• Nem Talált Eredményt

MS study NMR and An Structural characterization fondaparinux of interaction withper-6-amino-beta-cyclodextrin: Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "MS study NMR and An Structural characterization fondaparinux of interaction withper-6-amino-beta-cyclodextrin: Journal of Pharmaceutical and Biomedical Analysis"

Copied!
10
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jo u r n al ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Structural characterization of fondaparinux interaction with per-6-amino-beta-cyclodextrin: An NMR and MS study

Bianka Várnai

a

, Márkó Grabarics

b,c

, Zoltán Szakács

d

, Kevin Pagel

b,c

, Milo Malanga

e

, Tamás Sohajda

e

, Szabolcs Béni

a,∗

aSemmelweisUniversity,DepartmentofPharmacognosy,Üll ˝oiút.26,H-1085,Budapest,Hungary

bFreieUniversitätBerlin,InstituteofChemistryandBiochemistry,Arnimallee22,14195,Berlin,Germany

cFritzHaberInstituteoftheMaxPlanckSociety,DepartmentofMolecularPhysics,Faradayweg4–6,14195,Berlin,Germany

dGedeonRichterPlc.,SpectroscopicResearchDepartment,H-1475,Budapest,P.O.B.27,Hungary

eCycloLab,CyclodextrinR&DLtd,Budapest,H-1097,Illatosút7,Hungary

a rt i c l e i nf o

Articlehistory:

Received16October2020

Receivedinrevisedform28January2021 Accepted30January2021

Availableonline3February2021

Keywords:

Heparin NMR

Electrostaticinteraction Antidote

Degradation

a b s t ra c t

Thehighlyanionicsyntheticpentasaccharidefondaparinux(FDPX)–representingtheantithrombinbind- ingsequenceofheparin–isinclinicaluseasapotentanticoagulant.Contrarytotheunfractionated heparin,FDPXlackspotentantidotecompletelyreversingitsanticoagulantactivity,thereforeitisof greatimportancetoidentifynewstructuresexhibitingstrongintermolecularinteractionstowardsFDPX.

Thepolycationicheptakis(6-amino-6-deoxy)-beta-cyclodextrin(NH2-␤-CD)canserveasanexcellent modelcompoundtomimictheseinteractionsbetweentheoppositelychargedoligosaccharides.Herein, extensiveNMRspectroscopicandnano-electrosprayionizationmassspectrometric(nESI-MS)studies wereconductedtounderstandthemolecular-levelinteractionsintheFDPX-NH2-␤-CDsystems.NMR experimentswereperformedatpD7.4and2.0.Job’smethodofcontinuousvariationand1HNMRtitra- tionexperimentssuggestedtheformationofFDPX·NH2-␤-CDcomplexatpD7.4,whilethepresenceof multiplecomplexeswasassumedatpD2.0.Stabilityconstantsweredeterminedbyseparate1HNMR titrations,yieldinglogˇ11=3.65±0.02atpD7.4,whilelogˇ11≥4.9valuesuggestedahigh-affinity systematpD2.0.2DNOESYNMRstudiesindicatedspatialproximitiesbetweentheanomericresonance

␣-l-iduronicacidresidueandthecyclodextrin’smethyleneunitintheproximityofthecationicamino function.AcidicdegradationofFDPXwasinvestigatedbyNMRandMSforthefirsttimeindetailconfirm- ingthatdesulfationoccursinvolvingonetotwosulfatemoieties.ThedesulfationofFDPXwasinhibitedby thecationiccyclodextrininthecaseofequimolarratioatpD2.0.Thisisthefirstreportonthestabilizing effectofcyclodextrincomplexationonheparindegradation.

©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Heparinisananionic,linearpolysaccharide,amemberofthe glycosaminoglycan(GAG)familythatisnaturallysynthesizedand stored in mastcells [1]. Althoughthecorestructure ofheparin consistsofrepeating1,4-linkeduronicacidandglucosaminedis- accharides,ithasamicroheterogenousandpolydispersestructure duetovariousmodificationofthemonosaccharidesubunits.The hexuronicacidiseither␣-l-iduronicacid(IdoA)or␤-d-glucuronic acid(GlcA),whichmaybe2-O-sulfated.Thehexosamineresidue isd-glucosamine(GlcN),whichmaybesulfatedatthe3-Oand6-

Correspondingauthor.

E-mailaddress:beni.szabolcs@pharma.semmelweis-univ.hu(S.Béni).

OpositionsandN-sulfated(GlcNS),N-acetylated(GlcNAc)ormay beunmodified asa primary amine[2]. Heparin is best known foritsanticoagulantactivity,exertedthroughtheinteractionwith theproteaseinhibitorantithrombin-III(AT-III).AT-IIIisthemajor plasmacoagulationinhibitor,whosemaintargetsareIIaandXa activatedcoagulationfactors[3].Heparinisawidelyusedanticoag- ulantdrugintheclinicalpracticedespiteitsnumerousundesirable sideeffects.

Nowadays,lowmolecularweightheparins(LMWHs)areapplied intheclinicalpracticeasananticoagulantagentduetotheirpre- dictableactivityprofile,betterbioavailabilityandlongerhalf-life, that contribute to their safer applicability. LMWHs are pre- pared from unfractionated heparin by chemical or enzymatic depolymerizationreactionsthatproducepolydispersemixturesof heparin-derivedoligosaccharides[4].

https://doi.org/10.1016/j.jpba.2021.113947

0731-7085/©2021TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/

4.0/).

(2)

Fig.1.Chemicalstructuresandnumberingofthefondaparinux(A)andtheheptakis(6-amino-6-deoxy)-beta-cyclodextrin(B).

Another alternative in heparin-based anticoagulant therapy is the synthetic pentasaccharide fondaparinux (FDPX). It was designedtomimictheheparinpentasaccharidesequencepresent ineachheparinderivativeandrequiredtobindAT-III,thusenhanc- ingitsinhibitoryactivitytowardfactorXa[5].FDPXisamethyl glucoside analogue of the heparin pentasaccharide sequence responsibleforAT-IIIbinding(Fig.1).Toneutralizetheanticoag- ulanteffectof heparin,protaminesulfate isusually usedinthe clinicalpractice.Itis abasic,polycationicpeptideisolatedfrom salmonsperm, whichbinds tothepolyanionicheparin through electrostaticinteractions,thusforminganinactivecomplexwith- out anticoagulant effect[6].Unfortunately, protamineis unable toreversetheanticoagulantfunctionofLMWHsandisevenless effectiveforfondaparinux.Therefore,itisnecessarytofindnew antidotes,whichshouldbeeffectiveforallheparinderivatives[7].

Amongthepossiblecorestructuresasfutureantidotes,modified carbohydratesandcyclodextrinsstandoutaspromisingcandidates [8].

