 . T h e A N I T R A c a l c u l a t i o n needs b o t h the tapes MTl and M T 2 . If the c r i t i c a l i t y s e a r c h o p t i o n is used, the c o n t r o l is g i v e n to s u b r o u t i n e SEARCH.

It c a r r i e s out the o u t e r i t e r a t i o n to ^ e ff = 1 /c h a n g i n g the sizes in the case of S O P H I E and c h a n g i n g the axial b u c k l i n g in the case of CECILY/. In e a c h o u t e r i t e r a t i o n step s u b r o u t i n e S O L V E I G is called, and upon f i n i s h i n g the o u t e r iteration, s u b r o u t i n e S E A R C H calls the o u t p u t s u b r o u t i n e ANITRA.

(23)

A n y n u m b e r of p r o b l e m s can be solved one after the other, the w h o l e p r o c e d u r e b e i n g r e p e a t e d s t a r t i n g w i t h subroutine INPUT.

L a s t but not least some w o r d s are n e c e s s a r y on the most important b l o c k of the codes, c o n t r o l l e d by s u b r o u t i n e SOLVEIG. For each m i c r o g r o u p this s u b r o u t i n e reads in the h o m o g e n i z e d m i x t u r e data from the magnetic

tape M T l p r e p a r e d by s u b r o u t i n e T A P EMAKER, then calls subroutine FLUX, which s o l v e s the space d e p e n d e n t e q u a t i o n s w i t h the actual source distribution.

F r o m the s o l u t i o n o b t a i n e d for the actual microgroup, subroutine S O L V E I G c a l c u l a t e s the c o n t r i b u t i o n of this m i c r o g r o u p to the source d i s ­ t r i b u t i o n of the n e x t source i t e r a t i o n step. T h e n it turns to the next m i c r o g r o u p d e s t r o y i n g the s o l u t i o n o b t a i n e d for the previ o u s one.

F i n a l l y a n e w source d i s t r i b u t i o n is set and /only in the case of C E C I L Y / the flux a v e r a g e d v a l u e s of the total cross sections are computed.

If the s o u r c e i t e r a t i o n c o n v e r g e d , the s u b r o u t i n e S O L V E I G makes an extra run, in o r d e r to p r o d u c e the m a g n e t i c tape M T 2 , c o n t a i n i n g the computed

flux, c u r rent, etc. d i s t r i b u t i o n s /one r e c o r d for e a c h m i c rogroup/. The tape MT2 is p r o d u c e d o n l y a f t e r the ou t e r i t e r a t i o n converged, if SOLVEIG is c a l ­

led by s u b r o u t i n e SEARCH.

IV. U S E R ' S M A N U A L / I N P U T - O U T P U T D E S C R I P T I O N

B o t h c o d e s are w r i t t e n for the ICL-1905 c o m p u t e r in ICL-FORTRAN.

B o t h S O P H I E and C E C I L Y r e q u i r e the w h o l e m e m o r y c a p a c i t y /32 К/ of the c o m p u t e r , as they c o n s i s t of four o v e r l a y units. The input data may be r e a d in f r o m p a p e r tape or cards, w h i l e the w h o l e outp u t appears on the line p r i n t e r . The co d e s m a k e use of a l i b r a r y tape and two scratch tapes for t e m p o r a r y d a t a storage.

T h e .input-output s y s tems of b o t h codes are very similar, so they are t r e a t e d together. T h e inp u t d a t a can be e a s i l y prepared, u s u a l l y they do n o t r e q u i r e any c a l c u l a t i o n by hand. However, in the p r e s e n t versions of the codes, a p r e v i o u s T H E R M O S

[з]

run and o p t i o n a l l y a previous RIFFRAFF

|2] run h a v e to p r e c e d e the S O P H I E or C E C I L Y runs giving the thermal and r e s o n a n c e d a t a of m i x t u r e s c o n t a i n i n g fissi o n a b l e elements.

The o u t p u t of the code is v e r y abundant, and some not too s i g n i ­ f i c a n t p a r t s of the o u t p u t can be o b t a i n e d by sw i t c h i n g on some switches /see later / .

(24)

1. Input data

1st card /10А8/ : title of the actual run

2nd card /2L4, E6.3, 13 , 912, 614/ : o p t i o n p a r a m e t e r s char. 1-4 /L4 / : T R U E - this is the last p r o b l e m

FA L S E - this is not the last p r o b l e m char. 5-8 / L 4 / : T R U E - c o m p l e t e o u t p u t of input data

F A L S E - short o u t p u t of input data

char. 9-14 /Е6.3/ : the c o n v e r g e n c e limit of the source i t e r a ­ tion / p r a c t i c a l l y 1.Е-5/

char. 15-17 /13/ : n u m b e r of m e s h poin t s

/in S O P H I E m a x i m u m 70, in C E C I L Y 25/

char. 18-19 /1 2/ 0: the code does not call the S E A R C H sub r o u t i n e 1: c r i t i c a l size d e t e r m i n a t i o n by SEA R C H

2: c r i t i c a l b u c k l i n g d e t e r m i n a t i o n by SEARCH char. 20-21 /1 2/ n u m b e r of r e g ions

/in S O P H I E m a x i m u m 15, in C E C I L Y 6/ char. 22-23 /1 2/ n u m b e r of m i x t u r e s

/in SOPHIE m a x i m u m 8, w h i l e in C E C I L Y 6, but r e ­ s o n a n c e i s o t o p e s m a y be p r e s e n t o n l y in the first 4 m i x t u r e s /

char. 24-25 /1 2/ 2: R I F F R A F F d a t a for e v e r y m i x t u r e c o n t a i n i n g r e s o n a n c e i s o t o p e s

1: B I G G - t y p e d a t a for e v e r y m i x t u r e c o n t a i n i n g r e s o n a n c e i s o t o p e s

0 : type of r e s o n a n c e d a t a is d e t e r m i n e d sep a r a t e l y for e a c h m i x t u r e c o n t a i n i n g r e s o n a n c e isotopes char. 26-27 /1 2/ 0: v a c u u m b o u n d a r y f r o m left

1: s y m m e t r y b o u n d a r y from left char. 28-29

<** /1 2/ 0: v a c u u m b o u n d a r y from rig h t 1: s y m m e t r y b o u n d a r y f r o m ri g h t char. 30-31 /1 2/ 0: slab g e o m e t r y

1: c y l i n d r i c a l g e o m e t r y 3: s p h e r i c a l g e o m e t r y

(25)

char. 32-33 /12/ m a x i m u m numb e r of source iteration steps char. 34-35 /12/ n u m b e r of m a c r o g r o u p s /max.6/

char. 36-59 /614/ up pe r b o u n d a r i e s of macrogroups.

3rd c ar d /13, 2E.3, 1513/: S E A R C H data

T h i s c ar d is to be o m i t t e d if no sea r c h c a l c u l a t i o n is requested.

c h a r . 1-3 /13/ m a x i m u m n u m b e r of outer i t e ration steps c h a r . 4-9 / Е 6 .3/ c o n v e r g e n c e limit of the outer iteration

/usually 1.Е-5/

c h a r . 10-15 / Е 6 .3/ an o v e r a l l c h a n g i n g factor /EV/

c h a r . 16-60 /15 I3/(S) 1 6- 3 9 / 8 13/ (c)

r e g i o n w i s e m o d i f i c a t i o n factor / M O D / N R / /

In o r d e r to u n d e r s t a n d the m e a n i n g of these last two quantities, we w r i t e the o u t e r i t e r a t i o n f or m u l a /e.g. for reg i o n w i s e b u c kl in g i t e r a ­ t io n /

b (n r)(n + 1 )= b (n r) 1 +

м е р

(n r) » у о ь(п + 1 )

1 + M0D(NR) * VOL П ^

w h e r e V O L ^ ^ = EV and the later v a l u e s of V O L ^ n ^ are c a l c u l at e d from the k e ££ v a l u e and the p r e v i o u s V O L ^ n value. Here, NR specifies one of the regions.

4th c a r d / 8/ E6.3,l3// m e s h p o i n t data

char. 1-72 8 /E 6 .3,13/ The m e s h points are s p e c i f i e d by pairs of data.

The first n u m b e r or a pair gives in cm the d i s ­ tance of two m e s h poi n t s following, each other, w h i l e the second number gives the m es h point, w h e r e this d i s t a n c e changes. If one card is not sufficient, c o n t i n u e on the next cards.

5th c a r d /15/12, 13/ or 6/12, 13//: reg i o n s p e c i f i c a t i o n is given by a pair of data

char. 1-75 15/12, 13/ (S) The first numb e r of a pair gives the number , , ч of the m i x t u r e in the region, while the

char. 1-30 6/12, 13/ (C) . . ..

second one gives the first mesh point right to the reg i o n b o u n d a r y /which is at the m i d ­ po i n t of a m e s h interval/

(26)

6th card /8Е10.5/ : b u c k l i n g values

This is need e d o n l y if a slab or c y l i n d r i c a l g e o m e t r y c a l c u l a t i o n is carr i e d out.

char. 1-80 /8Е 10.5/ the valu e s of axial b u c k l i n g in the order of regions. If one card is not sufficient, c o n ­ tinue on the next one.

