• Nem Talált Eredményt

Relation between Dirichlet kernels with respect to Vilenkin-like systems.

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Relation between Dirichlet kernels with respect to Vilenkin-like systems."

Copied!
6
0
0

Teljes szövegt

(1)

w i t h r e s p e c t t o Vilenkin-like s y s t e m s

ISTVÁN BLAHOTA*

A b s t r a c t . In this paper we discuss the relation between Dirrichlet-kernels with respect to Vilenkin an Vilenkin-like systems. This relation gives a useful tool in field of approximation theory on compact totally disconnected Abelian groups.

Introduction

Let m : = ( m o , m i , . . . ) denote a sequence of positive integers not less than 2. Denote by Zm j { 0 , 1 , . . . , rrij — 1} the additive group of integers modulo rrij ( j G N ) . Define the group Gm as the cartesian product of the discrète cyclic groups Zm.,

oo

Gm • — X .

3=0

The elements of Gm c a n be represented by sequences x : = (x0 , X i , . . . , X j , . . . ) (Xj G Zm.). It easy to give a base the neighborhoods of Gm :

/0( x ) Gm,

In(x):={y G Gm\yo := x o , . . . , yn-\ : = }

for x G Gm,n G N, k = 0 , 1 , . . . , mn — 1. Define /n: = /n( 0) for n G P (P := N{0}). Then In is a subgroup of Gm (n G N). The direct product fi of the measures

Vk({j}) • = —— { j e zm k, k e N) mk

is the Haar measure on Gm with /i(Gm) = 1.

* Research s u p p o r t e d by the H u n g á r i á n N a t i o n a l F o u n d a t i o n for Scientific R e s e a r c h ( O T K A ) , grant no. F 0 0 7 3 4 7 and the N a t i o n a l Scientific F o u n d a t i o n of the H u n g á r i á n Credit B a n k ( A l a p í t v á n y a M a g y a r F e l s ő o k t a t á s é r t és T u d o m á n y é r t , M H B )

(2)

110 István Blahota

If M0 := 1, Mfc+1 mkMk(k G N ) , then every n G N can be uniquely oo

expressed as n = YJ nj M j , where ríj G Zmj(j G N ) and only a finite i=o

number of n3 's differ f í o m zéro.

Define on Gm the generalized Rademacher functions in the following way:

27TlXk 2 x-,

rk\x) '• — E XP * :=X e Gm, K É N , mk

It is known that the functions

oo

V > n ( s ) : = nr£f c( s ) (n G N) k=0

on Gm are elements of the character group of Gm, and ail the elements of the character group are of this form. If x,y G Gm,n,m G N then it is easy to see that

+ y) = 1pn{x)lljn(y), and

fpn+m{x) = ll>n(x)ljjm(x).

The system (-0n|n G N ) is called a Vilenkin system and Gm a Vilenkin group.

The Dirichlet kernels are

7 1 - 1

£ ? ( * ) : = X > * ( x ) (n G N ) fc=0

with respect to the Vilenkin system for which it is known (see [4]) t h a t : T h e o r e m A .

<.<*)={?"• Ht

Let An be the er-algebra generated by cosets In( z ) , where (n G N ) ( z G Gm). Let ctj, an(k,j, n G N ) be functions satisfying the following conditions:

(i) ak : G m Cis^4j - measurable G N ) , (ii) := ÖQ :=cx-(0):=l (kJ G N )

oo . oo

(ni) : = n <*fn)(n G N , j ( n ) : = £ nkMk).

j=0 fc=j

(3)

Let Xn := Tpnan (n G N). A function system {Xn\n £ N } of this type is called a iß a ( Vilenkin- like) system on Vilenkin group Gm.

The iß and iß a systems are orthonormal and complété in i1( Gm) . The Dirichlet kernels with respect to iß a system are

n —1

D*(x, y)-=Y^ Xk(x)Xk(y) (n G N ) k—0

The subsequence D ^ has a closed form

(see [2]). We will use the following theorem, too (see [1]):

T h e o r e m B.

DjMt(x>y) = ajMt(x)âjMt(y)DfMt(x - y) (n G N , x, y G Gm).

xb Tb 3~l

L e m m a . Let x G Gm, j , í G N. Then D-M (x) = DJ^ ix) £ 4>kMt(x).

k=o This lemma is needed in the proof of the theorem.

T h e o r e m Let x, y G Gm, n G N. Then

DX(x,y) = DHx-y) holds if and only if n G {jMt\0 < j < mt\t,j G N}.

PROOF of the lemma. Using the statements and theorems mentioned above we have the following équations:

j M t — 1 j-1 /(/i+l)Mt-l

= E w * ) = E E i*<(s)

?=0 /1=0 \ i=/iM( j-1 /(M-1)M,-1

S S + + +

/i=0 \ l=hMt

j-1 /(M-l)Mt-l /i=0 V i=/iM,

(4)

112 István Blahota j — 1 rrit — 1 m o—1

X X " ' X ^loMo(x)m--Í'lt-iMt.Ax)'tlJhMt(x) = h=0 lt-i=0 l0= o

j — 1 mt—1 mo—l-

X ^ t M S fc-iJlf.-iW-E^oW3

/1=0 íj _ 1 =0 Z0=0

/ j - 1 \ í-1 mjfc-1

[ J J ] V>ZfcMfc(s) =

\/i=0 / k—0 lk-0

/ J—1 \ mt— 1 m0-l

X^

M

<(

X

)) X

^ M ^ W ' "

X

&oM0(x) =

\h=0 / i « _ i = 0 i0= 0

/ j—1 \ m„-1 m0-l

X '*' X ^ M o W - ^ - i M , . ! ^ ) -

\h=0 ) /<_i=0 i0-0 /i—1 \ mt-1 m0-l

\ / i = 0 / lt-1=0 l0= o

/ j - 1 \ Mt-1 J-1 ( X ^ ^ w X M * )= ^ M . ^ í X ^ « ^ ) '

\h=0 / Z=0 This complétés the proof of the Lemma.