Cyclodextrins are cyclic oligosaccharides built of d- glucopyranose units linked via ␣-1,4-glycosidic bonds. As a result,theyhaveatruncatedconeshape withalipophilicinner cavity andahydrophilicoutersurface[9].Thisparticularstruc- ture enablesreversibleinclusion complexformation withguest moleculeswithappropriateproperties[10].Interactionsbetween the cyclodextrin host and the guest molecules are generally noncovalent: hydrogen bonds,van der Waals and hydrophobic interactionsarecommon,whileincaseofionicderivativeselec- trostaticinteractionsdominate.Themostcommonlyusednative cyclodextrinsarethe␣-,␤-and␥-cyclodextrincomposedofsix, sevenandeightglucoseunits,respectively.Syntheticmodification ofthehydroxylgroupsoftheglucopyranoseunitsoffersnumerous possibilitiesforthepreparationofvariouscyclodextrins,suchas cationicandanionicderivatives.Inthepresentstudythecationic heptakis(6-amino-6-deoxy)-beta-cyclodextrin (NH2-␤-CD) was

utilized(Fig.1).Thesechemicalmodificationsareoftenaimedat providingstructure-specificinteractions,therebycontributingto anevenmorepronouncedsupramolecularassembly[11,12].

Thecurrent study aims to characterize themolecularinter- actions between the polyanionic FDPX and the polycationic cyclodextrinNH2-␤-CDasapotentialheparinantidote.Further- more,thestabilizingeffectoftheNH2-␤-CD(hereinafterdenoted as CD) on FDPX degradation under acidic conditions was also investigated.Toestablishamoreprofoundunderstandingofthe intermolecularinteractionaswellasthedegradationofFDPXunder acidicconditions,extensiveNMRandMSexperimentswereper- formed.

2. Materialsandmethods 2.1. Chemicalsandreagents

CDwasaproductofCycloLabLtd.(Budapest,Hungary).D2O (99.9atom%D)waspurchasedfromMerck(Darmstadt,Germany), whilefondaparinuxwasisolatedfromArixtra®2.5mg/0.5mLinjec- tions.Briefly,tenprefilledinjectionswerecombinedandsubjected todialysis(Spectra/Por®dialysismembrane–Biotech-CETubing MWCO:100−500Da)againstdeionizedwaterforthreeconsecu- tivedays.Thereafter,thedialysatewassubjectedtofreeze-drying.

Otherbasechemicalsofanalyticalgradewerepurchasedfromcom- mercialsuppliersandwereusedwithoutfurtherpurification.

2.2. NMRspectroscopy

Nuclear magnetic resonance (NMR) spectroscopy measure- ments were carried out on a 600 MHz Varian DDR NMR spectrometer(AgilentTechnologies,PaloAlto,CA,USA),equipped witha5mminverse-detectionprobeheadandgradientunit.Stan- dardpulsesequencesandprocessingroutinesavailableinVnmrJ

(3)

3.2C/Chempack 5.1 wereused. Thecomplete resonance assign- ments of the fondaparinux and the CD were established from direct1H–13C,long-range1H–13C,andscalarspin-spinconnectiv- itiesderivedfrom1D1H,2D1H-1HgCOSY,zTOCSY(mixingtime of150ms),ROESYAD(mixingtimeof400ms),NOESYand1H–13C gHSQCAD(J=140Hz–accordingtotheonebondheteronuclear couplingconstant)experiments.The1Hchemicalshiftswereref- erencedtothemethylsinglet(ı=3.31ppm)ofinternalCH3OH,a referencesubstancewithoutanypossibleinteractionwiththeCD.

AdditionalNMRstudieswereperformedonan800MHzBruker Avance III HDX800 MHz spectrometer equipped with a 5 mm

1H/13C/15NTripleResonance13CEnhancedSaltTolerantColdProbe (1H:799.7MHz,13C:201.0MHz),controlledbytheTopSpin3.5pl7 software(BrukerBiospinGmbH,Rheinstetten,Germany).AllNMR spectrawereacquiredinstandard5mmNMRtubesat25C.

2.2.1. 1HNMRtitrationexperiments

ThestoichiometryofFDPXcomplexationwithCDwasinvesti- gatedbytheJob’smethodofcontinuousvariation[13].Samples werepreparedin0.1MphosphatebuffersofpD2.0andpD7.4,at 25Ctemperature.Thetotalmolarconcentrationofthetwocom- ponents,cFDPX+cCD waskeptconstantat3mM,whilethemole fractionofFDPX,xFDPX=cFDPX/(cFDPX+cCD)wasvariedgraduallyin 0.1unitstepsfrom0to1.1HchemicalshiftsıFDPXwererecordedat 600MHzforseveralFDPXprotonsandcomplexation-induceddis- placementvalues,ıFDPX=

ıFDPXıFDPX

werecalculatedwith respecttoıFDPXmeasuredintheabsenceofCD.ToconstructJob’s plots,ıFDPXvaluesweremultipliedbythemolefractionofFDPX anddepictedasafunctionofxFDPX.Analogousplotsweregenerated forselectedprotonsoftheCD.

SincetheexperimentaldesignunderlyingJob’splotsmaynot beoptimaltodeterminethestabilityconstantsoftheformedcom- plexes[14], separateNMRtitrations wereperformedunderthe sameexperimentalconditionsasusedfortheJob’splot.AtpD7.4, increasingportionsrangingfrom20to280␮Lof20.1mMCDsolu- tionwereaddedto600␮Lof3.4mMFDPXsolutionresidingin theNMRtube.AtpD2.0,600␮Lof3.18mMFDPXsolutionwas titrated with10–250␮Lof20.9 mMCDstocksolution.Follow- ingequilibration,1HNMRspectrawererecordedineachtitration stepat600MHzand25Ctemperature.Theexperimentaltitra- tion curves for well-resolved resonancesof FDPXand CD were evaluatedbytheOPIUMsoftware[15]accordingtotheprinciples summarizedherebyassumingtheformationofbothFDPX·CDand FDPX·2CDcomplexesasageneralcase.Ifcomplexationoccurswith rapidkineticsontheNMRchemicalshifttimescale,theobserved chemicalshiftıFDPX,iofanycarbon-boundprotoninFDPXbecomes amole-fractionweightedaverage[14]ofthespecies-specificval- uesintheuncomplexedFDPX(ıiFDPX)andthoseinthecomplexes (ıiFDPX·CDandıiFDPX·2CD),

ıFDPX,i=[FDPX]ıiFDPX+[FDPX·CD]ıiFDPX·CD+[FDPX·2CD]ıiFDPX·2CD cFDPX

(1) where square bracketsdenoteequilibrium concentrations andi usedhereinisarunningindex.Analogouslydefinedintrinsicchem- icalshifts(ıjCDjFDPX·CDjFDPX·2CD)andresonancesignalaveraging applyforanycarbon-boundprotonofthecyclodextrin:

