• Nem Talált Eredményt

Spectral proferties of some matrices.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Spectral proferties of some matrices."

Copied!
8
0
0

Teljes szövegt

(1)

- <13 -

A L E K S A N D E R G R Y T C Z U K A N D M A R E K S Z A L K O V S K I

S F E C T R A L P R O P E R T I E S OF S O M E M A T R I C E S

A B S T R A C T : In this paper we s h o w s o m e spectral properties of matrices. Among o t h e r s w e prove s o m e inequalities for the characteristic roots of matrices satisfying s o m e conditions. We also give a new proof for a theorem of SzuIc.

In 1984 N.V. K u h a r e n k o 123 proved the f o l l o w i n g s p e c t r a l p r o p e r t y of nxn real m a t r i x A.

T H E O R E M A CN.W. K U H A R E N K O ) . Let A = (a. .) be an nxn r e a l V ,1

m a t r i x and let

Tr A = 0 and A_ = 5 [a..a..-a. .a..1 > 0.

2 ^ l i i j j W J O

1 £ i < j £ r,

T h e n t h e r e e x i s t s at least one p a i r of c o m p l e x - c o n j u g a t e e i g e n — v a l u e s

= ck * i dk of A s u c h t h a t

* +

I

A

, •

k k n 2

T h i s t h e o r e m h a s a p p l i c a t i o n in the theory o f d y n a m i c a l s y s t e m s .

In 1 9 8 8 T . S z u l c 131 g a v e the f o l l o w i n g g e n e r a l i z a t i o n o f T h e o r e m A.

T H E O R E M B. Let A = Ca. .) be nxn real matrix s u c h that

«- J T r2 A < -^t- A„ n—1 2

(2)

- 4 4 -

Then there exists at least o n e pair of c o m p l e x — c o n j u g a t e e i g e n - v a l u e s

=

c

k

± i d

k

of A such that

Ci. 1)

Moreover if CI. 2 )

then

2 n A2 - C n — 1 > T r2A nCn—1>

2nA_ - C n - D T r A

Tr A £ 2 A,

if n is odd

if n is even

CI. 3 ) d. £

H

2 A2 - Tr AI if n is odd 2 A2 - Tr A if n is even

In the present p a p e r we give another p r o o f of T h e o r e m B.

Moreover we prove t h e following theorems:

THEOREM 1. Let A e M O , where H (Z) d e n o t e the set of all n * n

nxn m a t r i c e s over Z a n d let A be n o n - s i n g u l a r matrix. The necessary and s u f f i c i e n t c o n d i t i o n for , j=l,2,...,n to be a roots of unity is |X^ |=1 for j=l,2, . . . ,n.

THEOREM 2. Let A = C a . . ) be an n*n c o m p l e x matrix with

>- J

|det AI>1 and let = max |A. | w h e r e A. are the

l S j S n J J

characteristic r o o t s o f A for j = l , 2 , . . . , n , then

> 1 + i°s(det A» .

THEOREM 3. Let |X"| = max |A.| where A. for j = l , 2 , . . . , n

l ^ j S n J J

are characteristic r o o t s of A M CZ>. n £ 2 and let the n characteristic p o l y n o m i a l of A be i r r e d u c i b l e over Z. If for

(3)

- 45 -

s o m e j=l,2,. . . ,n t h e root X. is not a root o f unity t h e n ixri > 1 + f s s ^

o

where c ^ 2 is some real n u m b e r and Nq depend o n l y on n and c.

We r e m a r k that f r o m T h e o r e m 2 it f o l l o w s i m m e d i a t e l y : C O R O L L A R Y 1. Let A = Ca. .) € M C2), n 2 2 and det A * ± 1.

I J N Then

\X\ > 1 + isg-2. .

From C o r o l l a r y 1 it f o l l o w s that a c o n j e c t u r e of S c h i n z e l and Z a s s e n h a u s [23 is t r u e for all m a t r i c e s A e M ( 2 ) w i t h

n det A M ± l.

P R O O F OF T H E O R E M 1. It is easy to s e e that if X™ = 1 f o r j=l, 2, . . . , n then S u p p o s e that |\.|=1 f o r j = l , 2 , . . . „ n and let

«

C I ) f C X ) = d e t C X I - A )

be the c h a r a c t e r i s t i c p o l y n o m i a l of A. Then w e h a v e C 2 ) f C X ) = Xn + A X1 n n _ 1 + ... + A where A. <= Z and A = det A * 0. S i n c e |X. 1=1 f o r

t n J j = l , 2 , . . . , n t h u s by f o r m u l a s of V i e t e it f o l l o w s

C3> I V S ( Í j for k = l , 2 , . . . , n .

From C 3 ) it f o l l o w s t h a t t h e r e e x i s t only f i n i t e n u m b e r of p o l y n o m i a l s with i n t e g e r c o e f f i c i e n t s such t h a t

|=1 f o r j=l,2, . . . ,n.

C o n s i d e r t h e f o l l o w i n g s e q u e n c e

C I ) •• • + A ;m 5Xn _ 1 + . .

where e 2. T h e s e q u e n c e C 4 ) h a s only f i n i t e n u m b e r of d i s t i n c t e l e m e n t s , b e c a u s e

iVf I = U j Im = 1 and IAj m 5 I ^ (jj) ; j , k = l , 2 , . . , n.

(4)

- 4.6 -

T h e r e f o r e we can take a s u b s e q u e n c e -{f C X ) r s u c h t h a t

C S ) f C X ) = f C X ) = f c x ) - ...

m_ m _ m O 1 2

where rn < tn < in < . . . . From C 4 ) and C S ) we g e t o i 2

m. m m^ m^ m ^

C 6 ) X1 = xa C l ) ' X2 = X0 C 2 J ' ••• ' = ^CTtnJ

where o C l ) , . o C n ) d e n o t e s some p e r m u t a t i o n o f . T h e r e a r e i n f i n i t e l y many e x p o n e n t s nr s u c h that mt < m2 < . . . . O n the o t h e r hand t h e r e e x i s t s o n l y n!

p e r m u t a t i o n s of the s e t ,2, . . . ,n^. T h e r e f o r e t h e r e a r e e x p o n e n t s m. and m. f o r which

m. m, m. ri>. m. m.

C 7 ) xt 1 = xt 2 , x2 1 = x2 2 , ... , xn « xn

From C 7 ) we get

X ™ = 1 f o r j = l , 2 , . . . , n

where m=m. —m. and m. -m. > 0 and the p r o o f is c o m p l e t e .

PROOF OF T H E O R E M 2. L e t f C x ) b e t h e c h a r a c t e r i s t i c p o l y n o m i a l of the m a t r i x A. It i s w e l l - k n o w n t h a t

C 8 ) I V ' X J = , d e t A |-

S i n c e |Xj I 5 I XT I f o r j = l , 2 , . . . , n , t h u s by ( 8 ) it f o l l o w s C 9 )

\ X \ *

|det A I 1 / n .

S i n c e |det A|>1 t h u s w e have

^ log |det AI A

C I O ) |det AI = e = 1 + £ log |det A | + ...

From C I O ) w e get 1

C l l ) |det A In > 1 + i- log Idet A | . From C l l ) and C 9 ) we o b t a i n

(5)

- 4.7 -

)X\ > 1 + á g i d é t A j

and t h e p r o o f is c o m p l e t e .

P R O O F O F T H E O R E M 3. L e t Nq d e n o t e s t h e s e t o f a l l r o o t s o f the c h a r a c t e r i s t i c p o l y n o m i a l s of fixed d e g r e e n £ 2 w i t h integer c o e f f i c i e n t s and i r r e d u c i b l e o v e r Z such t h a t

|X| ^ c, w h e r e c £ 2 is some r e a l number. S u p p o s e that f o r every j = l , 2 , . . . , n w e have

1 ( 1 2 ) IX.I S c °

J From ( 1 2 ) we get

k . . ÍTfT*

C 1 3 ) |X* I S |X. R ^ c ° <: c

for k = l , 2 , . . . , 1 + N . From ( 1 3 ) and d e f i n i t i o n of N we get

o o

that t h e r e e x i s t s kc j 5 * k^ '5 such t h a t k <j 5, k <j 5 e

1 2 1 ' 2

e ^1,2, . . . , l + NoJ and

k t j 3 k Í j 5

( 1 4 ) 1 = \ .2 f o r j = l , 2 , . . . , n . From ( 1 4 ) we get

X'!1 = 1 for j=l , 2, . . . , n w h e r e m = k Jj J~ k <j J

and is a root of unity f o r j = l , 2 , . . . , n .

By t h e a s s u m p t i o n of our t h e o r e m if f o l l o w s that t h e r e exist s o m e j e -il, 2 , . . . , n s u c h that

FTTT 1

( 1 5 ) |Xj I > c ° From ( I S )

TTTT TTJT c

iri = max IX.I ^ c ° = e ° > 1 +

I^J S N J O

f o l l o w s and the p r o o f is c o m p l e t e .

(6)

- 4 8 -

P R O O F OF T H E O R E M B. W e h a v e the w e l l - k n o w n i d e n t i t y C 1 Ő ) T r C A2) = T r2A - 2 Az .

On the o t h e r hand we h a v e

n 2 n '

C17> T r C A2) = X2 . X 2 = 2 [Re \.) - J (lm X . )

i = i

and

C I S ) Tr A

- ( X

t

x

n

) -

From C 1 6 ) - C 1 8 ) we o b t a i n

2

Re X.

T r C A2) = ^ T r2A +

C n — 1 ) T r A - 2nA.

t h u s

•I K - k *•••* k Y -

C n - 1 ) T r A - 2nA.

n

< 0.

S i n c e the left hand s i d e cannot b e n e g a t i v e for all real X^

then we get t h a t t h e r e e x i s t s at least i n e c h a r a c t e r i s t i c root which is a c o m p l e x n u m b e r .

From C 1 6 ) - C 1 8 ) w e o b t a i n

2

2 (Re A.)2- 2 (I- \ Y = k

i = i L = 1

2 Re X.

i = 1 C n — 1 > T r2A - 2nA,

and t h e r e f o r e we get

2 ( i - x j * - 5 » J - K

C 1 9 )

2

Re

X.

2 n A - C n - 1 ) T r A

2

(7)

- 4 9 -

Let

C 2 0 ) d = max |Im X. |

l^iSn 1

T h e n from C 1 9 ) and C 2 0 ) we o b t a i n

n f 2 n A — C n — l ) T r2A

C21> k d2 £ 5 [lm J S - ,

i = i

w h e r e k^n if n is e v e n and k5n-l if n is odd. F r o m C215 we o b t a i n Cl.l).

Now, s u p p o s e t h a t C I . 2 ) is true and let

= (R e \Y~ (i m \ Y

Then we have

n n

C 2 2 ) J X2 = J xk = T r2A - 2 Az £ 0.

j =1 k = l

From C 2 2 ) we get t h a t t h e r e e x i s t s at least o n e c o m p l e x n u m b e r such that Im X ** 0. Let

n n ro

C23> 5 X2 = 5 B + 5 = T r2A - 2 A „

J k k 2 j = 1 k = 1 l=i

w h e r e B d e n o t e s the sum of s q u a r e s of all real e i g e n v a l u e s of A and let

min Ix I.

iSjSm { kjJ

I =i

C 2 4 ) x = man fx , x ,...,x 1 =

kd i^k.Sm I k1 2 mJ

J

Then from C 2 3 ) and C 2 4 ) we o b t a i n

C 2 5 ) m x, £ 5 x, 5 Tr A - 2A .

k . ^ k. 2

From C 2 5 ) we get

(8)

- 5 0 -

( 2 6 ) xk d = [Re Xk J " - |im XkJ2 * L [Tr2A - 2 a J

w h e r e m^n if n is e v e n a n d míSn-1 if n is odd.

It. is easy t o s e e t h a t from ( 2 3 ) we g e t ( 1 . 3 ) and t h e r e f o r e the p r o o f o f T h e o r e m B is c o m p l e t e .

R E F E R E N C E S

[1] N. W. ICuharenko, On s p e c t r a l p r o p e r t y of a z e r o - t r a c e matrix, Mat. Z a m e t k i 3 5 (2), ( 1 9 0 4 ) , 1 4 9 - 1 5 1 (Russian).

[2 3 A. S c h i n z e l and H. Z a s s e n h a u s , A r e f i n e m e n t of t w o t h e o r e m s o f K r o n e c k e r , M i c h . M a t h . J . 12 ( 1 9 6 3 ) , 81-84.

[33 T. Szulc, On s o m e s p e c t r a l p r o p e r t i e s of m a t r i c e s with real e n t r i e s , Z . A n g e w . M a t h . M e c h . 68, ( 1 9 8 8 ) , 3 2 0 - 3 2 2 .

/

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

S hibata , Global and local structures of oscillatory bifurcation curves with application to inverse bifurcation problem, J. Theory, published

Department of Geometry, Bolyai Institute, University of Szeged, Aradi v´ ertan´ uk tere 1, 6720 Szeged, Hungary, and Department of Mathematics and Statistics, Uni- versity of

For the case h = 1, the proof given in [NT] relies on the fact that the number of positive (0, 1) (k, 0) walks of arbitrary fixed length starting with an up step is not more than

The paper [12] discussed monic polynomials with prescribed zeros on C 1 having as small norm as possible.. The problem goes back to Tur´ an’s power sum method in number theory,

Oscillations of a [ 0, l ] string satisfying a general wave equation with variable coefficients under a wide class of observation and boundary conditions are investigated in [17],

Numerical simulations of (1.1) suggest that, in several instances, periodic solutions of the type described in Theorem 1.1 attract large sets of solutions, including solutions

Shon, On the growth and fixed points of solutions of second order differential equations with meromorphic coefficients, Acta Math.. Hayman, Meromorphic functions, Clarendon

We describe the complete polynomial vector fields and their fixed points in a finite-dimensional simplex and we apply the results to differential equations of genetical