• Nem Talált Eredményt

Astrophysical S-factor for the 3 He( α , γ ) 7 Be reaction via the asymptotic normalization coefficient (ANC) method

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Astrophysical S-factor for the 3 He( α , γ ) 7 Be reaction via the asymptotic normalization coefficient (ANC) method"

Copied!
6
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Astrophysical S-factor for the 3 He( α , γ ) 7 Be reaction via the asymptotic normalization coefficient (ANC) method

G.G. Kiss

a

, M. La Cognata

b,∗

, C. Spitaleri

b,c

, R. Yarmukhamedov

d

, I. Wiedenhöver

e

, L.T. Baby

e

, S. Cherubini

b,c

, A. Cvetinovi ´c

b

, G. D’Agata

b,c,f

, P. Figuera

b

, G.L. Guardo

b,c

, M. Gulino

b,g

, S. Hayakawa

b,h

, I. Indelicato

b,c

, L. Lamia

b,c,i

, M. Lattuada

b,c

, F. Mudò

b,c

, S. Palmerini

j,k

, R.G. Pizzone

b

, G.G. Rapisarda

b,c

, S. Romano

b,c,i

, M.L. Sergi

b,c

, R. Spartà

b,c

, O. Trippella

j,k

, A. Tumino

b,g

, M. Anastasiou

e

, S.A. Kuvin

e

, N. Rijal

e

, B. Schmidt

e

,

S.B. Igamov

d

, S.B. Sakuta

l

, K.I. Tursunmakhatov

d,m

, Zs. Fülöp

a

, Gy. Gyürky

a

, T. Szücs

a

, Z. Halász

a

, E. Somorjai

a

, Z. Hons

f

, J. Mrázek

f

, R.E. Tribble

n

, A.M. Mukhamedzhanov

n

aInstituteforNuclearResearch(ATOMKI),H-4001Debrecen,POB.51,Hungary bIstitutoNazionalediFisicaNucleare,LaboratoriNazionalidelSud,95123Catania,Italy cDipartimentodiFisicaeAstronomia“E.Majorana”,UniversitàdiCatania,95123Catania,Italy dInstituteofNuclearPhysics,UzbekistanAcademyofSciences,100214Tashkent,Uzbekistan eDepartmentofPhysics,FloridaStateUniversity,Tallahassee,FL 32306,USA

fNuclearPhysicsInstituteoftheCzechAcademyofSciences,25068ˇRež,CzechRepublic gFacoltàdiIngegneriaeArchitettura,UniversitàdiEnna“Kore”,94100,Enna,Italy

hCenterforNuclearStudy(CNS),UniversityofTokyo,RIKENcampus,Saitama351-0198,Japan iCentroSicilianodiFisicaNucleareeStrutturadellaMateria(CSFNSM),95123Catania,Italy jDipartimentodiFisicaeGeologia,UniversitàdiPerugia,06123Perugia,Italy

kIstitutoNazionalediFisicaNucleare,SezionediPerugia,06123Perugia,Italy lNationalResearchCenter“KurchatovInstitute”,Moscow123182,Russia

mPhysicalandMathematicalDepartment,GulistanStateUniversity,120100Gulistan,Uzbekistan nCyclotronInstitute,TexasA&MUniversity,CollegeStation,TX 77843,USA

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received9April2020

Receivedinrevisedform11June2020 Accepted1July2020

Availableonline7July2020 Editor: B.Blank

Keywords:

Nuclearastrophysics Nucleosynthesis

Thedetectionofthe neutrinosproducedinthe ppchainandintheCNOcyclecanbeused totest theStandardSolarModel.The3He(α,γ)7Bereactionisthefirstreactionofthe2nd and3rd branchof theppchain,therefore,theuncertaintyofitscrosssectionsensitivelyinfluencesthepredictionofthe 7Beand8Bneutrinofluxes.Despiteitsimportanceandthelargenumberofexperimentalandtheoretical works devotedtothisreaction,theknowledgeonthereactioncrosssectionatenergiescharacterizing the core of the Sun (15 keV - 30 keV) is limited and further experimental efforts are needed to reachthe desired(≈3%)accuracy. Thepreciseknowledgeontheexternalcapturecontributiontothe 3He(α,γ)7Bereactioncrosssectioniscrucialforthetheoreticaldescriptionofthereactionmechanism.

InthepresentworktheindirectmeasurementofthisexternalcapturecontributionusingtheAsymptotic NormalizationCoefficient(ANC) techniqueisreported.To extracttheANC,theangulardistributionsof deuteronsemittedinthe6Li(3He,d)7Beα-transferreactionweremeasuredwithhighprecisionatE3He= 3.0MeVand E3He=5.0MeV.TheANCswerethenextractedfromcomparisonofDWBAcalculationsto themeasureddataandthezeroenergyastrophysicalS-factorfor3He(α,γ)7Bereactionwasfoundtobe 0.534±0.025keVb.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthor.

E-mailaddresses:ggkiss@atomki.mta.hu(G.G. Kiss),lacognata@lns.infn.it (M. La Cognata),rakhim@inp.uz(R. Yarmukhamedov).