ıCD,j=[CD]ıjCD+[FDPX·CD]ıjFDPX·CD+2 [FDPX·2CD]ıjFDPX·2CD

cCD (2)

where square bracketsdenoteequilibrium concentrations andj usedhereinisarunningindex.Themass-balanceequationsforboth constituentsread:

cFDPX=[FDPX]+[FDPX·CD]+[FDPX·2CD] (3) cCD=[CD]+[FDPX·CD]+2 [FDPX·2CD] (4)

whichcanbereformulatedintermsoftheˇassociation(i.e.binding orformation)constantsofthecomplexes,yielding:

cFDPX=[FDPX] (1+ˇ11[CD]+ˇ12[CD]2) (5) cCD=[CD] (1+ˇ11[FDPX]+2ˇ12[FDPX][CD]) (6) BasedontheinputvaluesofcFDPXandcCDforeachtitrationpoint (theratioofwhichwascheckedfromnon-overlapping1H NMR integralsofthecomponents)aswellasinitialguessesoftheˇsta- bilityconstants,theOPIUMprogramsolvedthenonlinearsystemof Eqs.(5)and(6)forthevariables[FDPX]and[CD].Thesespeciation calculationswereintegratedintoaleast-squaresfittingprocedure ofEqs.(1)or(2)tothemeasureddatasetinordertoiteratively refinethestabilityconstant(s).SincetheOPIUMprogramlacksa graphicaloutput,theresultingequilibriumconstantswereused tocomputespeciesdistributiondatacoveringthe0–2.74interval oftheccCD

FDPX ratiobytheORCHESTRAprogram[16].Thesedatasets weresubsequentlyimportedintoMicrosoftExcel2002,whereEqs.

(1)and(2)wereusedtocalculateanddepictthecontinuouscurves fittedtotheexperimental1HNMRtitrationdatasets.

2.2.2. NMRstructuralstudiesoncomplexformation

Toexplorethespatialarrangementofthehost-guestcomplexes andidentifytheinteractingmolecularsequences,nuclearOver- hausereffect(NOE) type experimentswereperformed atcCD = cFDPX=1mMinunbufferedsamplesatdifferentpDvalues(2.0–7.4) toeliminatethepossibleinterferingeffectofthephosphateions.

NOEisa manifestationof dipolarcross relaxationbetweentwo nonequivalentnuclearspinsthatarecloseenough(<5Å)through space[17].TheNOEintensitiesarescaledwithr−6,whererrepre- sentsthemeandistancebetweentheprotons.2DNOESYspectra wereacquiredonthe600MHzinstrument,withmixingtimesof 400msusing16scanson1258×512datapoints.Fortheacidic sample,2DNOESY spectrawerealsorecorded onthe800MHz instrument,collecting24scanson4096×512datapoints,applying mixingtimesof350ms,400ms,500msand650msalongwitha 250-␮WpresaturationontheHDOsignalforD1=2.5s.

2.2.3. NMRinvestigationsofFDPXdegradation

TodeterminethestructureoftheFDPXdecompositionproduct,

1Handseveral2D(COSY,TOCSY,HSQC,ROESY)NMRspectrawere recordedat600MHzwiththesameparametersdescribedinchap- ter2.2.Forthisexperiment,5mMFDPXwasdissolvedina0.1M phosphatebufferedD2OatpD2.0.

Duringthestabilityinvestigation,FDPX:CDsampleswith1:0, 2:1and1:1molarratiosweretested.Allsamplesweredissolvedin 0.1MphosphatebufferedD2OatpD2.0.Inthecaseofthefirstsetof experiments,1HNMRspectraofthefreshlypreparedsampleswere recorded.Afterkeepingthesesamplesat25Cforaweek,their

1HNMRspectrawererecordedagain.Asecondexperimentwas carriedouttoperformanaccelerateddecompositioninvestigation.

1HNMRspectraofthefreshsampleswererecordedat25C,then sampleswereincubatedat60Cfor14h.Afterwardsallsamples werecooleddownto25Cagainand1Hspectrawerere-recorded.

2.3. Electrosprayionizationmassspectrometry

Massspectrometricmeasurementswereperformedinnegative ionmodeonamodifiedSynaptG2-SHDMSQ-IMS-ToFhybridmass spectrometer(WatersCo.,Manchester,UK),equippedwithanano- electrosprayion(nESI)sourceandanrf-confiningdriftcell(250.5 mminlength).AnMKS647Cmultichannelcontroller(MKSInstru- ments,Andover,Massachusetts,US)providedgasflowandpressure controlinthedriftcell,whichwasfilledwithHebuffergas(99.999%

purity)atapressureof1.8torr.

(4)

For studying thecomplex formation betweenFDPXand CD, thecompoundsweredissolvedinwater:methanol(50/50,v/v)to reachaconcentrationof20␮MforFDPXand200␮MforCD.The solventmixturewasprepared usingMilli-Q® waterand LC–MS grademethanol(Merck,Darmstadt,Germany).ForMSexperiments involvingtheFDPXdegradationproducts, 5mMFDPXwasdis- solvedina0.1MphosphatebufferedD2OatpD2.0andincubated at60Cfor14h,identicallytothesolutionusedforNMRspectro- scopicdegradationmeasurements(seeSection2.2.3).Thisacidic solutionwasdilutedinwater:methanol(50/50)andspikedwitha 10mMaqueoussolutionofCDtoreachaconcentrationof20␮M forFDPXdegradationproducts(calculatedforthepre-incubation FDPXcontent)and200␮MforCD.

For generating negative ions using nESI, 5 ␮L of the sam- plesolutionsdescribedabovewasloadedintoin-houseprepared borosilicateneedlescoatedwithPt/Pd(80/20),andavoltageof- 0.60to-0.85kVwasappliedtothecapillary.Typicalinstrument settings oftheSynapt G2-SHDMSinstrument wereasfollows:

capillaryvoltage-0.60to-0.85kV;sourcetemperature100C;sam- plingcone2.0;sourceoffset0.0;trapgasflow2.0mLmin1;trap DCentrance4.0;trapDCbias2.0;trapDC−2.0;trapDCexit1.0;

IMSDCentrance−23.0;heliumcellDC55.0;IMSbias45.0;helium exit−40.0;IMSDCexit5.0;transferDCentrance5.0;transferDC exit15.0;trapwavevelocity250ms−1;trapwaveheight0.8V;

transferwavevelocity300ms−1;transferwaveheight4.0V.All massspectrawererecordedinresolutionmode.Forclarity,polar- itiesandunitsofthevaluesaboveareprovidedasdisplayedinthe MassLynx4.1softwarepackage(WatersCo.,Manchester,UK).As such,somevoltagesaregivenonlywithnumericalvalueswithno unitspecified.

Data processing and analysis were performed using MassL- ynx4.1(WatersCo.,Manchester,UK)andOrigin2017(OriginLab, Northampton,MA,US)softwarepackages.

3. Resultsanddiscussion

3.1. ExploringthecomplexformationequilibriabyNMRtitrations IntermolecularinteractionsbetweenFDPXandCDwereinvesti- gatedattwodifferentpDvalues(pD2.0and7.4),wherethecharge distributionoftheinteractingspeciesisdifferent.Atthephysiolog- icalpDvalue,theCDderivativebearsanaveragepositivechargeof 5.1(pKavaluesfortheCDareasfollows:9.50(1),8.89(1),8.33(1), 8.07(1),7.57(1),7.35(1),6.75(1)[18]),whileatpD2.0thehostis fullyprotonated,carrying sevenpositive charges.Inthecase of FDPXaccordingtothepublishedrelatedoligosaccharidesthepKa

valuesare2.35and3.44for␤-d-GlcAandIdoA2S[19],thusatpD 7.4bothhexuronicacidresiduesaredeprotonated,thereforeFDPX possesses10negativecharges.Under acidicconditions(pD2.0), themeanchargeofFDPXcorrespondsto−8.3.Complete1HNMR assignmentsofFDPXandCDatpD2.0and7.4canbefoundinTable S1ofSupportingInformation.

InordertoassessthecomplexationstoichiometryatpD7.4,Job’s plotswereconstructedfromwell-separatedNMRsignalsofFDPX, suchasthoseoftheanomericprotonsoftheGlcNS6S,GlcAand GlcNS3S6Sresidues,theH1andH5resonancesofIdoA2S,andthe anomericH1resonanceoftheCD.AlltheJob’splotcurvesdepicted onAand BdiagramsinFig.2showa maximumatxFDPX =0.5, suggestingthesoleformationoftheFDPX·CDcomplexwith1:1 stoichiometry.

Duringthesubsequentsingle-tubeNMRtitrationofFDPXwith CDatthesamepDvalue(seethestackplotinFig.3A),thechem- icalshiftvariationofthefollowingprotonswithnon-overlapping signalsweremonitored:GlcAH1,GlcNS3S6SH1,GlcNS6S-OMeH1, GlcNS3S6SH6,IdoA2SH5andH1,GlcNS6SH1ofFDPXandH1ofthe

CDderivative.Titrationprofilesofthelattertwonucleiaredepicted inFig.3B,whilethoseoftheremainingFDPXprotonslistedabove areshowninFig.S1.Alltheeightdatasetscouldbeadequatelyfit- tedusingtheOPIUMprogrambyassumingonlythesingleFDPX·CD complex,assuggestedbytheJob’splots.Theseevaluationsyielded estimatesforthebindingconstantlogˇ11rangingfrom3.25to4.3, collectedinTableS2.Inordertoextractamorerobustandreliable, singlevalueofthisstabilityconstant[20],theeightdatasetswere subjectedto simultaneousnonlinear regression using thesame software.Thequalityoffitremainedvirtuallythesameforallthe observednucleiandthisglobalevaluationyieldedlogˇ11=3.65 withanestimatedstandarddeviationof0.02,amoderatelystrong bindingaffinityforaCDcomplex(seethespeciesdistributionplot inFig.S2).Thecomplexation-inducedchangesinchemicalshifts exceeded0.04ppmunitsfortheGlcNS3S6SH5,IdoA2SH1andH5 protonsofFDPX,theintrinsicchemicalshifts(listedinTableS3) emergingfromtheglobaldatafittingonlyslightlydifferedfrom theircounterpartsfromsingle-datasetevaluationsinTableS2.

TheJob’splotsrecordedatpD2.0revealedalessclear-cutpic- tureaboutcomplexation(seeFig.2,subplotCandD).Whilethe profileoftheanomericCDprotoninsubplotDisratherwidebut bearsamaximumatxCD=0.5,suggestingagainasimple1:1com- plexationpattern,theextremumofeachFDPXproton’sprofilein Fig.2,subplotCisconsequentlyshiftedtoca.xFDPX=0.6,indicating thepresenceofa2FDPX·CDcomplexbesidesFDPX·CD.

Toexplorethecomplexationequilibriaat pD2.0more thor- oughly,asingle-tube1HNMRtitrationofFDPXwiththeCDwas carriedout(seethestackplotinFig.S3).Titrationprofilesofthe anomericprotonsbelongingtotheGlcNS6SandGlcNS3S6Sunits aredepictedinFig.4,whilethoseforfouradditionalprotonsof FDPXaswellasfortheCDanomericprotonareshowninFig.S4.

Mosttitration profilesofFDPXprotonsconsistoftwoquasilin- earsegments,withaminimalcurvaturenearthecrossingpointat cCD=cFDPX.Thistypeoftitrationcurveischaracteristictoarather high-affinitysystem,forwhichmerelythelowerlimitofthebind- ingconstantisaccessiblebycurve-fitting[14].Theentiredataset cannotbefittedsatisfyinglyassumingtheformationof asingle FDPX·CDcomplex(seethebluecurvesinFig.4andFig.S4),the Hamilton’sRfactor,agoodness-of-fitcriterionforthesimultaneous fittingofthesevendatasets,is0.031%.Theintrinsicchemicalshifts arelistedinTableS4.Hencethetitrationcurveswereevaluatedin twosteps.

AllexperimentaldatasetscanbenicelyfitteduptoccCD

FDPX=1with theassumptionofasingleFDPX·CDcomplexonly(bluecurvesin Fig.4andFig.S4),yieldinglogˇ11=4.9±0.1,buthighervalues ofthisstabilityconstantgivevirtuallythesamegoodness-of-fit.

Additionofa2FDPX·CDspeciestotheequilibriummodel,assug- gestedbyJob’splots,didnotfurnishameaningfulvalueforˇ21, theiterationsbytheOPIUMprogramdidnotconverge.Intuitively, onecannotdescribethemonotonicchangeinFDPXchemicalshifts beyondtheequimolarcompositionbythe{FDPX·CD,2FDPX·CD} equilibriummodel.Instead,anFDPX·2CDcomplexwaspostulated besidesFDPX·CD.Aglobalfittinginvolvingthesetwospecieswas alreadyabletodescribethetitrationprofilesofFDPXandCDpro- tonsinthefullrangeofconcentrationsstudied(seethefittedred curves in Figs. 4and S4), the Hamilton’s Rfactor decreased to 0.0089%,indicatingamoreappropriateequilibriummodel.Thecal- culationsyieldedastabilityconstantoflogˇ12=8fortheFDPX·2CD complex(butthisvalueagainrepresentsmerelya lowerlimit).

TheintrinsicchemicalshiftvaluesofspeciesarecollectedinTable S5.Usingtheselowerlimitsofthestabilityconstants,thespecia- tioncurvesinFig.S5wereconstructedfortheconcentrationrange exploredintheNMRtitration.

