• Nem Talált Eredményt

consecutive integers II problem, and some conjectures of Erdős on Small gaps between almost primes, the parity Journal of Number Theory

N/A
N/A
Protected

Academic year: 2022

Ossza meg "consecutive integers II problem, and some conjectures of Erdős on Small gaps between almost primes, the parity Journal of Number Theory"

Copied!
10
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

Small gaps between almost primes, the parity problem, and some conjectures of Erdős on consecutive integers II

DanielA. Goldston, Sidney W. Graham,Apoorva Panidapu, Janos Pintz1, Jordan Schettler, CemY. Yıldırım

a r t i c l e i n f o a bs t r a c t

Article history:

Received25April2020 Accepted28June2020 Availableonline16July2020 CommunicatedbyS.J.Miller

Keywords:

Almostprime Smallgaps Erdos Mirsky Divisor

Exponentpattern

Weshowthatforanypositiveintegern,thereissomefixed Asuchthatd(x)=d(x+n)=Ainfinitelyoftenwhered(x) denotesthenumberofdivisorsofx.Infact,weestablishthe stronger result that both x andx+nhave thesame fixed exponent pattern for infinitely many x. Here the exponent pattern of an integer x > 1 is the multiset of nonzero exponentswhichappearintheprimefactorizationofx.

©2020TheAuthor(s).PublishedbyElsevierInc.Thisisan openaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thispaperisintendedasasequelto[GGPY11] writtenbyfourofthecoauthorshere.

Inthepaper,theyprovedastrongerform oftheErdős-Mirksyconjecturementionedin [EM52] whichstatesthatthere areinfinitelymanypositive integersxsuchthatd(x)= d(x+ 1) whered(x) denotesthenumberofdivisorsofx.Thisconjecturewasfirstproven byHeath-Brownin1984[HB84],butthemethoddidnotrevealthenatureofthesetof

* Correspondingauthor.

E-mailaddress:jordan.schettler@sjsu.edu(J. Schettler).

1 ResearchsupportedbytheNationalResearchDevelopmentandInnovationOffice,NKFIH,K119528.

https://doi.org/10.1016/j.jnt.2020.06.002

0022-314X/©2020TheAuthor(s).PublishedbyElsevierInc. ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

valuesd(x) forsuchx.Inparticular,onecouldnotconcludethattherewasanyparticular valueAforwhichd(x)=d(x+ 1)=Ainfinitelyoften.In[GGPY11],theauthorsshowed that

d(x) =d(x+ 1) = 24 for infinitely many positive integersx. (0.1) Similarresultswereprovenfor otherrelatedarithmeticfunctionswhichcount numbers ofprimedivisors. Thegoalof thispaper isto establishresults foranarbitrary shiftn, i.e.,d(x)=d(x+n)=Ainfinitelyoftenforsomefixed A.

2. Notationandpreliminaries

Forour purposes,alinear form isan expression L(m)=am+b where a and b are integersand a> 0.We view L both as apolynomial and as a functionin m. We say L isreduced if gcd(a,b)= 1.If K(m)=cm+dis another linearform,then arelation betweenL andK is anequation oftheform |cL·L−cK·K|=nwhere cL, cK,n are allpositive integers.We call cL, cK the relationcoefficients and we call nthe relation value.Wedefine thedeterminant ofLandK asdet(L,K)=|ad−bc|.

Foraprimep,ak-tupleof linearforms L1,L2,. . . ,Lk iscalled p-admissible ifthere isanintegertp suchthat

L1(tp)L2(tp)· · ·Lk(tp)0 (modp)

Wesay thatak-tuple of linearforms is admissibleif itis p-admissiblefor everyprime p. Notethatak-tupleoflinearformsisadmissibleiffalltheformsarereducedandthe tupleisp-admissibleforeveryprimep≤k.

AnEr number isapositive integer thatisthe product ofr distinct primes.Several ofthecoauthorshereprovedthefollowing resultonE2-numbersinadmissibletriplesin [GGPY09].Later,FrankThorne[Tho08] obtainedageneralizationforEr-numberswith r≥3.

Theorem1.LetC beany constant.IfL1,L2,L3 isanadmissibletriple oflinearforms, then there are two among them, say Lj and Lk such that both Lj(x) and Lk(x) are E2-numberswithboth primefactors largerthan C forinfinitelymanyx.

The results obtained in this paper will use Theorem 1 above in combination with Theorem2below,aspecialcaseofwhichwasproveninthepreviouspaper[GGPY11].

Weprovideaproofhereofthegeneralversionsinceitcontainsimportantideasrelevant fortherestofthepaper.

Theorem 2 (Adjoining Primes). Assume that Li = aim+bi for i = 1,. . . ,k gives an admissiblek-tuplewith relations |ci,jLi−cj,iLj|=ni,j.We can always“adjoin” prime factorstotherelationcoefficientswithoutchangingtherelationvalues:foreverychoiceof

(3)

positiveintegersr1,r2,. . .,rk suchthatgcd(ri,ai)= gcd(ri,det(Li,Lj))= gcd(ri,rj)= 1 whenever i = j, there is an admissible k-tuple of linear forms K1,K2,. . . ,Kk with relations |ci,jriKi−cj,irjKj|=ni,j.

Proof. LetxbeasolutionofthecongruencesLi(x)≡ri (modr2i) for1≤i≤k.Suchan xexistsbytheChineseRemainderTheoremsincegcd(ai,ri)= gcd(ri,rj)= 1.Thisxis uniquemodulor= (r1r2· · ·rk)2.Nowdefineanewk-tupleviaKi(m)=Li(rm+x)/ri. Byconstruction,wehave|ci,jriKi−cj,irjKj|=ni,j,soweonlyneedtocheck thatthis new k-tuple is admissible. Wewill show thatthe newk-tuple is p-admissiblefor every primep.Therearetwo cases.

Case 1:Suppose thatp|r. Sincegcd(ri,rj)= 1 for i=j,we havethatp|r for exactly oneindex.Now

K(0) =L(x)/r1 (modr)

so K(0)10 (modp).WeclaimthatalsoKi(0)0 (modp) wheni=.Suppose, bywayofcontradiction,thatKi(0)0 (modp) forsomei=.ThenLi(x)0 (modp) sinceri0 (modp),butL(x)≡r0 (modp),so

det(L, Li) =|aib−abi|=|aiL(x)−aLi(x)| ≡0 (modp),

butthiscontradictstheassumptionthatgcd(r,det(L,Li))= 1.ThusK1(0)· · ·Kk(0) 0 (modp).

Case 2: Now suppose p r. Since L1,. . . ,Lk is admissible, there is an integer tp such that L1(tp)· · ·Lk(tp) 0 (modp). Choose τp such that p+x tp (modp). Then Li(rτp+x)≡Li(tp)0 (modp) andri0 (modp) foralli,so

K1p)· · ·Kkp) =L1(rτp+x)

r1 · · ·Lk(rτp+x)

rk 0 (modp).

Letnbeapositiveintegerandwriteitsprimefactorizationasn=pk11pk22· · ·pkjj where the pi are distinct primes with ki >0.Then the exponent pattern of n is themultiset {k1,k2,. . . ,kj}where order doesnotmatter butrepetitionsare allowed.Thevalues of manyimportantarithmeticfunctionsdependonlyontheexponentpatternoftheinput;

suchfunctionsinclude:

d(x) = # of divisors ofx

Ω(x) = # of prime factors (counted with multiplicity) ofx ω(x) = # of distinct prime factors ofx

μ(x) = Möbius function = (−1)ω(x)ifnis squarefree, zero otherwise λ(x) = Liouville function = (−1)Ω(x)

(4)

Thus if both x and x+n have the same exponent pattern, then d(x) = d(x+n), Ω(x)= Ω(x+n), ω(x)=ω(x+n), etc. In establishingthe strong form of the Erdős- MirskyConjecture (0.1),theauthorsin[GGPY11] actually provedthefollowing result.