1. Introduction

The 3He(

α

,

γ

)7Be is oneof thekey reactionsin nuclearastro- physics, which remained critical after decades, despite the large numberofexperimentalandtheoreticalstudiesdevotedtoit.This ispredominantly duetothefact that theastrophysically relevant

https://doi.org/10.1016/j.physletb.2020.135606

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

energyregion, the so-calledGamowwindow, lies betweenabout 15 keV and 30 keV for a temperature of 15 MK, characterizing thecoreof theSun,andatthesetemperatures the3He(

α

,

γ

)7Be reaction cross section is far too small to be measured directly.

Theory-basedextrapolations arethereforenecessarytoobtainthe reactionrate[1–3].Thereactionisalsoimportantforunderstand- ingthelithiumproblemoftheBigBangNucleosynthesis,atener- giesaround100keV(see[4] andreferencestherein).

Thedetectionoftheneutrinoscomingdirectlyfromthecoreof theSunbecamemore andmorepreciseafter theconstruction of larger andmoreefficient neutrinodetectors, sensitive toa wider neutrinoenergyrangearoundtheturnofthecentury.Theseneu- trinosarereleasedintheβdecayofthe7Be,8B,13N,15Oisotopes produced inthe pp chain andinthe CNOcycle. Recently,the fluxoftheppneutrinoswasmeasuredwithaprecisionofabout 3.4%bytheBOREXINO,SNOandSuper-Kamiokandecollaborations [5–7]. The precise neutrinoflux measurements canconstrain the StandardSolarModel (SSM)andprovideinformationonthe core temperatureoftheSunifthe relevantnuclearreactioncrosssec- tionsareknownwithmatchingaccuracy.However,atpresentthe uncertainties oftheseinput parameters arefartoo high,typically oftheorderof5-8%[8] (orevenhigher,seebelow)contrarytothe 3%precisionrequired[9,10].

The3He(

α

,

γ

)7Be reactionis thefirstreaction ofthe2nd and 3rd pp chainbranch andtherefore the uncertaintyof its rate stronglyinfluencestheprecisionofthepredictedfluxoftheafore- mentioned7Be,8Bneutrinos.Thus,animprovementontheknowl- edgeofthelow-energycrosssectionofthisreactionwouldresult inasubstantialreductionoftheuncertaintiesofthesolarneutrino fluxandmighthaveimportantconsequencesfortheSSM.

Not surprisingly the 3He(

α

,

γ

)7Be is among those reactions whichwerethemostintensivelystudiedinthepastandtheresults wereextensivelydiscussedinreviewpapers[1–3] (andreferences therein). Because of insufficient experimental information to as- sesstheir systematicerrors,inthemostrecentcompilationsonly datacollectedafter2004aretakenintoaccount[2,3].Theexperi- mentalmethodsused inthe“modern”studiescan besortedinto three groups: thedetection of prompt

γ

rays [11–14], the mea- surementofthe7Beactivity[15–19],andthecountingofthe7Be recoilswitharecoilmassseparator[20].Regardingthetheoretical description, severaldifferent models - including external capture models (e.g. [21]), potential models (e.g. [22,23]), modified two- body potential approach [24], resonating group calculation (e.g.

[25]), abinitio models (e.g. [26,27]) andR-matrix theory [28,29]

- wereusedtodescribethereaction.

The recommendedzero energyastrophysical S-factorvalue of [2], derived using the microscopic calculations of [27,30] and rescaledtofitthedataatE1 MeVisS34(0)=0.56±0.02(exp)

±0.02 (theory)keV b.Thesameexperimentaldatasetwas fitted usingthemodified two-bodypotential approachandsignificantly larger S34(0) =0.613+00..026063 keV b factorwas found [24]. Exclud- ingdatasetII[12,20] wouldleadto S34(0)=0.562±0.008 keVb (see[24] formoredetails),whichisthevalueshowninFig.1.The comprehensiveR-matrixextrapolation[29],includingnotonlythe datafittedin [2] and [24] but alsothe recentlymeasured higher energycrosssections[14,17,18],resultedinanS34(0)value(0.542

±0.011(MonteCarlofit)±0.006(model)+00..019011(phaseshift)keV b)3.2% lowerthanthe onerecommendedin[2]. Furthermore,ab initiono-core shellmodelwithcontinuum approachwas usedto predict S34(0)anda value (S34(0)=0.59keVb) 5.3%largerthan the one of [2] was found [31], almost the same aspredicted by [26] (S34(0)=0.593keVb). Finally,recentlyeffectivefield theory wasalsousedtoperformextrapolationandavalue(S34(0)=0.578 keVb)3.2%largerthantheoneof[2] wasfound[32].

Whiletheprecisionoftheextrapolationsis oftheorderof6-7%, the difference between the S34(0) values exceeds 10%. The pre-

Fig. 1.Summaryofthemostrecent3He(α,γ)7BeS34(0)factorresults:derivedfrom theanalysisofelasticscatteringangulardistributions[23] (pinkstar),theoretical calculations[26,31] (darkredtriangle),extrapolationsofexperimentaldatasets[14, 24,29,32] (bluestar),predictionbasedonneutrinoyieldmeasurement[56] (green box)andderivedusingtheANCtechnique(presentwork,reddiamond)Thesolid centrallinerepresentstherecommendedvalueof[2],withitsuncertaintyindicated withtheshadedarea.ForTursunmakhatov etal.[24],theS34(0)valueobtainedby fitting[11,13,15,16] isshown.

dicted S34(0)factorsareshownFig.1.Itisclearthatthecalculated S34(0)factorsdependstronglyonthemodelusedintheextrapola- tions andhighprecisionexperimentaldataisneededtoconstrain thetheoreticalmodels.

Here we present the resultsof a new approach, proposed by A.M.Mukhamedzhanov,wheretheS34(0)factorofthe3He(

α

,

γ

)7Be reaction was derived without extrapolation,usingthe asymptotic normalizationcoefficient (ANC)technique [33].Namely, since the 3He(

α

,

γ

)7Be reaction atstellar energies isa pure external direct captureprocess[2],itessentiallyproceedsthroughthetailofthe nuclearoverlapfunction.Therefore,theshapeoftheoverlapfunc- tion inthe tailregion is determinedby the Coulomb interaction, thustheamplitudeoftheoverlapfunctiondetermines therateof the capture reaction [34,35]. Since the direct capture cross sec- tions are proportional to the squares of the ANCs - which are found from transfer reactions - with the study of the near bar- rier 6Li(3He,d)7Be

α

particle transfer reaction the ANCs for the 3He(

α

,

γ

)7Be reaction can be obtained. This independent experi- mental approach, improving gradually our understanding on the low energybehavior of this reaction,was up-to-now never used to study the 3He(

α

,

γ

)7Be reaction. Furthermore,the ANC values are also neededfor the R-matrix calculations. In [29] these val- ueswere deducedfromexperimental crosssectionsandfound to be between3-5.5 fm1. Accordingly,the independentdetermina- tionoftheANCvaluesalsoincreasestheprecisionoftheR-matrix extrapolations.

2. Experimentaltechnique

The angular distributions of the deuterons emitted in the 6Li(3He,d)7Be reaction were measured in two experiments per- formed using the 3.1 MV single ended coaxial singletron accel- erator of theDepartment ofPhysics andAstronomy (DFA)of the University of Cataniaandthe FNtandem acceleratoratthe John.

D.FoxSuperconductingAcceleratorLaboratoryattheFloridaState University (FSU), Tallahassee, USA. The energy of the 3He beam was ELab =3MeVandELab =5MeV,withbeamcurrentstypically between20enAand30enA,respectively.Thesetupinbothexper- imentsconsistedofseveralEE telescopes,placedonrotatable turntables anda monitordetector fixed at 165 (DFA) and150

(3)

Fig. 2.EE spectrummeasuredwith asilicontelescope positionedat ϑlab = 124.64atElab=5MeVbeamenergy.Thepeaks(markedwithd0andd1)usedfor theanalysisareindicated.Theinsetshowsthedeuteronspectrumdeducedfrom thisidentificationplot.IntegrationisperformedusingGaussianfittingtoremove thresholdproblems.Theredboxisusedtohighlighttheregionofinterestonly.

(FSU)withrespect to thebeam direction. The thicknesses ofthe E detectorswerebetween8 μmand16 μmandthethicknesses of the E detectors were 500 μm. In the experiment performed atDFAa99% compoundpurity,134 μg/cm2 thick 6LiFtarget(en- richedin95%of6Li)wasused.IntheexperimentperformedatFSU the99%compoundpurity,57 μg/cm2thicklithiumtarget(enriched in98%of6Li)waspreparedonaFormvarbackingandtransferred tothescatteringchamber inasealedcontainer undervacuumto preventoxidation.Furthermore,asitwillbe discussedinthefol- lowingin thisexperimenttwo additional detectorswere used to monitorthetargetthicknessandforabsolutenormalization.Inthe two experiments, the yield of the emitted deuterons were mea- suredbetween23.0ϑc.m.172.5atELab =3MeVand23.2

ϑc.m.168.5atELab =5MeV,usingtypically6 - 10steps.

Inboth experiments theparticle identificationwas performed usingthestandard EE technique andthepeakareas- corre- spondingto the7Be groundand1st excited state- were derived byfittingGaussianfunctions. Anexampleofthetwo-dimensional particle identification plots is shown in Fig. 2, and the one di- mensionaldeuteron spectrumispresented initsinset (thepeaks correspondingtothe7Begroundand1st excitedstatearemarked withd0 andd1, respectively). It can be seen that the separation ofthedifferentisotopesissufficientforreliableidentification.The sameprocedure was used for absolutenormalization in the two measurements. Namely, atfirst the solid angles of the detectors were derived from the knowngeometry andwere cross-checked using radioactive sources with known activity. Furthermore, the cross section as a function of the angle of the outgoing particle inthe 6Li(3He,p) reaction (Q =16.79 MeV)is well known [36], thustherateofthe highenergyprotonswas measuredusingthe monitordetectorplaced ata fixed positionat backwardangle to reconstructthenumberofimpinging3Heparticlesandthetarget thickness. At the experiment performedat FSU two further nor- malizationtechniqueswere used. Following theapproach of [35]

the yield of the 3He induced reactions and elastic 3He scatter- ingon6Liweremeasuredwiththeforwardmonitordetectors(M1 andM2).Moreover,by placingeach telescopeat95 withrespect to the beam axis and measuring the 6Li(p,p)6Li elastic scatter- ing, thetarget thicknessand thetelescope solid angles could be determined, since the 6Li(p,p) elastic scattering cross section at 95 with Ep =6.868 MeVprotonbeamwas previously measured with a 3% precision [37]. This approach was used in the previ- ousexperimentsperformedatFSU,seee.g.[38,39].Asaresult,the uncertainty of the absolute normalization was found to be 5.7%

whichcontainsuncertainties fromthetargetthicknessdetermina-

Fig. 3.Angulardistributionsofthe6Li(3He,d)7Be reactionpopulatingtheground ((a)and(c))andfirst(0.429MeV)excited((b)and(d))statesof7Be attheprojectile 3He energiesof3((a)and (b))and5((c)and (d))MeV.Error barsaresmaller thanthesizeofthepoints.Graylinesarethecalculatedangulardistributionsas describedinthetext,for pandαtransfer(forwardandbackwardhemisphere, respectively).

tion,thecurrentmeasurementandthesolid angledetermination.

ExperimentalangulardistributionsareshowninFig.3.

3. DataanalysisandextractionoftheANCforthe

α

+3He7Be system

The theoretical analysis of the data was carried out in the framework of the modified Distorted Wave Born Approximation (DWBA) [40] assuming one step proton and

α

particle transfer [41].

Accordingly — assuming 3He = (d+p), 7Be = (6Li+p), 6Li = (d+

α

)and7Be =(3He+

α

)—forfixedvaluesofld p, jd p,ldα and jdα,thedifferentialcrosssection(DCS)fortheperipheraltransfer ofan“e-particle”(whereestandsforpor

α

)inthe6Li(3He,d)7Be reactioncanbewrittenintheform:

d

σ

d

=

jAe

C2Ae;j

AeR(eDWBA;j )

Ae

(

Ei

, θ ;

bye;jye

,

bAe;jAe

),

(1) R(eDWBA;j )

Ae

(

Ei

, θ ;

bye;jye

,

bAe;jAe

) =

C2ye;j

ye

σ

e(;DWBAj )

Ae

(

Ei

, θ;

bye;jye

,

bAe;jAe

)

b2ye;j

yeb2Ae;j

Ae

,

(2)

where B= A+e and x= y+e;

σ

e(;DWBAj )

Ae is the single-particle DWBA cross section [42], lAe and jAe are the orbital andtotal angular momenta of the transferred particles, Cs are the ANCs for A+ eBand y+ex,whichdeterminetheamplitudesofthetails ofthe radial B andx nucleuswave functionsin the(A+e) and (y+e)channels[43];bsarethesingle-particleANCsfortheshell- modelwavefunctionsforthetwo-body[B=(A+e)andx=(y+e)]

boundstates,whichdeterminetheamplitudesoftheir tails; Ei is the relative kinetic energy ofthe collidingparticles and θ is the center-of-mass scatteringangle. The negligible contributionof d- waves (ld p= 2 and ldα= 2) is ignored owning to their smallness [43,44].

Eqs. (1) and(2) areusedseparatelyfortheonestep

α

particle exchange reaction andforproton transferreaction (the latter re-

(4)

sultswillbepublishedelsewhere).The swaveANCvaluesforthe d+p3He andthe d+

α

6Li are 4.20±0.32 fm1 [45] and 5.43±0.37 fm1 [46],respectively.Accordingto[40,47],thevalues ofthreeparametersbd p;jd p forld p=0and jd p=1/2aswell asof bdα;jdα forldα=0and jdα=0werefixedbyreproducingthecor- respondingANCvaluesenteringtheR(eDWBA;j )

Ae (Ei;bye;jye,bAe;jAe) functioncalculatedseparatelyfortheonestepprotontransferand

α

particleexchangemechanisms.

Atthebackwardhemispheretheexperimentaldifferentialcross sectionincreaseswithincreasinganglesandthisfindingconfirms the presence of a dominant one-step

α

-particle exchange mech- anism. Similarly, theone-step proton transfer isdominant inthe forwards hemisphere. Thus, the interference of the two mecha- nismsatsmall(forward)andlarge(backward)anglesisnegligible.

Accordingly, the ANCs for 3He+

α

7Be and for 6Li+p7Be were extracted separately within the post form of the modified DWBA[40] usingtheLOLAcode[42].

First,eight sets ofoptical potentials,obtainedfromthe global parametersets of[48,49],inthe input andoutput channelswere testedandthe one,providingthebestdescription forthe experi- mentaldata,was usedforthefurtheranalysis. Then,thegeomet- rical parameters r0 and a of the Woods-Saxon potential (having the Thomas spin-orbit term) of the two-body 7Be [(6Li+p) or (3He+

α

)]bound state wave function were varied inthe ranges of1.13≤r01.40 fm and0.59a0.72fm andthe depthofthe potentialwell was adjustedtofitthecorresponding experimental bindingenergyforeach(r0,a)pair.

To test the peripheral nature of the reaction, the geometrical parameters r0 anda ofthe Woods-Saxon potential ofthe bound statewave functionwerevaried withintherangesasabove(sim- ilarly to [50]) and the resulting R(pDWBA;j )

6 Lip and R(αDWBA;j3 He)α functions were found to change within about ±7% at varying the (r0,

α

) pair in the intervals above, for each chosen experimental point of center-of-mass scattering angle θ. By normalizing the calcu- latedDCSs to theexperimental onesforeach experimental point (θ=θexp) separatelyfortheforwardandbackwardangleregions, the“indirectlydetermined”valuesoftheANCsfor3He+

α

7Be andfor6Li+p7Be without andwith takingintoaccount the channelscouplingeffects(CCE)werederived.