ThediscrepancyofJob’smethodandthechemicalshifttitra- tioninestablishingthecorrectstoichiometryofcomplexationis

(5)

Fig.2. Job’splotfortheselected1HresonancesofFDPXatpD7.4(A)andatpD2.0(C)andthatoftheanomericresonanceofNH2-␤-CDatpD7.4(B)andatpD2.0(D), respectively.

somewhat puzzling. Nevertheless, recent publications [21] [22]

emphasizethelimitationsofJob’smethodofequilibriumsystems beyondthesimplest1:1case,beinghighlysensitivee.g.totheratio ofequilibriumconstants[21].WhileJob’smethodremainsareli- abletoolinstoichiometricstudiesofinorganicmetalcomplexes, acarefulinspectionofthedistributionofresidualsofdata-fitting [20,21]ortherankingof allreasonablebindingmodelsaccord- ingtoestimateduncertaintiesandotherchemometricdescriptors [22]becametherecommendedprotocolsforthesametaskinthe fieldofsupramolecularchemistry.Sincethe{FDPX·CD,FDPX·2CD} equilibriummodelnicelyreproducedtheentiretitrationdataset, theformationofthesetwospeciescanberegardedasmostproba- bleundertheappliedexperimentalconditionsforthishigh-affinity system.

3.1.1. NMRstructuralstudies

Toobtainatomic-levelinformationaboutthe3Dstructure of theFDPX-CDcomplex,NOEexperimentswerecarriedoutforsam- pleswithoutphosphatebuffer,toeliminateanypossibleinterfering effectofthephosphateionswiththeCD.SolutionsatpD2.0–7.4 weretested.The2DNOESYspectrumforallpD valuesrevealed thattheH6protonsoftheCDgiveintermolecularcontactswiththe FDPX’sIdoA2SH1proton–asshowninFig.5forthepD2.0sam- ple.NOEexperimentswereperformedatseveralFDPX:CDmolar ratios,however,noneoftheexperimentsconfirmeddipolarcorre- lationsbetweentheinnerprotonsoftheCDandFDPX.Henceonly

outer-sphere,electrostatics-drivencomplexformationcanoccur betweentheseoligosaccharidesasalsofoundinarecentstudy[23].

3.1.2. NMRinvestigationsofFDPXdegradation

Itiswellknownfromtheliterature,thatsulfatedpolysaccha- ridescanundergodegradation(depolymerizationanddesulfation) underacidicconditions. However,thereare nodetailed studies thatproviderelevantinformationonFDPX.Recordingthe1HNMR spectraofaqueousFDPXsampleatpD2.0afteraweekofstor- ageindicatedthatnew1Hresonancesappeared,seeFig.6.Inorder toidentifythestructureofthedegradationproduct,additional2D spectrawererecorded.Thespinsystemofthemonosaccharidesub- unitsofthedegradationproductwasidentifiedbyCOSYandTOCSY experiments, respectively. 1H–13C HSQC experiment evidenced thattheanomericcarbonoftheGlcNS3S6Sunit(ı=6ppm)and theC5resonanceoftheIdoA2Smoiety(ı=2ppm)exhibited remarkableshiftscomparedtotheintactFDPX(Fig.S6).A2DROESY experiment(Fig.S7)wasperformedtoestablishtheconnectivity ofthemonosaccharides.BasedontheROESYdatathepentasac- charidechainremainedintactduringtheappliedcircumstancesof degradation.Therefore,theobservedchemicalshiftchangesupon decomposition(Fig.S8)cannotbeattributedtothedepolymeriza- tionoftheFDPXbackbone.Consequently,assupportedbyearlier studiesontheacidhydrolysisofsulfatedpolysaccharides[24],sul- fatelossof FDPXoccurredinourcase. Setoet al. followedthe chemicalshiftchanges inheparinundergoingdesulfationby1H

(6)

Fig.3.Representative1HNMRchemicalshiftchanges(subplotA)oftheFDPX1Hresonancesupontitrationof3.4mMFDPXsolutionwithincreasingportionsofa20.1mM NH2-␤-CDsolutionatpD7.4.TitrationprofilesofFDPXGlcNS6SH1andGlcNS3S6SH1nuclei(subplotB)atpD7.4,fittedbythe1:1complexationmodelusingtheOPIUM program(redcurves).

Fig.4.TitrationprofilesoftheanomericprotonsoftheFDPXGlcNS6SandGlcNS3S6SunitsatpD2.0.Bluecurveswerefittedbythe1:1complexationmodel,whileaglobal fittingassumingtheFDPX·CDandtheFDPX·2CDspeciesareshownbyredcurves.

NMR measurements[25].Theirresultalsosupportsourdata,as desulfationleadstodownfieldshiftofparticularresonances.The largest1HNMRchemicalshiftschangeswereobservedinthecase oftheIdoA2Sandthetrisulfated(GlcNS3S6S)subunits(Fig.S8), suggestingthatthesulfatelossprimarilyaffectedtheseunits.Fur- therinvestigationswereconductedtosupportthishypothesisby massspectrometry.

ToovercometheunwanteddesulfationofFDPXinsolution,the possibleprotectivefunctionofCDwasexplored.Todemonstrate thestabilizingeffectoftheCD,1HNMRspectraofthefreshlypre- paredpD2.0sampleswith1:0,2:1and1:1(FDPX:CD)molarratios wererecorded.Allsampleswereincubatedat25Cforaweek, then1HNMRspectrawerere-recorded.AsshowninFig.6,almost 50%oftheFDPXdegradedin theabsenceofCD. Thedecompo- sitionprocesssloweddownsignificantlyinthepresenceofhalf

(7)

Fig.5. Partial2DROESYNMRspectraofapD2.0samplecontainingFDPXandCDat1:1molarratio,showingcross-peaksbetweentheIdoA2SH1protonandtheCDH6 resonance.

Fig.6.The1HNMRspectraofthefreshlypreparedFDPX:CDsamples(day0)andthatofthesamesamplesstoredat25Cforaweek(day7)atdifferentmolarratios(red 1:0,blue2:1,green1:1)underpD2.0conditions.The1Hresonancesofthedecompositionproductareindicatedby*.

equivalent CD, as only 20% degradation could be observed by

1HNMR.However,samplesofequimolarFDPXandCDhowever revealednodetectabledegradationofFDPX.Applyingevenhigher molar ratiosof CD, completeprotectionof FDPXwasobserved, therefore, a minimum ofequimolar CD isnecessary toprevent desulfation.

ToacceleratethedecompositionofFDPX,sampleswiththesame molarratioswereincubatedat60C for14 h.1H NMRspectra wereregisteredpriorandaftertheincubationatroomtempera- ture(Fig.S9).ThesamplewithoutCDdegradedcompletely,while thosecontainingCDexhibitedlesspronounceddesulfation.Inthe presenceof1:1molarratiominordegradationcouldbeobserved, whilemolarexcessofCD(1:2molarratio)completelyhinderedthe desulfation.

3.2. StudyingFDPXdegradationbynESI-MS

To study the complex formation between FDPX and CD by MS-based methods, the compounds were dissolved in a water:methanolmixture(50/50,v/v)ataconcentrationof20␮M forFDPXand200␮MforCD,yieldinga1:10molarratio.Arepre- sentativemassspectrumobtainedinnegativeionmodeisshown inFig.7a(non-informativepartsofthespectrumoutsidethem/z range of 400–1400 were omitted for clarity). No signal corre- spondingtounboundFDPXcouldbedetected,andthespectrumis dominatedbymasspeaksofsingly-anddoubly-chargedCDions,as wellasbytriply-andquadruply-chargedFDPX·CDcomplexesdis- playingexclusively1:1stoichiometry.Theassignmentofspecies alongwithm/zvaluesreflectingmonoisotopicmassesaregivenin

(8)

Fig.7. Complexformationoffondaparinuxanditsdegradationproductwithper-6-amino-␤-cyclodextrinstudiedbynano-electrosprayionizationmassspectrometry.

(A)NegativeionmodenESImassspectrumofasolutioncontaining20␮Mfondaparinux(FDPX)and200␮Mper-6-amino-␤-cyclodextrin(CD).UnboundCDionsand correspondingmasspeaks:[CD+2Cl+Na]atm/z1220.41;[CD+Cl]atm/z1162.45;[CD-H]atm/z1126.47;[CD+2Cl]2-atm/z598.71and[CD-2H]2-atm/z562.73.

CD:FDPXcomplexionsandrespectivemasspeaks:[FDPX·CD-3H]3-atm/z877.14;[FDPX·CD-4H]4-atm/z657.6and[FDPX·CD-5H]5-atm/z525.88.(B)Insetshighlighting diagnosticpartsofthefullmassspectrumshownatthetop.ThelowextentofsulfatelossinthepresenceofCDisapparent:theintensityofmasspeakscorresponding to[FDPX·CD-3H-SO3]3-atm/z850.48and[FDPX·CD-4H-SO3]4-atm/z637.61areroughlytwoordersofmagnitudelowerthanthoseoftherespectiveintactspecies.(C) DiagnosticpartsofnegativeionmodenESImassspectraofasolutioncontainingfondaparinuxdegradationproducts(20␮M),spikedwith200␮MCD.Dominantspecies withonetotwosulfatelossesandtherespectivemasspeaks:[FDPX·CD-3H+H3PO4-SO3]3−atm/z883.14;[FDPX·CD-3H-SO3]3−atm/z850.48;[FDPX·CD-3H-2SO3]3−atm/z 823.83;[FDPX·CD-5H+Na-SO3]4−atm/z643.11;[CD·FDPX-4H-SO3]4−atm/z637.61and[FDPX·CD-4H-2SO3]4−atm/z617.62.Othermajorpeaksnotassignedinthefigure correspondtodeprotonatedCDionsoflowerchargestates(formingadductswithvariousnumbersofH3PO4andNa+),bearingnorelevancetothedegradationinquestion.

Allm/zvaluesgivenabovereflectmonoisotopicmasses.

thefigurecaption.ThefindingsareinagreementwithNMRspec- troscopicresults,allowingfortheconfidentdeterminationofthe FDPX·CD complex stoichiometrybasedonorthogonalanalytical methods.

In general,highly-sulfatedglycosaminoglycan(GAG)ionsare ratherfragileinthegasphase:thelossofneutralSO3 (79.96Da) uponionheatinginthesourceorduringcollisioninduceddissoci- ationisadominantdissociationchannelinMS-basedexperiments, posing a majordifficultyin theanalysisof heparin andrelated species[26–28].Interestingly,theFDPX·CDcomplexremainspre- dominantlyintactupontransferfromsolutiontothegasphase.This effectisanalogoustothepreventionofsulfateequivalentlosses bypairinghighly-sulfatedGAGswithbasicarginine-richpeptides in MS experiments [29,30]. Whenelectrosprayinga solution of FDPXinthepresenceofexcessquantitiesofCD,littlesulfatelossis

observedasshownexemplarilyinFig.7b.Thepeakscorresponding to[FDPX·CD-3H-SO3]3−and[FDPX·CD-4H-SO3]4- areweak,with intensitiesbelow5%ofthoseoftherespectiveintactcomplexes.

Theappearanceoftheseminorpeaksinthemassspectrumcanbe explainedbytwo,mutuallynon-exclusiveprocesses.Mostproba- bly,somelossofneutralSO3occursfromtheintact[FDPX·CD-3H]3−

and [FDPX·CD-4H]4- ions duringthe MSexperiment. The other possibilityis thatpartiallydegradedFDPXisalready present in solution,formingacomplexwiththecyclodextrin.

ThestabilizingeffectexertedbyCDonthesulfategroups of FDPXnotonlyfacilitatedtheanalysisoftheintactFDPX·CDcom- plex,butalsoprovedtobehighlyadvantageousforthestructural characterizationofthefondaparinuxdegradationproducts.

MSexperimentswereusedtomonitorthesulfatelossinFDPX uponincubationinacidicmedia.Forthesedegradationmeasure-

(9)

mentssampleswereincubatedasdescribedinSection2.3.Briefly, a phosphatebufferedpD 2.0solutionof 5mMFDPXwasincu- bated at60C for14h, dilutedinwater:methanol(50/50,v/v), thenspikedwiththecationiccyclodextrintoreachaconcentration of20␮MfortheFDPXdegradationproducts(calculatedforthe pre-degradationFDPXcontent)and200␮MforCD.Underexperi- mentalconditionsidenticaltothoseappliedtorecordthespectrum displayedin Fig.7aand b(bluetrace),markedly differentmass spectrawereobtainedforthesamplecontainingFDPXdegrada- tionproducts, ashighlightedinFig.7c(yellowtrace).Owingto potentialdifferencesintheionization/iontransmissionefficiency of thevarious species, exact quantitative information may not beextractedfromtheMSexperiments.However,thedominance of mass peakscorresponding toFDPX-related ionswithsulfate losses,suchas[FDPX·CD-3H+H3PO4-SO3]3−,[FDPX·CD-3H-SO3]3−, [FDPX·CD-3H-2SO3]3, [FDPX·CD-5H +Na-SO3]4-,[FDPX·CD-4H- SO3]4-and[FDPX·CD-4H-2SO3]4-,isclearlyvisibleinthespectra inFig.7c.CombiningtheseresultswiththefindingthatCDcom- plexationefficientlyhindersneutrallossofSO3fromFDPXinthe gasphase,wecanconcludethatthemassspectrareflectthecom- positionofthesolutionandthedistributionofspeciestherein.That is,theintensesignalscorrespondingtotheionslistedabovearenot artefactscausedbygas-phaseSO3lossduringtheMSexperiment, butinsteadcorrespondtodegradationproductsalreadypresentin solution.