Theorem3.Thereareinfinitelymanypositiveintegersxsuchthatboth xandx+ 1have exponentpattern {2,1,1,1}.

Wewill show thatforany shift n,there are infinitelymany positive integersxsuch thatboth xand x+nhaveafixedsmallexponentpattern.Akeytool fordoingthisis containedinthenextremark.

Remark 4.Suppose we have an admissible triple of forms Li with relations |ci,jLi cj,iLj| = n. For a given form Li in the triple, we call ci,j and ci,k where {i,j,k} = {1,2,3}thepairofrelationcoefficientsforLiinthetriple.Supposethesepairsofrelation coefficientsforeachforminthetriplehavematchingexponentpatterns,i.e.,ci,jandci,k

havethesameexponentpatternwithany choicesofi,j,ksuchthat{i,j,k}={1,2,3}. We then can choose pairwise coprime integers having any desired exponent pattern whicharerelativelyprimetoalllinearcoefficientsanddeterminants(sincedeterminants of distinct reduced forms are alwaysnonzero). In particular, we canadjoin integers to the relation coefficientsso thatthe new triple has theproperty thatall of its relation coefficientshaveanygivenexponentpattern Pwhichcontainstheexponentpatternsof everyci,j. Henceby Theorem 1, we would then getinfinitely many positive integersx suchthatbothxandx+nhaveexponentpatternP∪ {1,1}.TheproofsofTheorems5 and7belowwillrelyheavilyonthisidea.

3. Shiftswhichareevenornotdivisibleby15

Theorem5. Letnbeapositiveintegerwith2|nor15n.Thenthereareinfinitelymany positiveintegers xsuchthatboth xandx+n haveexponent pattern{2,1,1,1,1}. Proof. Consider the following triple of linear forms:L1 = 2m+n,L2 = 3m+n, and L3= 5m+ 2n.Wehavetherelations

3L12L2=n 5L12L3=n 3L35L2=n

Now define gi = gcd(i,n) and reduce the linearforms: takeL1 =L1/g2, L2 =L2/g3, andL3=L3/g5.Then therelationsbecome

3·g2L12·g3L2=n 5·g2L12·g5L3=n

(5)

3·g5L35·g3L2=n

Case 1: Suppose n is even and write n = 2n2. Then g2 = 2, so L1 = m+n2, L2 = (3/g3)m+ 2(n2/g3),andL3= (5/g5)m+ 4(n2/g5).

Subcase 1a:Suppose2|n2.Then

L1(1)L2(1)L3(1)130 (mod 2),

so the triple L1, L2, L3 is 2-admissible. Now we check this triple is also 3-admissible (and thereforeadmissible).

If3n2,then

L1(0)L2(0)L3(0)≡n2(−n2)(n2/g5)0 (mod 3).

If3|n2,theng3= 3,soL1≡m≡ ±L3 (mod 3).Nowchoosem0∈ {1,1}suchthat L2(m0)0 (mod 3).Then

L1(m0)L2(m0)L3(m0)≡m0·L2(m0)·(±m0)0 (mod 3).

Here therelation coefficientsmatch inpairsfor agiven form inthetriple and allhave exponent patterns contained in {1,1}, so by appeal to Remark 4 we have a slightly stronger result, namely, there are infinitely many positive integers xsuch thatboth x and x+nhaveexponentpattern{1,1,1,1}.

Subcase 1b:Supposenow2n2.Let

K1=L1(4m+n2)/2 = 2m+n2

K2=L2(4m+n2) = 4· 3 g3

m+ 5· n2 g3

K3=L3(4m+n2) = 4· 5 g5

m+ 9· n2 g5

Ourrelationsthusbecome

22·3K12·g3K2=n 22·5K12·g5K3=n 3·g5K35·g3K2=n

Herethepairsofrelationcoefficientsforeachforminthetriplehavematchingexponent patterns.WewillcheckthatthetripleK1,K2,K3isadmissible.First,wenotethateach form isstillreduced:

K1= 2m+n2

(6)

isreducedsince2n2.

K2= 4· 3

g3m+ 5·n2

g3

isreducedsincetheconstanttermisoddand notdivisibleby3 ifg3= 1.

K3= 4· 5

g5m+ 9·n2

g5

isreducedsincetheconstanttermisoddand notdivisibleby5 ifg5= 1.

NextK1K2K3 1 (mod 2), sothetriple isindeed2-admissible. Nowwecheck that thistripleis3-admissible.

If3n2,theng3= 1,so

K1(−n2)K2(−n2)K3(−n2)(−n2)2(n2/g5)0 (mod 3)

If 3| n2, then K1K3 ≡ ±m2 (mod 3). Choose m0 ∈ {1,1}such thatK2(m0) 0 (mod 3).Then

K1(m0)K2(m0)K3(m0)≡ ±(m0)2K2(m0)0 (mod 3).

Heretherelationcoefficientsallhaveexponentpatternscontainedin{2,1,1},soadjoin- ingprimesagaingivesusthestatementofthetheorem.

Case2:Nowsupposenisodd,sog2= 1 fromnowon.OurrelationsforLibecome 3L12·g3L2=n

5L12·g5L3=n 3·g5L35·g3L2=n

Ifwelook atthismodulo2,wegetL1 1,L2≡m+ 1,L3≡m.Thusthis tripleisnot 2-admissiblehere.However,we canrestrictm (mod 2) andreduceto get2-admissible.

Todothis,wewrite

M1=L1(2m) = 4m+n M2=L2(2m) = 2· 3

g3

m+ n g3

M3=L3(2m)/2 = 5 g5

m+ n g5

.

ThetripleM1,M2,M3 hasreducedformsandis2-admissiblewith relations

(7)

3M12·g3M2=n 5M122·g5M3=n 2·3·g5M35·g3M2=n

Note, however, that the relation coefficients for M3 do not have matching exponent patterns.Wecanremedythis byrestrictingandreducingmodulo3.

Subcase 2a:Suppose3n,sog3= 1.Take

N1=M1(3m+n) = 12m+ 5n N2=M2(3m+n) = 18m+ 7n N3=M3(3m+n)/3 = 5

g5

m+ 2· n g5

Now wegetrelations

3N12N2=n 5N122·3·g5N3=n 2·32·g5N35N2=n

Alltheseformsarereducedandthetripleisstill2-admissiblesinceN1(1)N2(1)N3(1) 130 (mod 2).Infact,thetripleis3-admissible toosince

N1(0)N2(0)N3(0)(−n)(n)(−n/g5)0 (mod 3).

Heretherelationcoefficientsallhaveexponentpatternscontainedin{2,1,1},soadjoin- ing primes again gives us thestatement of the theorem. In fact, if we also have 5 n here, thentherelation coefficientsallhaveexponentpatterns containedin{2,1}sowe getinfinitelymanypositiveintegersxsuchthatxandx+nbothhaveexponentpattern {2,1,1,1}.

Subcase 2b: Suppose now 3| n,so 5n by ourassumption that 15 n. Westill must factorouta3 fromM3,butdoingso willforceus toalsofactorouta3 fromM1which thentellsustoalsofactorouta5 fromM1tomakeitspairofrelationcoefficientsinthe triplehavematchingexponentpatterns.Thuswewillrestrictmodulo15:writen= 3n3

and take

J1=M1(15m4n)/15 = 4m−n J2=M2(15m4n)/(g9/3) = 10· 9

g9

m−23· n g9

J3=M3(15m4n)/3 = 25m19n3

(8)

where, as indicated above, g9 = gcd(9,n) which is either 3 or 9 in this case. Here we haverelations

32·5J12·g9J2=n 3·52J122·3J3=n 2·32J35·g9J2=n

Alltheformsarereduced(since5n)andthetripleis2-admissiblesinceJ1(0)J2(0)J3(0)

130 (mod 2).

