• Nem Talált Eredményt

LABOR ECONOMICS

N/A
N/A
Protected

Academic year: 2022

Ossza meg "LABOR ECONOMICS"

Copied!
28
0
0

Teljes szövegt

(1)

LABOR ECONOMICS

(2)

LABOR ECONOMICS

Sponsored by a Grant TÁMOP-4.1.2-08/2/A/KMR-2009-0041 Course Material Developed by Department of Economics,

Faculty of Social Sciences, Eötvös Loránd University Budapest (ELTE) Department of Economics, Eötvös Loránd University Budapest

Institute of Economics, Hungarian Academy of Sciences

Balassi Kiadó, Budapest

(3)
(4)

LABOR ECONOMICS

Author: János Köllő

Supervised by: János Köllő January 2011

ELTE Faculty of Social Sciences, Department of Economics

(5)

LABOR ECONOMICS

Week 3

Labor supply – Measurement

János Köllő

(6)

• Estimating the static labor supply model

• On the estimation of the life-cycle model

(7)

• The slides on the estimation of the static labor supply model follow Galasi (1995) and draw from Gábor

Kertesi’s lectures at Rajk College (manuscript)

Galasi Péter: A munkanélküliek piaci munkakínálata és a munkanélküliségi mérõszámok értékelése,

Közgazdasági Szemle, XLII. évf., 1995. 3. sz.

(236–255. o.)

• The last two slides draw from a lecture note by Peter Kuhn, downloadable at:

http://www.econ.ucsb.edu/~pjkuhn/Ec250A/Class%2 0Notes/C_DynamicLS.pdf

• Other sources are referred to in the text

(8)

Estimating the static labor

supply model

(9)

• Why not estimate a supply equation directly with OLS?

• Because we observe wages (w) and hours (H) only for those at work. However, those out of work may also have wage offers and may

have non-zero supply of hours.

• Those at work are not randomly selected and it is almost sure that:

i i

i i

i X w y u

H

) , , (

.) ,

,

( H X y w E H X y w

E

(10)

A remark on treating unemployment

• The decision to enter the labor force is governed by the relation of the market wage (w) to the reservation wage (w R ). w>w R is a necessary but insufficient

condition of having a job and an observable wage.

Demand-side factors matter, too.

• In fact we have three states. If is the observed wage:

) emp loy ed (

0 ,

0 job

a got and

) unemp loy ed (

. ,

0 job

no got and

) inactive (

. ,

0

H w

w

H w

w

H w

w

R i i

R i i

R

i

i

(11)

• In the empirical model we start by making distinction between two states only. If H is

observed hours and is observed wage, we have:

• The key question is how the second group is selected.

• Technically, this is a missing variable problem.

) (

0 ,

0

) (

0 ,

0

works

>

>

H

work not

does

=

=

H

(12)

In order to account for non-random selection we have to model:

E1) Selection to work: what factors determine the probability that an individual has non-missing wage data?

E2) The distribution of wage offers: given the patterns of

selection analysed in E1, what is the expected wage of those out of work?

E3) The link between wage offers and the supply of working hours: to be estimated for the entire population including those out of work.

In empirical research, a system of equations E1–E3 is customarily used to estimate the elasticity of labor supply with respect to

wages and non-wage income.

(13)

E1) Selection to work

• Assume that individual i-s marginal utility from working is systematically related to a series of personal and

environmental characteristics (Z i ) and also affected by unobserved attributes (u i ).

• For those at work (D=1) marginal utility from entering employment is positive. If u is normally distributed, then:

• One can estimate the -s with maximum likelihood (probit):

) -

( - 1 ) -

Pr(

) 0 Pr(

)

Pr( D = 1 = Z i + u i > = u i > Z i = Z i

0 1

) -

( )

) (

- (1 max

D

i D

i Z

Z

L

(14)

E2) The distribution of wage offers

• Wage offers also depend on a series of observed characteristics (X i ) and unobserved attributes ( i ): w i = X i + i .

• We would like to estimate the expectation of w. However, we observe wages conditional on u i being larger than - Z i . It can be shown that:

) (

) (

) -

( - 1

) -

(

) -

( )

- )

1

) ,

, 1 , 0 , 0 (

~ ) , (

i i i

i i

u i

i i

i

u i

i

Z Z Z

Z

Z u

E(w D

E(w

N u

=

= where

+

=

>

=

=

is wages observed

of n expectatio l

conditiona The

that assumption

the Under

γZ

βX

(15)

Proposition: If y and z are bivariate normal with means y and z , variance

y and z , correlation and truncation of z at a then the first moment is*:

) ( 1

) ) (

(

-

) ( )

(

z z z

z z z

z yz

y

and a

a z y E

=

= where

+

=

>

In our case, considering that

z =0 and applying the normalisation z =1

) - ( - 1

) - ( -

Z Z Z a

=

=

Therefore we have

) - ( )

-

( u Z Z

E u

This is an estimable equation with X and on the right hand.