In conclusion,resultsofMSexperimentssupportNMRspec- troscopic findings,enablingtheunambiguousassignmentofthe FDPX·CD complexstoichiometry.Inaddition,utilizingthebene- ficialstabilizingeffectofCD-complexationonthesulfategroups ofFDPXinthegasphase,MSprovidesevidencethatthedegrada- tionproductsofFDPXarepentasaccharideswithanintactglycan backbone,displayingpredominantlyone,andtoalesserextenttwo sulfatelosses.

4. Conclusions

Inthepresentstudy,theintermolecularinteractionsoffonda- parinuxwithheptakis(6-amino-6-deoxy)-beta-cyclodextrinwere characterizedextensivelybyNMRspectroscopyinsolutionandby nESI-MSinthegasphase.NMRspectroscopicstudiesrevealed1:1 stoichiometryandmoderateaffinity(logˇ11=3.65±0.02)atpD 7.4,whileatpD2.0thermodynamicallymorestablespecieswere deduced:FDPX·CD(logˇ11≥4.9±0.1)andFDPX·2CD(logˇ12≥8).

ThepossibleinteractionsiteinvolvingtheIdoA2Smoietyandthe cationicpartofthecyclodextrinhasalsobeenlocalizedbasedon2D NMRstudies.Anin-depthcharacterizationoftheacidicdegrada- tionofFDPXbyNMRandMSexperimentssuggesteddesulfationof thepentasaccharidebackboneatpD2.0.Undertheseconditions, theheptacationiccyclodextrinsuccessfully preventssulfate loss bystrongelectrostaticinteractions.Thus,ourfindingscontribute to a better understanding of heparin stabilization under acidic conditions,offeringanefficientmethodtopreventtheunwanted decompositionofheparinoids.

CRediTauthorshipcontributionstatement

BiankaVárnai:Formalanalysis,Investigation,Writing-original draft,Writing - review &editing,Visualization. Márkó Grabar- ics: Investigation, Writing - original draft, Writing - review &

editing,Visualization.ZoltánSzakács:Methodology,Formalanal- ysis, Writing - review & editing, Visualization. Kevin Pagel:

Resources,Writing-review&editing,Fundingacquisition.Milo Malanga:Investigation,Writing-review&editing.TamásSoha- jda:Resources,Writing-review&editing,Fundingacquisition.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinan- cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgments

S.B.thanksthefinancialsupportfromtheJánosBolyaiResearch ScholarshipoftheHungarianAcademyofSciencesandfromthe Bolyai+NewNationalExcellenceProgramoftheMinistryofHuman Capacities(ÚNKP-20-5-SE-31).M.G.andK.P.gratefullyacknowl- edgefinancialsupportfromtheFreieUniversitätBerlin,theMax PlanckSocietyandtheGermanResearchFoundationundergrant numberFOR2177/P03.M.M.andT.Saregratefulforthesupport oftheHungarianNationalResearch,DevelopmentandInnovation Office(OTKAK-125093).

ThanksareduetoProf.CsabaSzántayJr.forhissupportofthe 800MHzNMRmeasurementsatGedeonRichterPlc.

AppendixA. Supplementarydata

Supplementarymaterialrelated tothis article canbefound, in theonline version, at doi:https://doi.org/10.1016/j.jpba.2021.

113947.

References

[1]R.J.Linhardt,2003ClaudeS.Hudsonawardaddressincarbohydrate chemistry.Heparin:structureandactivity,J.Med.Chem.46(2003) 2551–2564,http://dx.doi.org/10.1021/jm030176m.

[2]C.J.Jones,S.Beni,J.F.K.Limtiaco,D.J.Langeslay,C.K.Larive,Heparin characterization:challengesandsolutions,Annu.Rev.Anal.Chem.4(2011) 439–465,http://dx.doi.org/10.1146/annurev-anchem-061010-113911.

[3]B.Mulloy,J.Hogwood,E.Gray,R.Lever,C.P.Page,Pharmacologyofheparin andrelateddrugs,Pharmacol.Rev.68(2015)76–141,http://dx.doi.org/10.

1124/pr.115.011247.

[4]E.Gray,B.Mulloy,T.W.Barrowcliffe,Heparinandlow-molecular-weight heparin,Thromb.Haemost.99(2008)807–818,http://dx.doi.org/10.1160/

TH08-01-0032.

[5]H.Naimy,N.Leymarie,M.J.Bowman,J.Zaia,Characterizationofheparin oligosaccharidesbindingspecificallytoantithrombinIIIusingmass spectrometry,Biochemistry47(2008)3155–3161,http://dx.doi.org/10.1021/

bi702043e.

[6]M.Schroeder,J.Hogwood,E.Gray,B.Mulloy,A.M.Hackett,K.B.Johansen, Protamineneutralisationoflowmolecularweightheparinsandtheir oligosaccharidecomponents,Anal.Bioanal.Chem.399(2011)763–771, http://dx.doi.org/10.1007/s00216-010-4220-8.

[7]M.A.Crowther,L.R.Berry,P.T.Monagle,A.K.C.Chan,Mechanismsresponsible forthefailureofprotaminetoinactivatelow-molecular-weightheparin,Br.J.

Haematol.116(2002)178–186,http://dx.doi.org/10.1046/j.1365-2141.2002.

03233.x.

[8]B.Kalaska,K.Kaminski,E.Sokolowska,D.Czaplicki,M.Kujdowicz,K.

Stalinska,J.Bereta,K.Szczubialka,D.Pawlak,M.Nowakowska,A.Mogielnicki, Nonclinicalevaluationofnovelcationicallymodifiedpolysaccharide antidotesforunfractionatedheparin,PLoSOne10(2015)1–21,http://dx.doi.

org/10.1371/journal.pone.0119486.

[9]L.Szente,J.Szemán,Cyclodextrinsinanalyticalchemistry:host-guesttype molecularrecognition,Anal.Chem.85(2013)8024–8030,http://dx.doi.org/

10.1021/ac400639y.

[10]L.Liu,Q.X.Guo,Thedrivingforcesintheinclusioncomplexationof cyclodextrins,J.Incl.Phenom.Macrocycl.Chem.42(2002)1–14,http://dx.

doi.org/10.1023/A:1014520830813.

[11]S.Hbaieb,R.Kalfat,Y.Chevalier,N.Amdouni,H.Parrot-Lopez,Influenceofthe substitutionof␤-cyclodextrinsbycationicgroupsonthecomplexationof organicanions,Mater.Sci.Eng.C28(2008)697–704,http://dx.doi.org/10.

1016/j.msec.2007.10.013.