Nowwecheckthatthistripleis3-admissible.

If3n3,theng9= 3,so

J1(−n3)J2(−n3)J3(−n3)(−n3)(n3)20 (mod 3).

If3|n3,theng9= 9 soJ1J3≡m2 (mod 3).Choosem0∈ {1,1}suchthatJ2(m0) 0 (mod 3).Then

J1(m0)J2(m0)J3(m0)(m0)2J2(m0)0 (mod 3).

Here therelation coefficients allhaveexponent patterns containedin{2,1,1}(or even in{2,1}inthe casethat9|n), so adjoining primes againgives us thestatementof the theorem.

Remark6.Ifweassumethetwinprimeconjecture,thenforanypositiveintegern,there areprimespandp+ 2 suchthatneitherdivide15n.Inthiscase,wecanusethefollowing triple: L1 = 2m+n, L2 =pm+n(p−1)/2,L3 = (p+ 2)m+n(p+ 1)/2.Buildingoff this triple will show—asin Subcase 2a above—that there are infinitely many positive integers xsuch that xand x+n both haveexponent pattern {2,1,1,1}. We will not includethedetailsheresincewegiveanunconditionalproofofaresultfortheremaining casenotcoveredbyTheorem5.

4. Shiftswhichareoddanddivisible by15

Theorem 7. Let n be a positive integer with 2 n and 15|n. Then there are infinitely manypositiveintegersxsuchboth xandx+nhave exponentpattern {3,2,1,1,1,1,1}. Proof. Byconsideringtheadmissibletriplem,m+4,m+10,wefindthatforanyconstant C there areinfinitelymanypairsof E2 numberseachhavingprimefactorsbigger than C and which areadistance of either4,6, or 10 apart.Inparticular, there are oddE2 numbersq1,q2suchthatgcd(qi,n)= 1 fori= 1,2 andq2=q1+ 2j wherej ∈ {2,3,5}. Thuswemaywriteq1=p1,1p1,2 andq2=p2,1p2,2where p1,1,p1,2,p2,1,andp2,2 areall

(9)

distinct primes,noneofwhichdivide2n.There areintegersa,bwith aevenandb odd suchthat−aq2+bq1= 1.Writea= 2a2 anddefinethetripleoflinearforms

L1=q1m+a2n L2= 2q2m+bn L3= 4·j

gm+ (b−a)n g

where g = 1 if j = 2 and g = j otherwise. Now we check that this triple is admissi- ble. Weonlyneedto checkfor2-admissibleand3-admissiblesinceeachform isreduced by construction. The triple is 2-admissible since L1·L2·L3 L1·1·1 (mod 2). To check thetriple is 3-admissible, choosem0 ∈ {1,1} withL3(m0)0 (mod 3). Then L1(m0)L2(m0)L3(m0)(q1m0)(−q2m0)L3(m0)0 (mod 3). Moreover,thetriplesat- isfiestherelations

q1L22q2L1=n

gq1L322jL1=n (7.1)

gq2L32jL2=n

However, the pairs of relation coefficients for L1, L2 do not have matching exponent patterns inthetriple, sowewill needtoadjoin primesusing Theorem2. Wewillbreak up theproofinto casesdepending onthevalueof j,butinboth casesweneed tonote thatthepairwisedeterminantsarerelativelyprimetotheintegerswewantto adjoin:

det(L1, L2) =q1bn−2a2nq2=n det(L1, L3) =q1(b−a)n

g 4a2 j g = n

g det(L2, L3) = 2q2(b−a)n

g 4bn· j

g = 2·n g Case 1:Supposej= 2,sog= 1.