In the case of CECILY:

char. 1-10 /Е10.5/ the va l u e of axial b u c k l i n g

7th card /8Е10.5/ : b u c k l i n g i t e r a t i o n initial guess

This card is to pe p u n c h e d o n l y if a S E A R C H i t e r a t i o n is need e d for the d e t e r m i n a t i o n of the c r i t i c a l b u c k l i n g value. This card has the same format as the p r e v i o u s o n e .

T h e s e ca r d s form the first p a r t of input data, read in by s u b ­ r o u t i n e INPUT. A lot of small tests are b u i l t in the codes in order to p r o t e c t them from input errors. If an er r o r is d e t e c t e d the p r o b l e m is aborted. The second p a r t of in p u t d a t a are r e a d in by T A P E M A K E R w i t h a simi l a r care. A f t e r such an ab o r t i o n , the run of an e v e n t u a l next p r o b l e m r e m a i n s possible. The s u b r o u t i n e T A P E M A K E R reads in the m i x t u r e cards and the r e s o n a n c e and t h e r m a l d a t a cards.

M i x t u r e c a r d s : the f o l l o w i n g is r e p e a t e d for e a c h m i x t u r e 1st card /12, E6.3, L 4 / : m i x t u r e i d e n t i f i c a t i o n

char. 1-2 /1 2/ c h a r . 3-8 /E6.3/

char. 9-12 /L4/

m i x t u r e num b e r

fast a d v a n t a g e fac t o r in SOPHIE, w h e r e cel l - - h o m o g e n i z e d n u c l e a r d e n s i t i e s are to be given, In C E C I L Y it has no d i r e c t m e a ning, but it is used to c h a r a c t e r i z e m i x t u r e s . Namely, it has the val u e

+ 1.0 for m i x t u r e s in fuel;

any p o s i t i v e n u m b e r for m i x t u r e s in cladding;

any n e g a t i v e n u m b e r for m i x t u r e s in m o derator.

it is an i n d i c a t o r of r e s o n a n c e treatment. It is T R U E for B I G G - t y p e t r e a t m e n t and FA L S E for R I F F R A F F - t y p e treatment.

(27)

It has to be n o t i c e d that r e s o n a n c e isotopes m a y be p r e sent only in m i x t u r e s h a v i n g a m i x t u r e n u m b e r less or equal 4. For each element p r e s ­ e n t in this m i x t u r e p r e p a r e a 2nd m i x t u r e card.

2nd m i x t u r g — c a r d /А8, E8.4, 12/ : e l e m e n t d a t a . / T h e e l e ments are to be listed in the order of increasing mass n u m b e r s /

char. 1-8 /А8/ e l e m e n t identifier, c o r r e s p o n d i n g to the e l e m e n t i d e n t i f i e r list of the GRACE L I B R A R Y

char. 9 16 /Е8.4/ n u c l e a r d e n s i t y of this element

char. 17-18 /12/ it has the value

2: for fissile elements Is for fertile e l e ments

Os in SOPH I E for ev e r y ot h e r element, in C E C I L Y for e v e r y ot h e r e l e ment except

for H, D and Be.

In C E C I L Y a list is m a d e from all elements p r e s e n t in the syst e m ac c o r d i n g to the o r ­ der of the GR A C E LIBRARY. For H, D and Be,

the user m u s t give the num b e r of this e l e ­ m e n t in this list w i t h a n e g ative sign.

E.g. if the sys t e m contains H and Be, punch -1 for H and -2 for Be.

T h i s c a r d has to be r e p e a t e d as m a n y times as there are elements in the a c t u a l m i x t u r e . The m a x i m u m n u m b e r of e l e m e n t s in a m i x t u r e is restricted to 12, a m o n g the s e m a x i m u m 3 m a y be l i g h t e r than Be /including Be/, 6 m a y be l i g h t e r than Al, / i n c l u d i n g A l / and 9 m a y have a mass num b e r greater than t h a t of A l . T h e total n u m b e r of d i f f e r e n t e l e m e n t s in the syst e m is limited to 18, w h i l e no m o r e than 7 d i f f e r e n t r e s o n a n c e e l e m e n t s m a y be treated in a p r o b l e m . A f t e r the e l e m e n t data, a bl a n k card follows, ind i c a t i n g the end of e l e m e n t d a t a for the m i x ture. D e p e n d i n g on the res o n a n c e t r e atment cards of the type 3 1 h / or 3/В/ follow.

If there are no r e s o n a n c e e l e m e n t s in this mixture, these cards are o m i t t e d .

In the case of B I G G - t y p e r e s o n a n c e treatment, the data for r e s o n a n ­ ce c a l c u l a t i o n f o l l o w now.

(28)

3rd m i x t u r e card / А / /2/2Е8.4, 12// s B I G G - t y p e re s o n a n c e tr e a t m e n t data char. 1-36 2/2E.8.4, 12/ Single pin r e s o n a n c e integral for the total

e n e r g y range, m u t u a l s h i e l d i n g factor and index of \p - f u n c t i o n are to be gi v e n here for a b s o r p t i o n and for fission. In CECILY, the m u t u a l s h i e l d i n g factors m u s t be equal to u n i t y / s e e 11.9/

This card has to be r e p e a t e d for e a c h r e s o n a n c e isotope in the mixture, in the order of i n c r e a s i n g m a s s numbers.

In the case of R I F F R A F F - t y p e treatment, o n l y one card is to be read in here for this mixture:

3rd m i x t u r e card / В / /213/ : R I F F R A F F g r o u p limits

c h a r . 1-3 /13/ the first m i c r o g r o u p , w h e r e R I F F R A F F t r e a t ­ m e n t is to be used in the a c t u a l m i x t u r e c h a r . 4-6 /13/ the last m i c r o g r o u p , w h e r e this t r e a t m e n t

is applied.

This ends the m i x t u r e ca r d s for one m i x t u r e . A f t e r the last m i x ­ ture fol l o w the r e s o n a n c e cards for R I F F R A F F data, g o i n g a g a i n t h r o u g h all the m i x t u r e s . T h e s e ca r d s are o m i t t e d for m i x t u r e s not c o n t a i n i n g r e s o n a n c e i s o topes or if a B I G G - t y p e c a l c u l a t i o n is applied.

The s e cards h a v e an o r d e r w h i c h m a y a p p e a r arti f i c i a l b u t this o r d e r p e r m i t s to save c o n s i d e r a b l e storage. R e s o n a n c e d a t a are giv e n m i c r o - g r o upwise, in i n c r e a s i n g o r d e r of m i c r o g r o u p index. For a g i v e n m i c r o g r o u p r e s o n a n c e d a t a are g i v e n for all m i x t u r e s w i t h R I F F R A F F t r e a t m e n t in the o r d e r of i n c r e a s i n g m i x t u r e number. For a g i v e n m i x t u r e a r e s o n a n c e c a r d is p r e p a r e d fop e a c h r e s o n a n c e isot o p e in the o r d e r of i n c r e a s i n g m a s s number.

R e s o n a n c e card /ЗЕ12.6/: R I F F R A F F d a t a

char. 1-36 /ЗЕ12.6/ r e s o n a n c e a b s o r p t i o n , v times fission

and s c a t t e r i n g cr o s s s e c t i o n for the actu a l e l e m e n t for the a c t u a l m i x t u r e and m i c r o ­ group.

As to these ca r d s the f o l l o w i n g r e m a r k s have to be ob s e r v e d . On m i x t u r e car d s 3/В/ R I F F R A F F g r o u p limits w e r e s p e c i f i e d m i x t u r e w i s e .

T h e r e f o r e

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper we presented our tool called 4D Ariadne, which is a static debugger based on static analysis and data dependen- cies of Object Oriented programs written in

Although the notion of folly was already present in the Middle Ages, in works such as Nigel Wireker’s Speculum Stultorum (A Mirror of Fools, 1179–1180) or John Lydgate’s Order of

18 When summarizing the results of the BaBe project we think that the previously mentioned TOR (training and output requirements) and competency-grid (as learning outcomes), their

We can also say that the situation-creating activity of technology necessarily includes all characteristics of situations (natural, social, economical, cultural, etc.); that is,

But this is the chronology of Oedipus’s life, which has only indirectly to do with the actual way in which the plot unfolds; only the most important events within babyhood will

As only the low energy resonance is used as a normalization point for cross section measurements, the calculated astrophysical reaction rate of the 14 N(p,γ) 15 O reaction and

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

This method of scoring disease intensity is most useful and reliable in dealing with: (a) diseases in which the entire plant is killed, with few plants exhibiting partial loss, as