The CCE contributions to the DWBA cross sections for each experimental pointof θexp – belongingto thebackward andfor- ward peak regions – were determined using the FRESCO code [51] by taking intoaccount onlyone stepprocesses with proton stripping 6Li(3He,d)7Be and exchange mechanism with the

α

- particleclustertransfer6Li(3He,7Be)d.Theninenucleons,present in the entrance channel, were replaced by three subsystems: i) 3He+6Li(g.s., Jπ=1+; E=2.185 MeV, Jπ= 3+); ii)d+7Be(g.s., = 3/2; E= 0.429 MeV, = 1/2) — ptransfer andiii)

7Be(g.s., =3/2; E=0.429 MeV, =1/2)+d

α

transfer.

Allstatesofthesubsystemsii)andiii) arecoupledwiththesub- systemi)by thereactions withprotons and

α

-particlestransfers.

Couplingsbetweengroundandexcitedstatesofnuclei6Li and7Be were calculated using the rotational model with the form factor (r)=(δλ/

4

π

)dU(r)/drforquadrupoletransitions(λ=2).Here, δλisadeformationlength,whichisdeterminedbyδλ=βλR,where R and βλ are the radiusof thenucleusand thedeformation pa- rameter,respectively.Thereorientationeffects,determinedbythe matrixelement<E, |V2|E,Jπ>[51],werealsoincludedinthe couplingscheme.Thedeformationlengthsδ2 weretakenequalto 3.0fmfor6Li,and2.0for7Be,whichcorrespondtoβ2 =0.73and β2 =1.0,respectively[50,52,53].

The spectroscopic factors for the 3He and 6Li nuclei in the (d+p)and(

α

+d)configurations,respectively,arefixedusingthe correspondingANCvaluesmentionedabove.Theyarefoundtobe 1.16and0.94,respectively.Whereas,thespectroscopicamplitudes

forthe 7Be nucleusinthe (6Li+p) and(

α

+3He)configurations aretakenfrom[54].Nevertheless,theratiooftheDCSscalculated with and without the CCE contribution (defining the CCE renor- malization factor for the ANCs from Eq. (1), calculated for each scatteringanglebelongingtothemainpeakoftheangulardistri- butions, asdonein[50]),doesnotdepend onthesespectroscopic factors.

ThevaluesofthegeometricparametersoftheWoods-Saxonpo- tential,usedtocalculatethetwo-bodyboundstatewavefunctions, weretakenasin[52].Forthed6Li andd3He core-coreinterac- tions intheprotontransferand

α

-particleexchangemechanisms, theopticalpotentialsadoptedfortheentrance(6Li+3He)channel andtheCoulomb componentforthed3He potentialwereused, respectively.

TheCCEcontributionenhancestheANCvaluesfrom22%to47%

andupto10.9%for3He+

α

7Be(g.s)and3He+

α

7Be(0.429 MeV),respectively,withrespecttotheDWBAcalculation,andfrom 1.0%to6.0%andfrom1.6%to12%for6Li+p7Be(g.s.)and6Li+ p7Be(0.429MeV), respectively. Inparticular, Fig. 3 showsthe calculatedDCSs,normalizedtothecorrespondingmainpeakofthe angular distributions at θ=θpeakexp,compared to the experimental results. Foreach experimental angulardistribution, labelledfrom (a)to(d),twocurvesareshown,fortheforwardandthebackward angles,correspondingtopand

α

particletransfer,respectively.

The weighed mean values of the square of the ANCs for the 3He+

α

7Be(g.s.) and 3He+

α

7Be(0.429 MeV) are equal to C2= 20.84 ± 1.12 [0.82; 0.77] fm1 and C2= 12.86 ± 0.50 [0.35; 0.36] fm1, respectively, which are in an excellent agree- ment with thoseof [24] derived fromthe analysisof the exper- imental Sfactor data of [11,13,15,16]. The overall uncertainties given herecorrespond to the errors combined in quadrature,in- cluding both experimental uncertainties in the d

σ

exp/d (first terminsquare parentheses)andtheuncertaintycorresponding to theANCford+4He6Li,aswellastheuncertaintiescharacter- izingtheR(αDWBA;j3 He)α function(secondterminsquareparentheses).

4. Summary

Thedirectcapturecontributiontotheastrophysicallyimportant 3He(4He,

γ

)7Be reaction cross section at energies corresponding to the core temperature of the Sun was derived using the ANC technique. The angular distributions of deuterons emitted in the 6Li(3He,d)7Be

α

-transfer reaction were measured with high pre- cision at E3He = 3.0MeV and E3He = 5.0 MeV and the weighed means of the ANCs were used to calculate the total astrophysi- cal Sfactoratstellarenergies(including E =0).Thecalculations wereperformedwithinthemodifiedtwo-bodypotentialapproach framework [46,55],andtheresulting S3 4(0)andS3 4(23keV)fac- torswerefoundtobe S3 4(0)=0.534±0.025[0.015;0.019]keVb andS3 4(23keV)=0.525± 0.022[0.016;0.016]keVb.

