• Nem Talált Eredményt

Using the generalized Maligranda-Orlicz’s Lemma we will show thatBV(2,α)([a, b]) is a Banach algebra

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Using the generalized Maligranda-Orlicz’s Lemma we will show thatBV(2,α)([a, b]) is a Banach algebra"

Copied!
6
0
0

Teljes szövegt

(1)

AN APPLICATION OF THE GENERALIZED MALIGRANDA-ORLICZ’S LEMMA

RENÉ ERLIN CASTILLO AND EDUARD TROUSSELOT DEPARTAMENTO DEMATEMÁTICAS

UNIVERSIDAD DEORIENTE

6101 CUMANÁ, EDO. SUCRE, VENEZUELA

rcastill@math.ohiou.edu eddycharles2007@hotmail.com

Received 17 May, 2008; accepted 22 September, 2008 Communicated by S.S. Dragomir

ABSTRACT. Using the generalized Maligranda-Orlicz’s Lemma we will show thatBV(2,α)([a, b]) is a Banach algebra.

Key words and phrases: Banach algebra, Maligranda-Orlicz.

2000 Mathematics Subject Classification. 46F10.

1. INTRODUCTION

Two centuries ago, around 1880, C. Jordan (see [2]) introduced the notion of a function of bounded variation and established the relation between these functions and monotonic ones.

Later, the concept of bounded variation was generalized in various directions. In his 1908 paper de la Vallée Poussin (see [4]) generalized the Jordan bounded variation concept. De la Vallée Poussin, defined the bounded second variation of a functionf on an interval[a, b]by

V2(f) =V2(f,[a, b]) = sup

Π n−1

X

j=1

f(tj+1)−f(tj)

tj+1−tj − f(tj)−f(tj−1) tj −tj−1

where the supremum is taken over all partitionsΠ : a = t0 < t1 < · · · < tn = bof [a, b].If V2(f,[a, b])< ∞, the functionf is said to be of bounded second variation on[a, b].The class of all functions which are of bounded second variation is denoted byBV2([a, b]).

In 1970 the above class of functions was generalized with respect to a strictly increasing continuous functionα(see [3]):

Letf be a real function defined on[a, b]. For a given partition of the form: Π : a = t1 <

· · ·< tn=b,we set

σ(2,α)(f,Π) =

n−2

X

j=1

|fα[tj, tj+1]−fα[tj+1, tj+2]|,

152-08

(2)

where

fα[p, q] = f(q)−f(p) α(q)−α(p), and

V(2,α)(f,[a, b]) =V(2,α)(f) = sup

Π

σ(2,α)(f,Π), where the supremum is taken over all partitionsΠof[a, b].

IfV(2,α)(f)<∞,thenf is said to be of(2, α)-bounded variation.

The set of all these functions will be denoted byBV(2,α)([a, b]).

A functionf isα-derivable att0 if

t→tlim0

f(t)−f(t0)

α(t)−α(t0) exists.

If this limit exists, we denote its value byfα0(t0),which we call theα-derivative off att0. The classBV(2,α)([a, b])is a Banach space equipped with the norm

kfkBV(2,α)([a,b]) =|f(a)|+|fα0(a)|+V(2,α)(f).

Using the generalized Maligranda-Orlicz’s Lemma (see Theorem 3.1 of the present paper) we will show thatBV(2,α)([a, b])is a Banach algebra.

2. DEFINITION AND NOTATION

We begin this section by giving a definition and several simple lemmas that will be used throughout the paper.

Definition 2.1. A function f : [a, b] → R is said to be α-Lipschitz if there exists a constant M >0such that

|f(x)−f(y)| ≤M|α(x)−α(y)|,

for all x, y ∈ [a, b], x 6= y. By α-Lip[a, b] we will denote the space of functions which are α-Lipschitz. Iff ∈α-Lip[a, b]we define

Lipα(f) = inf{M >0 :|f(x)−f(y)| ≤M|α(x)−α(y)|, x6=y∈[a, b]}

and

Lip0α(f) = sup

|f(x)−f(y)|

|α(x)−α(y)| :x6=y∈[a, b]

.

It is not hard to prove that

Lipα(f) = Lip0α(f).

α-Lip[a, b]equipped with the norm

kfkα-Lip[a,b]=|f(a)|+ Lipα(f) is a Banach space.

Lemma 2.1. Iff ∈BV(2,α)([a, b]),then there exists a constantM >0such that

f(x2)−f(x1) α(x2)−α(x1)

=|fα[x1, x2]| ≤M for allx1, x2 ∈[a, b].

(3)

Lemma 2.2.

kfkα-Lip[a,b]≤ kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]) and

BV(2,α) ,→α-Lip[a, b].

Lemma 2.3. α-Lip[a, b],→BV[a, b],→B[a, b].

3. GENERALIZEDMALIGRANDA-ORLICZSLEMMA

The following result generalizes the Maligranda-Orlicz Lemma which is due to the authors (see [1]).

Theorem 3.1. Let(X,k · k)be a Banach space whose elements are bounded functions, which is closed under pointwise multiplication of functions. Let us assume thatf ·g ∈Xsuch that

kf gk ≤ kfkkgk+kfkkgk+Kkfkkgk, K > 0.

Then(X,k · k1)equipped with the norm

kfk1 =kfk+Kkfk, f ∈X,

is a Banach algebra. IfX ,→B[a, b],thenk · k1andk · kare equivalent.

4. BV(2,α)([a,b])AS A BANACHALGEBRA

The following result shows us thatBV(2,α)([a, b])is closed under pointwise multiplication of functions.

Theorem 4.1. Iff, g∈BV(2,α)([a, b]),thenf ·g ∈BV(2,α)([a, b]).

Proof. LetΠ :a=x1 < x2 <·< xn=bbe a partition of[a, b].Then σ(2,α)(f·g,Π) =

n−2

X

j=1

(f g)α[xj, xj+1]−(f g)α[xj+1, xj+2]

=

n−2

X

j=1

f(xj)·gα[xj, xj+1] +g(xj+1)·fα[xj, xj+1]

−f(xj+1)·gα[xj+1, xj+2]−g(xj+2)·fα[xj+1, xj+2]

n−2

X

j=1

f(xj)·gα[xj, xj+1]−f(xj)·gα[xj+1, xj+2]

+f(xj)·gα[xj+1, xj+2]−f(xj+1)·gα[xj+1, xj+2]

+

n−2

X

j=1

g(xj+1)·fα[xj, xj+1]−g(xj+1)·fα[xj+1, xj+2] +g(xj+1)·fα[xj+1, xj+2]−g(xj+2)·fα[xj+1, xj+2]

. Sincef andgare bounded, we have|f(xj)| ≤ kfkand|g(xj+1)| ≤ kgk.

(4)

Hence

σ(2,α)(f ·g,Π)≤ kfk n−2

X

j=1

gα[xj, xj+1]−gα[xj+1, xj+2]

+

n−2

X

j=1

f(xj)−f(xj+1) ·

gα[xj+1, xj+2]

+kgk n−2

X

j=1

fα[xj, xj+1]−fα[xj+1, xj+2]

+

n−2

X

j=1

g(xj+1)−g(xj+2) ·

fα[xj+1, xj+2]

=kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π) +

n−2

X

j=1

|f(xj)−f(xj+1)|

|α(xj)−α(xj+1)|· |g(xj+1)−g(xj+2)|

|α(xj+1)−α(xj+2)||α(xj)−α(xj+1)|

+

n−2

X

j=1

|g(xj+1)−g(xj+2)|

|α(xj+1)−α(xj+2)| · |f(xj+1)−f(xj+2)|

|α(xj+1)−α(xj+2)||α(xj+1)−α(xj+2)|.

By Definition 2.1 and Lemma 2.1 we obtain

|f(xj)−f(xj+1)|

|α(xj)−α(xj+1)| ≤Lipα(f)j = 1,2,· · · , n−1 and |g(xj)−g(xj+1)|

|α(xj)−α(xj+1)| ≤Lipα(g)j = 1,2,· · · , n−1.

Thus

σ(2,α)(f ·g,Π)≤ kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π) + (Lipα(f))(Lipα(g))

n−2

X

j=1

(α(xj+1)−α(xj) +α(xj+2)−α(xj+1)).

By Lemma 2.2 we haveLipα(f)<+∞andLipα(g)<+∞. Moreover

n−2

X

j=1

(α(xj+2)−α(xj)) =α(b) +

n−2

X

j=2

(α(xj+1)−α(xj))−α(a)

≤2(α(b)−α(a)).

Then

σ(2,α)(f ·g,Π)≤ kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π)

+ 2(α(b)−α(a))(Lipα(f))(Lipα(g)) for all partitionsΠof[a, b].

Hence

V(2,α)(f·g)≤ kfkV(2,α)(g) +kgkV(2,α)(f)

+ 2(α(b)−α(a))(Lipα(f))(Lipα(g))<+∞.

(5)

Thereforef ·g ∈BV(2,α)([a, b]).

This completes the proof of Theorem 4.1.

Corollary 4.2. Iff, g∈BV(2,α)([a, b]),then

kf·gkBV(2,α)([a,b]) ≤ kfkkgkBV(2,α)([a,b])+kgkkfkBV(2,α)([a,b])

+ 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]).

Proof. Note that

Lipα(f)≤ kfkα-Lip([a,b]) ≤ kfkBV(2,α)([a,b]) and

Lipα(g)≤ kgkα-Lip([a,b]) ≤ kgkBV(2,α)([a,b]) by Lemma 2.2.

From Theorem 4.1 we have

V(2,α)(f·g)≤ kfkV(2,α)(g) +kgkV(2,α)(f)

+ 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]). On the other hand,

|(f g)(a)| ≤2|f(a)| · |g(a)| ≤ kfk|g(a)|+kgk|f(a)|

|(f g)0α(a)| ≤ |f(a)| · |gα0(a)|+|g(a)| · |fα0(a)|

≤ kfk|g0α(a)|+kgk|fα0(a)|.

Adding we obtain

|(f g)(a)|+|(f g)0α(a)|+V(2,α)(f ·g)

≤ kfk(|g(a)|+|g0α(a)|+V(2,α)(g)) +kgk(|f(a)|+|fα0(a)|+V(2,α)(f)) + 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]). Therefore

kf·gkBV(2,α)([a,b]) ≤ kfkkgkBV(2,α)([a,b])+kgkkfkBV(2,α)([a,b])

+ 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]).

This completes the proof of Corollary 4.2.

5. MAINRESULT

Theorem 5.1. BV(2,α)([a, b])equipped with the norm kfk1BV

(2,α)([a,b]) =kfk+ 2(α(b)−α(a))kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]) is a Banach algebra and the normsk · kBV(2,α)([a,b]) andk · k1BV

(2,α)([a,b]) are equivalent.

Proof. First of all, we need to check the hypotheses from Theorem 3.1. Sinceα-Lip[a, b] ,→ B[a, b],by Lemma 2.2 we have BV(2,α)([a, b]) ⊂ B[a, b].Next, from Theorem 4.1 we see that BV(2,α)([a, b]) is closed under pointwise multiplication of functions. Now observe that if we takeK = 2(α(b)−α(a)),the inequality given in Corollary 4.2 coincides with the one given in Theorem 3.1. Also note that

BV(2,α)([a, b]),→α-Lip[a, b],→B[a, b]

(6)

and

kfk ≤max{1,(α(b)−α(a))}kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]).

Therefore, invoking Theorem 3.1 we have that (R, BV(2,α)([a, b]),+,·,k · k1BV

(2,α)([a,b])) is a Banach algebra and the normsk · kBV(2,α)([a,b])andk · k1BV

(2,α)([a,b]) are equivalent.

This completes the proof of Theorem 5.1.

REFERENCES

[1] R. CASTILLO AND E. TROUSSELOT, A generalization of the Maligranda-Orlicz’s lemma, J.

Ineq. Pure and Appli. Math., 8(4) (2007), Art. 115 [ONLINE:http://jipam.vu.edu.au/

article.php?sid=921].

[2] C. JORDAN, Sur la série de Fourier, C.R. Acad. Sci. Paris, 2 (1881), 228–230.

[3] A.M. RUSSEL, Functions of bounded second variation and Stieltjes type integrals, J. London Math.

Soc. (2), 2 (1970), 193–208.

[4] Ch J. de la VALLÉE POUSSIN, Sur la convergence des formules d’ interpolation entre ordonées équidistantes, Bull. Acad. Sci. Belge, (1908), 314–410.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Keywords: space of continuous and bounded functions, variation of function, func- tion of bounded variation, Riemann–Stieltjes integral, criterion of relative compactness,

By making use of Lemma 1.1, Kuroki, Owa and Srivastava [2] have investigated some sub- ordination criteria for the generalized Janowski functions and deduced the following lemma..

Key words and phrases: Functions of p−bounded variation, φ−bounded variation, p − Λ−bounded variation and of φ − Λ−bounded variation, Walsh Fourier coefficients,

Jordan (see [2]) introduced the notion of a func- tion of bounded variation and established the relation between these functions and monotonic ones.. Later, the concept of

Let (X, k·k) be a Banach space whose elements are bounded func- tions, which is closed under pointwise multiplication of functions. To see this , we just

In this paper, we extend the Ky Fan inequality to several general integral forms, and obtain the monotonic properties of the function L L s (a,b).. s (α−a,α−b) with α, a, b ∈

We estimate the rate of the pointwise approximation by operators of Bleimann, Butzer and Hahn of locally bounded functions, and of functions having a locally bounded derivative..

Jordan introduced the notion of a function of bounded variation and established the relation between these functions and monotonic ones when he was studying convergence of