Selection bias is measured by u . The direction of bias depends on the correlation ( u ) between unobserved attributes affecting employment and

wages while is a scale factor.

We shall also rely on:

z y yz yz

z y

yz yz

*) See for instance Greene 1999, 707-708.

(16)

The estimation of expected wages thus involves the following steps*:

1. Estimate an employment probit [Pr(D=1)=f(Z)] for the entire population to get the -s. Calculate the so-called inverse Mills ratios ( i = (- Z i )/ (1- (- Z i )) for each observation.

2. Estimate an OLS wage regression with X i and i on the right hand.

3. Before you do so, look at the conditions for full identification and study the test statistics in Wooldridge (2002, 560–566), Greene (1999,707–713) and elsewhere.

*) This is the two-step procedure of Heckman (1979, Econometrica). The system

can be estimated with FIML, too

(17)

Notes to interpreting the wage equation:

• The covariates affect wages directly (through ) and indirectly (through ).

• The direction of selection bias depends on the sign of the correlation between unobserved attributes affecting wages and the probability of having a job ( u ).

X is a subset of Z (all factors affecting the wage affect the probability of working). Normally, we need at least one Z-variable, that is not part of X.

• Using the parameters and observing X and Z, you can predict offer wages for all members of the population.

) - ( )

1 βX u γZ

i i D

E(w = = +

(18)

An example:

HLFS, 2001 Q2 Women aged 15-64

The OLS estimate 

Exp: experience iskev: years in school bpest: Budapest

nkisgye: number of children aged 0–6 famstat1: married

kshreg: region dummies

heckman lnwnetto iskev exp exp2 bpest if nem==0 & kor>14 & kor<65 & nem<. & fogl1<5, select(iskev exp exp2 famstat1 nkisgye kshreg1 kshreg3-kshreg7) twostep

Heckman selection model -- two-step estimates Number of obs = 28702 (regression model with sample selection) Censored obs = 18000 Uncensored obs = 10702 Wald chi2(4) = 1831.77 Prob > chi2 = 0.0000 --- | Coef. Std. Err. z P>|z| [95% Conf. Interval]

---+--- lnwnetto |

iskev | .0483015 .0015209 31.76 0.000 .0453207 .0512824 exp | .0018412 .0021105 0.87 0.383 -.0022953 .0059776 exp2 | .0000347 .0000476 0.73 0.466 -.0000586 .000128 bpest | .1460012 .0102205 14.29 0.000 .1259695 .166033 _cons | 10.03622 .0467152 214.84 0.000 9.944656 10.12778 ---+--- select |

iskev | .0722939 .0032863 22.00 0.000 .0658529 .0787349 exp | .1291689 .0030901 41.80 0.000 .1231124 .1352255 exp2 | -.0030021 .0000603 -49.75 0.000 -.0031204 -.0028838 famstat1 | -.0816009 .029013 -2.81 0.005 -.1384652 -.0247365 nkisgye | -.4717529 .0180457 -26.14 0.000 -.5071218 -.4363841 kshreg1 | -.3401098 .030188 -11.27 0.000 -.3992772 -.2809424 kshreg3 | -.1875587 .0340299 -5.51 0.000 -.2542561 -.1208614 kshreg4 | -.2776233 .0347729 -7.98 0.000 -.345777 -.2094696 kshreg5 | -.2035106 .0330889 -6.15 0.000 -.2683638 -.1386575 kshreg6 | -.2299434 .0317025 -7.25 0.000 -.2920792 -.1678075 kshreg7 | -.2325834 .0326939 -7.11 0.000 -.2966623 -.1685045 _cons | -1.575283 .0608592 -25.88 0.000 -1.694565 -1.456001 ---+--- mills |

lambda | -.0557418 .0201843 -2.76 0.006 -.0953024 -.0161813 ---+--- rho | -0.18910

sigma | .294772

lambda | -.05574183 .0201843

---

. fit lnwnetto iskev exp exp2 bpest if nem==0 & kor>14 & kor<65 & nem<. & fogl1<5 Source | SS df MS Number of obs = 10702 ---+--- F( 4, 10697) = 618.06 Model | 210.232088 4 52.558022 Prob > F = 0.0000 Residual | 909.636758 10697 .085036623 R-squared = 0.1877 ---+--- Adj R-squared = 0.1874 Total | 1119.86885 10701 .104650859 Root MSE = .29161 --- lnwnetto | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---+--- iskev | .0510044 .0011588 44.02 0.000 .048733 .0532757 exp | .0069127 .0010382 6.66 0.000 .0048776 .0089478 exp2 | -.0000794 .0000236 -3.36 0.001 -.0001257 -.0000331 bpest | .1414495 .0100771 14.04 0.000 .1216964 .1612025 _cons | 9.916388 .0172336 575.41 0.000 9.882607 9.95017 ---

(19)

E3) Hours of work as a function of wage offers

Now we have estimates for the wage offer ( ).

The problem of selection bias is present here, too  include . Estimate OLS:

We estimate the equation using data on those at work (H>0) but the predictions yield information on all members of the

population.

See Galasi (1995) for an example of estimating the hours supply of different groups of unemployed people in Hungary (active job seekers, registered unemployed, benefit recipients, etc.).

w ˆ i

i i

i i

i w Z v

H = 1 ˆ + 2 + +

(20)

The hours equation for the LFS sub-sample: Women

aged 15–64

(21)

Any clue to judge if our estimates make sense?

a) Hicksian elasticites should be positive.

b) The Marshallian (M) and Hicksian (H ) elasticites should not differ substantially. Why?

Let us start with the supply equation:

In terms of elasticities:

Therefore, for the two elasticities (M, H ) :

I H H w

H w

H

U

U 0

I w H H

w w

H H

w w H

U

U 0

I mpe w H H H

M

(22)

mpe – the „marginal propensity to earn out of nonwage income* – shows how a unit increase in non-wage income affects earned income by reducing working hours

mpe versus mpc

Let us differentiate the budget constraint (Y+wT=X+wL  Y+wH=X) by Y

*) As called in Pencavel 1986, Handbook of Labor Economics

mpc Y mpe

X Y

w H 1

1

What is X/ Y? It is the marginal propensity to consume (mpc), a parameter expected to fall close to 1. Savings seldom exceed 0.3 so mpc typically falls somewhere between 0.7 and 1.

I mpe w H H H

M

(23)

Therefore we have:

where is a small negative number somewhere in the range of 0/-0.3. To the extent it is true, the compensated and uncompensated elasticities should not differ

substantially.

Let us now utilise this piece of knowledge for the evaluation of some empirical estimates following Pencavel (1986).

1

1 mpc

mpc

mpe H M H

H

M

(24)

Results from 22 studies on US and UK males*

Source: Pencavel (1986), Tables 1.19 and 1.20.

-.3 -.2 -.1 0 .1

mean of marshall 1427

18 10 128 135 22 1915 214 1691 116 173 20

Marshall-féle rugalmasságok

-.2 0 .2 .4 .6 .8

mean of hicks 14

10 21 15 19 188 204 17321 131279 22 165 116

Hicks-féle rugalmasságok

Marshallian elasticites Hicksian elasticites

(25)

Results from 22 studies on US and UK males*

Source: Pencavel (1986), Tables 1.19 and 1.20.

Values outside the yellow area are hard to accept given the wrong sign of H and/or the too low/too high value of mpc

.2 .4 .6 .8 1

Imp lici t f og ya szt ási h at árh aj la nd ósá g

-.2 0 .2 .4 .6 .8

Hicks-féle rugalmasságok

Hicksian elasticities

Im pl ic it M PC

(26)

On estimating the life-cycle model

(27)

• Assume we have longitudinal (panel) data on the wages and working hours of individuals within a group of people (w it , H it ).

• Let us write the Frisch demand functions where the demand for leisure (and the supply of working hours) depend on the:

current wage

relation of the interest rate to the discount factor characteristic of the sub-population ( )

marginal utility of lifetime income ( )

a set of time-varying (X) and time-invarying (c) variables

affecting individuals’ propensity to work

(28)

it i

it i

it

it w t X c

H 0 1 2 3 ( ) 4

Collecting terms yields:

it it

it i

i

it c w t X

H 0 [ 2 ] 1 3 ( ) 4

(t) is a monotonous function of time. (Pro memo: =(1+ ) t /(1+r) t ).

It is assumed not to vary within the sub-population under examination in this simple presentation of the problem.

The equation can be estimated with OLS panel regression.

Unobserved differentials are captured by the fixed effects [ 2 +c] i . The expectation consistent with the life-cycle model is 1 >0.

Technically, the [

2

+c]-s are the parameters of dummy (0,1) variables standing for the sample members

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Malthusian counties, described as areas with low nupciality and high fertility, were situated at the geographical periphery in the Carpathian Basin, neomalthusian

The Objective Case of the Plural Number has the same characteristic as the Singular, viz, t, which is added to the Plural form, with the vowel a for hard words and with the vowel

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

Its effect on two given traits (A and B) depends on the heritability of the traits, the nature of the correlation between them, the intensity of selection and the

Perkins have reported experiments i n a magnetic mirror geometry in which it was possible to vary the symmetry of the electron velocity distribution and to demonstrate that

Intő this discussion we alsó have the fact that composition or oratory, the heirs of classical rhetoric, have been mandatory courses of study fór incoming