While theANC approachis well established sincedecades (as discussedinthe recentreview [58]),additionalworkisnecessary toaddressspecificissuesandimprovetheaccuracyofthepresent paper. Among others, the uncertainty introduced by the use of one-stepprocess inmodellingthetransfer,thecouplingsbetween groundandexcitedstatesof6Liand7Be,andtheneedofcoupled- channel analysisto derive the 3He+4He and the p+6Li ANCs.

The present result provides a completely independent confirma- tionofthecrosssection-basedextrapolationof[14,24,29],andthe deduced ANCsforthe p+6Li system furthersupportthepresent result. Moreover, the indirectly derived ANC values can also be used in future R-matrix extrapolations to increase the precision andthereliability,sincethey supplyadditionalconstraintsonthe R-matrixanalysis[57].

(5)

Table 1

SummaryofalluncertaintiesenteringtheevaluationoftheANCoftheα+3He7Be system.Moredetails aregivenin AppendixA.

α+3He7Be Cα2[fm1] E3He

[MeV]

E [MeV]

θ [deg]

without CCE

with CCE

(exp1)

%

(exp2)

%

exp

% th

% tot

%

1 2 3 4 5 6 7 8 9 10

3.0 0.0 158.4 14.66±1.57[1.18;1.03] 17.87±1.91[1.44;1.25] 4.3 6.8 8.0 7.0 10.7 162.0 17.36±1.85[1.39;1.22] 21.49±2.29[1.72;1.50] 4.2 6.8 8.0 7.0 10.6 164.9 17.68±1.91[1.46;1.24] 22.17±2.40[1.83;1.55] 4.6 6.8 8.0 7.0 10.8 5.0 154.7 14.99±1.57[1.17;1.05] 20.40±2.14[1.59;1.43] 3.8 6.8 7.8 7.0 10.5 158.1 14.69±1.55[1.16;1.03] 21.63±2.29[1.71;1.51] 4.2 6.8 7.9 7.0 10.6 161.7 15.88±1.59[1.14;1.11] 23.03±2.31[1.65;1.61] 2.2 6.8 7.2 7.0 10.0 3.0 0.429 160.0 10.71±1.10[0.80;0.75] 11.60±1.19[0.87;0.81] 3.2 6.8 7.5 7.0 10.2 163.3 11.67±1.20[0.88;0.82] 12.70±1.31[0.96;0.89] 3.2 6.8 7.5 7.0 10.3 166.3 10.81±1.25[0.83;0.76] 11.83±1.23[0.91;0.83] 3.6 6.8 7.5 7.0 10.4 169.4 12.61±1.32[0.98;0.88] 13.90±1.45[1.08;0.97] 3.7 6.8 7.7 7.0 10.4 172.5 12.31±1.26[0.92;0.86] 13.65±1.40[1.02;0.96] 3.1 6.8 7.5 7.0 10.2 5.0 155.6 13.80±1.56[1.22;0.97] 12.86±1.45[1.14;0.90] 5.7 6.8 8.9 7.0 11.3 158.9 13.34±1.39[1.06;0.90] 12.87±1.34[1.02;0.90] 4.0 6.8 7.9 6.8 10.4 162.0 13.74±1.39[1.00;0.96] 13.72±1.39[1.00;0.96] 2.6 6.8 7.3 7.0 10.1 165.4 13.32±1.46[1.12;0.93] 13.74±1.51[1.16;0.96] 5.0 6.8 8.4 7.0 11.0 168.5 14.73±1.84[1.32;1.03] 15.69±1.96[1.40;1.10] 5.8 6.8 9.0 7.0 12.5

weighted mean values

3.0+5.0 0.0 15.68±0.74[0.51;0.53] 20.84±1.12[0.82;0.77] 3.9 3.7 5.4

3.0 16.32±1.41[1.00;1.00] 20.13±1.97[1.39;1.39] 6.9 6.9 9.8

5.0 15.18±0.91[0.67;0.61] 21.66±1.10[0.95;0.87] 4.3 4.0 5.0

3.0+5.0 0.429 12.12±0.62[0.43;0.44] 12.86±0.50[0.35;0.36] 2.7 2.8 3.9

3.0 10.84±0.60[0.36;0.36] 11.80±0.62[0.44;0.44] 3.7 3.7 5.2

5.0 13.74±0.66[0.50;0.43] 13.62±0.69[0.50;0.48] 3.7 3.5 5.1

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

Thiswork wassupported by INFN (IstitutoNazionale di Fisica Nucleare), by NKFIH (NN128072, K120666), and by the ÚNKP- 19-4-DE-65New NationalExcellence Program of the Ministry of HumanCapacities ofHungary, andsupported in partby theNa- tionalScience Foundation, GrantNo. PHY-1712953 (USA), andby the University of Catania (Finanziamenti di linea 2 and Starting grant 2020). G.G. Kiss acknowledges the support fromthe János Bolyairesearch fellowship oftheHungarianAcademy ofSciences.

R.YarmukhamedovandK.I.Tursunmakhatovacknowledgethesup- port from the Academy of Sciences of the Republic of Uzbek- istan. J. Mrázek and G. D’Agata acknowledge the support from MEYS Czech Republic under the project EF16_013/0001679.A.M.

MukhamedzhanovacknowledgessupportfromtheU.S.DOEGrant No.DE-FG02-93ER40773 andNNSAGrant No. DENA0003841.The authorsacknowledgethesupportofprof.M.G.Grimaldiandofthe technicalstaffoftheDFA.

Appendix A

In Table 1 we show the squared ANCs and their uncertain- ties(Cα2) forthe

α

+3He7Be system,obtained inthe present work without and with the CCE contributions, for each experi- mental point of center-of-mass angle θ, at E3He = 3.0 and 5.0 MeV, andtheir weighed meanvalues, forboth 7Be ground state (E=0.0 MeV; = 32) and first excited state (E=0.429 MeV;

=12).

Thenumbers insquare bracketsare the experimental(C2exp) and theoretical (Cth2) uncertainties, respectively. They are cal-

culated as follows: the experimental uncertainty is the sum of two contributions, (exptot)= [((exp1))2+((exp2))2]1/2,first one being theuncertaintyontheexperimentalangulardistributions:(exp1) = [(d

σ

exp/d)]/[d

σ

exp/d], and the second one is linked to the uncertainty on the

α

+d6Li ANC: (exp2) =(Cexp)2/(Cexp)2. The theoretical uncertainty, corresponding to the effects of the non-peripherality, is calculated from the R-functions (2): th= RDWBA/RDWBA (for ease of reading, all subscripts are neglected here). In detail, the uncertainty on the R-function is calculated varying the geometrical parameters (r0 and a) of the adopted Woods-Saxonpotentialwithintheintervalsmentionedinthetext.

Finally,the total erroriscalculated takingthe square rootofthe experimentalandtheoreticaluncertaintiessummedinquadrature:

tot= [((exptot))2+(th)2]1/2. References

[1]E.G.Adelberger,etal.,Rev.Mod.Phys.70(1998)1265.

[2]E.G.Adelberger,etal.,Rev.Mod.Phys.83(2011)195.

[3]R.H.Cyburt,B.Davids,Phys.Rev.C78(2008)064614.

[4]R.G.Pizzone,etal.,Astrophys.J.786(2014)112.

[5]TheBorexinoCollaboration,Nature562(2018)505.

[6]B.Aharmim,etal.,SNOCollaboration,Phys.Rev.C81(2010)055504.

[7]K.Abe,etal.,Super-KamiokandeCollaboration,Phys.Rev.D83(2011)052010.

[8]N.Vinyoles,etal.,Astrophys.J.852(2017)202.

[9]W.C.Haxton,A.M.Serenelli,Astrophys.J.687(2008)678.

[10]J.N.Bahcall,M.H.Pinsonneault,Phys.Rev.Lett.92(2004)121301.

[11]D.Bemmerer,etal.,Phys.Rev.Lett.97(2006)122502.

[12]T.A.D.Brown,C.Bordeanu,K.A.Snover,D.W.Storm,D.Melconian,A.L.Sallaska, S.K.L.Sjue,S.Triambak,Phys.Rev.C76(2007)055801.

[13]F.Confortola,etal.,Phys.Rev.C75(2007)065803.

[14]A.Kontos,E.Uberseder,R.de Boer,J.Görres,A.Akers,A.Best,M.Couder,M.

Wiescher,Phys.Rev.C87(2013)065804.

[15]B.S.NaraSingh,M.Hass,Y.Nir-El,G.Haquin,Phys.Rev.Lett.93(2004)262503.

[16]Gy.Gyürky,etal.,Phys.Rev.C75(2007)035805.

[17]M.Carmona-Gallardo,etal.,Phys.Rev.C86(2012)032801(R).

[18]C.Bordeanu,Gy.Gyürky,Z.Halász,T.Szücs,G.G.Kiss,Z.Elekes,J.Farkas,Zs.

Fülöp,E.Somorjai,Nucl.Phys.A908(2013)1.

[19]T.Szücs,G.G.Kiss,Gy.Gyürky,Z.Halász,T.N.Szegedi,Zs.Fülöp,Phys.Rev.C 99(2019)055804.

(6)

[20]DiLeva,etal.,Phys.Rev.Lett.102(2009)232502.

[21]T.A.Tombrello,P.D.Parker,Phys.Rev.131(1963)2582.

[22]P.Mohr,H.Abele,R.Zwiebel,G.Staudt,H.Krauss,H.Oberhummer,A.Denker, J.W.Hammer,G.Wolf,Phys.Rev.C48(1993)1420.

[23]P.Mohr,Phys.Rev.C79(2009)065804.

[24]Q.I.Tursunmahatov,R.Yarmukhamedov,Phys.Rev.C85(2012)045807.

[25]T.Kajino,H.Toki,S.M.Austin,Astrophys.J.319(1987)531.

[26]T.Neff,Phys.Rev.Lett.106(2011)042502.

[27]K.M.Nollett,Phys.Rev.C63(2001)054002.

[28]P.Descouvemont,A.Adahchour,C.Angulo,A.Coc,E.Vangioni-Flam,At.Data Nucl.DataTables88(2004)203.

[29]R.J.deBoer,J.Görres,K.Smith,E.Uberseder,M.Wiescher,A.Kontos,G.Imbri- ani,A.DiLeva,F.Strieder,Phys.Rev.C90(2014)035804.

[30]T.Kajino,Nucl.Phys.A460(1986)559.

[31]J. Dohet-Eraly,P.Navrátil, S.Quaglioni,W.Horiuchi,G. Hupin,F.Raimondi, Phys.Lett.B757(2016)430.

[32]X.Zhang,K.Nollett,D.R.Philips,J.Phys.G,Nucl.Part.Phys.47 (5)(May2020) 054002.

[33]A.M.Mukhamedzhanov,etal.,Phys.Rev.C63(2001)024612.

[34]H.M.Xu,C.A.Gagliardi,R.E.Tribble,A.M.Mukhamedzhanov,N.K.Timofeyuk, Phys.Rev.Lett.73(1994)2027.

[35]A.M.Mukhamedzhanov,etal.,Phys.Rev.C67(2003)065804.

[36]J.P.Schiffer,T.W.Bonner,R.H.Davis,F.W.ProsserJr.,Phys.Rev.104(1956)1064.

[37]H.G.Bingham,A.R.Zander,K.W.Kemper,N.R.Fletcher,Nucl.Phys.A173(1970) 265.

[38]E.D.Johnson,etal.,Phys.Rev.Lett.97(2006)192701.

[39]E.D.Johnson,G.V.Rogachev,J.Mitchell,L.Miller,K.W.Kemper,Phys.Rev.C80 (2007)045805.

[40]A.M.Mukhamedzhanov,etal.,Phys.Rev.C56(1997)1302.

[41]E.I.Dolinsky,etal.,Nucl.Phys.202(1973)97.

[42]R.M.DeVries,Ph.D.thesis,University ofCalifornia,1971;

J.Perrenoud,R.M.DeVries,Phys.Lett.B36(1971)18.

[43]L.D.Blokhintsev,etal.,Fiz.Elem.ChastitsAt.Yadra.8(1977)1189,Sov.J.Part.

Nucl.8(1977)485.

[44]E.A.George,L.D.Knutson,Phys.Rev.C59(1999)958.

[45]R.Yarmukhamedov,L.D.Blokhinstev,Phys.At.Nucl.81(2018)616.

[46]K.I.Tursunmakhtov,R.Yarmukhamedov,Int.J.Mod.Phys.Conf.Ser.49(2019) 1960017.

[47]S.V.Artemov,etal.,Yad.Fiz.59(1996)454,Phys.At.Nucl.59(1996)428.

[48]H.Ludecke,etal.,Nucl.Phys.A109(1968)676.

[49]M.Avrigeanu,etal.,Nucl.Phys.A759(2005)327.

[50]O.Tojiboev,etal.,Phys.Rev.C94(2016)054616.

[51]I.J.Thompson,Comput.Phys.Rep.7(1988)167;

I.J.Thompson,FRESCO,DepartmentofPhysics,UniversityofSurrey,July2006, GuildfordGU27XH,England,versionFRESCO2.0,http://www.fresco.org.uk/.

[52]N.Burtebayev,etal.,Nucl.Phys.A909(2013)20.

[53]N.Burtebayev,etal.,Yad.Fiz.59(1996)33,Phys.At.Nucl.59(1996)29.

[54]O.F.Nemets,etal.,NucleonsAssociationsinAtomicNucleiandMulti-Nucleon TransferReactions,NaukovaDumka,Kiev,1988(inRussian).

[55]S.B.Igamov,R.Yarmukhamedov,Nucl.Phys.A781(2007)247832(2010)346.

[56]M.P.Takács,etal.,Nucl.Phys.A970(2018)78.

[57]A.M.Mukhamedzhanov,etal.,Phys.Rev.C78(2008)015804.

[58]R.E.Tribble,etal.,Rep.Prog.Phys.77(2014)106901.

Ábra

Fig. 1. Summary of the most recent 3 He( α , γ ) 7 Be S 34 (0) factor results: derived from the analysis of elastic scattering angular distributions [23] (pink star), theoretical calculations [26,31] (dark red triangle), extrapolations of experimental data
Fig. 2.  E − E spectrum measured with a silicon telescope positioned at ϑ lab = 124.64 ◦ at E lab = 5 MeV beam energy

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

An international collaborative study to compare different von Willebrand factor glycoprotein Ib binding activity assays: the COMPASS-VWF study One of the oldest and

Similarly, increased tumour necrosis factor- α , interleukin-2 and interferon- γ production by lymphocytes was found in the IL28B CC carriers (p&lt;0.01) Conclusions: The IL28B

Studying the entangled nature of scientific, political, and economic projects related to poplar species, along with the history of how knowledge emerged in state socialist

The tactic of depriving an enemy of local natural resources by consuming or destroying them was part of Early Modern military thought.. This tactic was intended not simply

1572 onwards the two armouries were referred to as the “Lower” (between the two Paradeisbasteien, on the street Seilerstätte) or “Upper” (in the Salzburger Hof complex in

Nonetheless, questions remain about the level and distribution of destruction and population loss, the role that environmental factors played in the invasion, the reasons for

As only the low energy resonance is used as a normalization point for cross section measurements, the calculated astrophysical reaction rate of the 14 N(p,γ) 15 O reaction and

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the