[12]F.D’Anna,S.Riela,P.LoMeo,M.Gruttadauria,R.Noto,Thebinary pyrene/heptakis-(6-amino-6-deoxy)-␤-cyclodextrincomplex:asuitable chiraldiscriminator.Spectrofluorimetricstudyoftheeffectofsome␣-amino acidsandestersonthestabilityofthebinarycomplex,Tetrahedron Asymmetry13(2002)1755–1760,http://dx.doi.org/10.1016/S0957- 4166(02)00418-4.

[13]P.Job,Formationandstabilityofinorganiccomplexesinsolution,Ann.Chim.

(Paris)9(1928)113–203.

[14]L.Fielding,Determinationofassociationconstants(K(a))fromsolutionNMR data,Tetrahedron56(2000)6151–6170,http://dx.doi.org/10.1016/S0040- 4020(00)00492-0.

(10)

[15]SolutionEquilibriaAnalysiswiththeOPIUMComputerProgram,Thefull versionoftheOPIUMprogramisavailable(freeofcharge)at

http://web.natur.cuni.cz/∼kyvala/opium.html(accessedon19.September, 2020).

[16]J.C.L.Meeussen,Orchestra:anobject-orientedframeworkforimplementing chemicalequilibriummodels,Environ.Sci.Technol.37(2003)1175–1182, http://dx.doi.org/10.1021/es025597s,ThefullversionoftheORCHESTRA programisavailable(freeofcharge)athttp://orchestra.meeussen.nl/

(accessedon19.September,2020).

[17]D.Neuhaus,M.P.Williamson,TheNuclearOverhauserEffectinStructuraland ConformationalAnalysis,2nded.,Wiley-VCH,2000.

[18]G.Wenz,C.Strassnig,C.Thiele,A.Engelke,B.Morgenstern,K.Hegetschweiler, Recognitionofionicguestsbyionic␤-cyclodextrinderivatives,Chem.-AEur.

J.14(2008)7202–7211,http://dx.doi.org/10.1002/chem.200800295.

[19]H.M.Wang,D.Loganathan,R.J.Linhardt,DeterminationofthepK(a)of glucuronicacidandthecarboxygroupsofheparinby

13C-nuclear-magnetic-resonancespectroscopy,Biochem.J.278(1991) 689–695,http://dx.doi.org/10.1042/bj2780689.

[20]W.Al-Soufi,P.R.Cabrer,A.Jover,R.M.Budal,J.V.Tato,Determinationof second-orderassociationconstantsbyglobalanalysisof1Hand13CNMR chemicalshifts,Steroids68(2003)43–53,http://dx.doi.org/10.1016/s0039- 128x(02)00114-9.

[21]F.Ulatowski,K.Dabrowa,T.Bałakier,J.Jurczak,Recognizingthelimited applicabilityofjobplotsinstudyinghost-guestinteractionsin

supramolecularchemistry,J.Org.Chem.81(2016)1746–1756,http://dx.doi.

org/10.1021/acs.joc.5b02909.

[22]D.BrynnHibbert,P.Thordarson,ThedeathoftheJobplot,transparency,open scienceandonlinetools,uncertaintyestimationmethodsandother developmentsinsupramolecularchemistrydataanalysis,Chem.Commun.

(Camb.)52(2016)12792–12805,http://dx.doi.org/10.1039/c6cc03888c.

[23]S.J.Berners-Price,A.K.Gorle,T.Haselhorst,S.J.Katner,A.VEverest-Dass,D.

James,E.J.Peterson,J.E.Koblinski,K.Takabe,M.VonItzstein,P.Nicholas, AngenwandteChemie,(n.d.).https://doi.org/10.1002/anie.202013749.

[24]A.Kalsson,S.K.Singh,Acidhydrolysisofsulphatedpolysaccharides.

Desulphationandtheeffectonmolecularmass,Carbohydr.Polym.38(1999) 7–15,http://dx.doi.org/10.1016/s0144-8617(98)00085-x.

[25]S.P.Seto,T.Miller,J.S.Temenoff,Effectofselectiveheparindesulfationon preservationofbonemorphogeneticprotein-2bioactivityafterthermal stress,Bioconjug.Chem.26(2015)286–293,http://dx.doi.org/10.1021/

bc500565x.

[26]M.J.Kailemia,L.Li,M.Ly,R.J.Linhardt,I.J.Amster,Completemassspectral characterizationofasyntheticultralow-molecular-weightheparinusing collision-induceddissociation,Anal.Chem.84(2012)5475–5478,http://dx.

doi.org/10.1021/ac3015824.

[27]R.Huang,C.Zong,A.Venot,Y.Chiu,D.Zhou,G.J.Boons,J.S.Sharp,Denovo sequencingofcomplexmixturesofheparansulfateoligosaccharides,Anal.

Chem.88(2016)5299–5307,http://dx.doi.org/10.1021/acs.analchem.

6b00519.

[28]R.L.Miller,S.E.Guimond,R.Schwörer,O.V.Zubkova,P.C.Tyler,Y.Xu,J.Liu,P.

Chopra,G.J.Boons,M.Grabarics,C.Manz,J.Hofmann,N.G.Karlsson,J.E.

Turnbull,W.B.Struwe,K.Pagel,Shotgunionmobilitymassspectrometry sequencingofheparansulfatesaccharides,Nat.Commun.11(2020)1–12, http://dx.doi.org/10.1038/s41467-020-15284-y.

[29]G.Venkataraman,Z.Shriver,R.Raman,R.Sasisekharansequencingcomplex polysaccharides,Science286(1999)537–542,http://dx.doi.org/10.1126/

science.286.5439.537.

[30]J.Zaia,Glycosaminoglycanglycomicsusingmassspectrometry,Mol.Cell Proteomics12(2013)885–892,http://dx.doi.org/10.1074/mcp.R112.026294.

Ábra

Fig. 1. Chemical structures and numbering of the fondaparinux (A) and the heptakis(6-amino-6-deoxy)-beta-cyclodextrin (B).
Fig. 2. Job’s plot for the selected 1 H resonances of FDPX at pD 7.4 (A) and at pD 2.0 (C) and that of the anomeric resonance of NH 2 -␤-CD at pD 7.4 (B) and at pD 2.0 (D), respectively.
Fig. 3. Representative 1 H NMR chemical shift changes (subplot A) of the FDPX 1 H resonances upon titration of 3.4 mM FDPX solution with increasing portions of a 20.1 mM NH 2 -␤-CD solution at pD 7.4
Fig. 5. Partial 2D ROESY NMR spectra of a pD 2.0 sample containing FDPX and CD at 1:1 molar ratio, showing cross-peaks between the IdoA2S H1 proton and the CD H6 resonance.
+2

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Malthusian counties, described as areas with low nupciality and high fertility, were situated at the geographical periphery in the Carpathian Basin, neomalthusian

We can also say that the situation-creating activity of technology necessarily includes all characteristics of situations (natural, social, economical, cultural, etc.); that is,

But this is the chronology of Oedipus’s life, which has only indirectly to do with the actual way in which the plot unfolds; only the most important events within babyhood will

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of