We apply Theorem 2directlywith r1 =p22,1p2,2, r2 =p1,1, andr3 = 1,so we get a newadmissibletripleofforms Ki whichsatisfiesthefollowing relations:

|p21,1p1,2K22p32,1p22,2K1|=n

|q1K323p22,1p2,2K1|=n

|q2K322p1,1K2|=n.

Here the relation coefficients of K1 both have exponent pattern {3,2,1}, the relation coefficients of K2 both have exponent pattern {2,1}, and the relation coefficients of K3 both have exponentpattern {1,1}. Thus by another applicationof Theorem2 via

(10)

Remark 4 we can arrange an admissible triple with common relation value n and all relation coefficients having exponent pattern {3,2,1,1,1} (or even {3,2,1,1} in this case).

Case 2: Suppose j = 2, so g = j. We apply Theorem 2 directly with r1 = p2,1, and r2=r3= 1,so weget anew admissibletripleofforms Ki whichsatisfiesthefollowing relations:

|q1K22p22,1p2,2K1|=n

|jq1K322jp2,1K1|=n

|jq2K32jK2|=n.

Here the relation coefficients of K1 both haveexponent pattern {2,1,1}, the relation coefficientsofK2both haveexponentpattern{1,1},and therelation coefficientsof K3 bothhaveexponentpattern{1,1,1}.ThusbyappealtoTheorem2viaRemark4wecan arrange anadmissible triplewith common relation valuen and allrelation coefficients havingexponentpattern{3,2,1,1,1}(or even{2,1,1,1}inthiscase).

Therefore, in either case, there are infinitely many pairs of positive integers both havingexponentpattern{3,2,1,1,1,1,1}whichareadistance ofnapart.

References

[EM52]PaulErdős,LeonMirsky,Thedistributionofvaluesofthedivisorfunctiond(n),Proc.Lond.

Math.Soc.2 (3)(1952)257–271.

[GGPY09]D.A.Goldston,S.W.Graham,J.Pintz,C.Y.Yıldırım,Smallgapsbetweenproductsoftwo primes,Proc.Lond.Math.Soc.98 (3)(2009)741–774.

[GGPY11]D.A. Goldston,S.W.Graham,J.Pintz,C.Y.Yıldırım,Smallgapsbetweenalmostprimes, theparityproblem,andsomeconjecturesofErdősonconsecutiveintegers,Int.Math.Res.

Not.2011 (7)(2011)1439–1450.

[HB84]D.R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31(1984) 141–149.

[Tho08]Frank Thorne, Boundedgaps betweenproductsof primeswithapplications toideal class groupsandellipticcurves,Int.Math.Res.Not.2008 (5)(2008)156.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

The significant determinants of new drug prescribing are the number of patients, the number of consultations per patient, the portfolio width of a specialist and the

Lengyel, On divisibility properties of some differences of the central binomial coefficients and Catalan numbers, INTEGERS, Electronic Journal of Combinatorial Number Theory

[10] On greatest prime power divisors of the terms of linear recurrences, Fibonacci numbers and reccurence sequence, International Number Theory Conference, Eger,

Erdős, Some applications of graph theory and combinatorial methods to number theory and geometry, Algebraic Methods in Graph Theory, Coll.. évi Kürschák József matematikai

In this paper, we consider the problem of describing the polynomial values of a family of polynomials related to the sums of products of consecutive integers.. For k = 0,

It may be expected that in the 2020s the European Monetary Union will be joined by all countries that are still using their national currencies and that the EU will be extended

In my recent work [7] I showed several partial results in this direction (see Theorems 17–19) but I was far from being able to show the original conjecture of Erd˝os, P´ olya and

Pintz, Polignac Numbers, Conjectures of Erd˝os on Gaps be- tween Primes, Arithmetic Progressions in Primes, and the bounded Gap Conjecture, arXiv: 1305.6289v1 [math...