PROOF of the theorem The form n = jMt is not unique. (For example jMt+1 = (jmt)Mt•) In our présentation let n = jMt be that expression, in

which j is the least.

1. Sufficiency. Suppose that n G {jMt\t,j G N; 0 < j < mt}: and

x,y G Gm.

1.1. Let x — y çji It- In this case by the theorem A. we have D^^x — y) = 0. By lemma D^Mt(x — y) = 0. The theorem B. shows that

D*hsSx>y) = " j M t i i c î â j M t i y ^ M . C ® - y)-

So DJm (X, y) = 0, too. Consequently if x — y £ It,t,j G N, then D*Mt(x,y) = DfMi(x-y) = 0.

(5)

1.2. Let x-y e It,t,j £ N , 0 < j < mt. Then x0-y0 = 0 , . . . , xt~ i - yt-i = o,

aj Mt( x ) âj M t( y ) =

HjMt)/ \

<V (zo, ni, • • •, nt-1, nu nt+ï

_1 (jMt), s

«1 «i, • • •, nt-i,nu nn+i ,•••)•••

—t(jMt ) / \

ajMi(x)âjMt(x) = \ajMt(x)\ = 1.

If x — y G /<, i, j» G N , 0 < j < mÍ 5 then

This complétés the proof of the first part of the theorem.

s

2. Necessity. If n — Yh nkMk, then let k=0

In this case does not exist such j £ P that ctj(x) = 1.

2.1. Now we suppose that n ^ {jMh\h,j G N}. Let t be defined in the foHowing way

t: = imn{k\ n<Mk]k,ne N}.

Let x' := ( 0 , 0 , . . . , 0, xt := 1 , 0 , . . . ) , t G N and y' := ( 0 , 0 , 0 , . . . ) . In this case

n —1

W . v O = £ * * ( « ' ) = k=0

n—1 n—1

c J ] = c £ - y1) = - V),

A : = 0 k=0

where c ^ 1. We prove that D%(x' — y') / 0, thus in this case D%(x' — y ' ) ? D x ( x \ y ' ) . But

fc=0 V 1 7 V 1 '

(6)

114 István Blahota

2.2 Let n € {jMt\t,j G N , mt < j}. It is easy to see that x' - y' G It, but x' - y' £ It+1. Then

DfMt(x\y') = cDfMi(x'-y%

where c ^ 1. We will prove t h a t - y') / 0, thus

* D1MM' - »')•

We have by lemma

- y') = D l S x ' - y') X > M # , ( * ' - • ) = Mt £ W - / ) =

T I / 2 7 T Í \ 2 I - E X P F E )2

M ^ e x p — = Mt T ^ W 0 '

S ! l - e x p ( ^ ) since mt J(j.

The proof of theorem is complété.

A c k n o w l e d g e m e n t

The author wishes to thank to Professor G. Gát for setting the problem.

R e f e r e n c e s

[1] G. GÁT, VILENKIN, Fourier Sériés and Limit Peridic Arithmetic Func- tions, Colloquia Mathematica SocietaÉis János Bolyai, 58 (1990), 315- 332.

[2] G. GÁT, Orthonormal systems on Vilenkin groups, Acta Mathematica Hungarica 58 ( 1 — 2 ) (1991), 193-198

[3] F. SCHIPP, W . R. WADE, P. SIMON and J. PÁL, Walsh Sériés, An In- troduction to Dyadic Harmonie Analysis, Akadémiai Kiadó, Budapest, and Adam Hilger, Bristol and New York (1990).

[4] G . H. A G A J E V , N . Y A . V I L E N K I N , G. M . D Z S A F A R L I , A . I. R U B I N - STEIN, Multiplicative systems of funetyions and harmonie analysis on 0-dimension al groups, Izd. "ELM" (Baku, SSSR) (1981).

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, we would like to fill this gap in oscillation theory and to establish a new comparison principle for advanced equations..

The properties of limit periodic homoge- neous linear difference systems with respect to their almost periodic solutions are mentioned, e.g., in [9, 24].. This paper is divided

Karin Hermes proposed this session to clarify theory and improve understand- ing between Labanotation and Kinetography Laban practitioners with respect to

In this paper we present the relation between imperative language and PFL – a process functional language, which manipulate environment variables in a side-effect manner, still

The second goal of this paper is to perform the sensitivity analysis of fuzzy control systems with respect to the parametric variations of the controlled plant for a class

Abstract: In this paper, an attempt was made to study the dependencies between average and maximum roughness in relation to material removal rate and specific

To automate the extraction of this prior knowledge we discuss the types of uncertainties in a domain with respect to causal mechanisms and introduce a hypothesis about

A consistent theory is known to define all equiyalence relation (relative logical equivalence with respect to this theory) Oil the set of formulae of the language: