• Nem Talált Eredményt

AN APPLICATION OF THE GENERALIZED MALIGRANDA-ORLICZ’S LEMMA

N/A
N/A
Protected

Academic year: 2022

Ossza meg "AN APPLICATION OF THE GENERALIZED MALIGRANDA-ORLICZ’S LEMMA"

Copied!
13
0
0

Teljes szövegt

(1)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page

Contents

JJ II

J I

Page1of 13 Go Back Full Screen

Close

AN APPLICATION OF THE GENERALIZED MALIGRANDA-ORLICZ’S LEMMA

RENÉ ERLIN CASTILLO AND EDUARD TROUSSELOT

Departamento de Matemáticas Universidad de Oriente

6101 Cumaná, Edo. Sucre, Venezuela

EMail:rcastill@math.ohiou.edu eddycharles2007@hotmail.com

Received: 17 May, 2008

Accepted: 22 September, 2008

Communicated by: S.S. Dragomir 2000 AMS Sub. Class.: 46F10.

Key words: Banach algebra, Maligranda-Orlicz.

Abstract: Using the generalized Maligranda-Orlicz’s Lemma we will show that BV(2,α)([a, b])is a Banach algebra.

(2)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page2of 13 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Definition and Notation 5

3 Generalized Maligranda-Orlicz’s Lemma 7

4 BV(2,α)([a,b])as a Banach Algebra 8

5 Main Result 12

(3)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page3of 13 Go Back Full Screen

Close

1. Introduction

Two centuries ago, around 1880, C. Jordan (see [2]) introduced the notion of a func- tion of bounded variation and established the relation between these functions and monotonic ones. Later, the concept of bounded variation was generalized in various directions. In his 1908 paper de la Vallée Poussin (see [4]) generalized the Jordan bounded variation concept. De la Vallée Poussin, defined the bounded second varia- tion of a functionf on an interval[a, b]by

V2(f) = V2(f,[a, b]) = sup

Π n−1

X

j=1

f(tj+1)−f(tj)

tj+1−tj − f(tj)−f(tj−1) tj −tj−1

where the supremum is taken over all partitionsΠ :a =t0 < t1 <· · ·< tn =b of [a, b].IfV2(f,[a, b]) <∞, the functionf is said to be of bounded second variation on[a, b].The class of all functions which are of bounded second variation is denoted byBV2([a, b]).

In 1970 the above class of functions was generalized with respect to a strictly increasing continuous functionα(see [3]):

Let f be a real function defined on [a, b]. For a given partition of the form:

Π :a=t1 <· · ·< tn=b,we set σ(2,α)(f,Π) =

n−2

X

j=1

|fα[tj, tj+1]−fα[tj+1, tj+2]|, where

fα[p, q] = f(q)−f(p) α(q)−α(p), and

V(2,α)(f,[a, b]) =V(2,α)(f) = sup

Π

σ(2,α)(f,Π),

(4)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page4of 13 Go Back Full Screen

Close

where the supremum is taken over all partitionsΠof[a, b].

IfV(2,α)(f)<∞,thenf is said to be of(2, α)-bounded variation.

The set of all these functions will be denoted byBV(2,α)([a, b]).

A functionf isα-derivable att0if

t→tlim0

f(t)−f(t0)

α(t)−α(t0) exists.

If this limit exists, we denote its value byfα0(t0),which we call theα-derivative off att0.

The classBV(2,α)([a, b])is a Banach space equipped with the norm kfkBV(2,α)([a,b]) =|f(a)|+|fα0(a)|+V(2,α)(f).

Using the generalized Maligranda-Orlicz’s Lemma (see Theorem3.1of the present paper) we will show thatBV(2,α)([a, b])is a Banach algebra.

(5)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page5of 13 Go Back Full Screen

Close

2. Definition and Notation

We begin this section by giving a definition and several simple lemmas that will be used throughout the paper.

Definition 2.1. A functionf : [a, b] → R is said to beα-Lipschitz if there exists a constantM >0such that

|f(x)−f(y)| ≤M|α(x)−α(y)|,

for allx, y ∈[a, b], x6=y.Byα-Lip[a, b]we will denote the space of functions which areα-Lipschitz. Iff ∈α-Lip[a, b]we define

Lipα(f) = inf{M >0 :|f(x)−f(y)| ≤M|α(x)−α(y)|, x6=y∈[a, b]}

and

Lip0α(f) = sup

|f(x)−f(y)|

|α(x)−α(y)| :x6=y∈[a, b]

.

It is not hard to prove that

Lipα(f) = Lip0α(f).

α-Lip[a, b]equipped with the norm

kfkα-Lip[a,b]=|f(a)|+ Lipα(f) is a Banach space.

Lemma 2.2. Iff ∈BV(2,α)([a, b]),then there exists a constantM >0such that

f(x2)−f(x1) α(x2)−α(x1)

=|fα[x1, x2]| ≤M for allx1, x2 ∈[a, b].

(6)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page6of 13 Go Back Full Screen

Close

Lemma 2.3.

kfkα-Lip[a,b] ≤ kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]) and

BV(2,α) ,→α-Lip[a, b].

Lemma 2.4. α-Lip[a, b],→BV[a, b],→B[a, b].

(7)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page7of 13 Go Back Full Screen

Close

3. Generalized Maligranda-Orlicz’s Lemma

The following result generalizes the Maligranda-Orlicz Lemma which is due to the authors (see [1]).

Theorem 3.1. Let(X,k · k)be a Banach space whose elements are bounded func- tions, which is closed under pointwise multiplication of functions. Let us assume thatf ·g ∈Xsuch that

kf gk ≤ kfkkgk+kfkkgk+Kkfkkgk, K >0.

Then(X,k · k1)equipped with the norm

kfk1 =kfk+Kkfk, f ∈X,

is a Banach algebra. IfX ,→B[a, b],thenk · k1 andk · kare equivalent.

(8)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page8of 13 Go Back Full Screen

Close

4. BV

(2,α)

([a, b]) as a Banach Algebra

The following result shows us thatBV(2,α)([a, b])is closed under pointwise multipli- cation of functions.

Theorem 4.1. Iff, g ∈BV(2,α)([a, b]),thenf·g ∈BV(2,α)([a, b]).

Proof. LetΠ :a=x1 < x2 <·< xn=bbe a partition of[a, b].Then σ(2,α)(f·g,Π) =

n−2

X

j=1

(f g)α[xj, xj+1]−(f g)α[xj+1, xj+2]

=

n−2

X

j=1

f(xj)·gα[xj, xj+1] +g(xj+1)·fα[xj, xj+1]

−f(xj+1)·gα[xj+1, xj+2]−g(xj+2)·fα[xj+1, xj+2]

n−2

X

j=1

f(xj)·gα[xj, xj+1]−f(xj)·gα[xj+1, xj+2]

+f(xj)·gα[xj+1, xj+2]−f(xj+1)·gα[xj+1, xj+2]

+

n−2

X

j=1

g(xj+1)·fα[xj, xj+1]−g(xj+1)·fα[xj+1, xj+2] +g(xj+1)·fα[xj+1, xj+2]−g(xj+2)·fα[xj+1, xj+2]

. Sincef andgare bounded, we have|f(xj)| ≤ kfk and |g(xj+1)| ≤ kgk.

(9)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page9of 13 Go Back Full Screen

Close

Hence

σ(2,α)(f ·g,Π)≤ kfk n−2

X

j=1

gα[xj, xj+1]−gα[xj+1, xj+2]

+

n−2

X

j=1

f(xj)−f(xj+1) ·

gα[xj+1, xj+2]

+kgk n−2

X

j=1

fα[xj, xj+1]−fα[xj+1, xj+2]

+

n−2

X

j=1

g(xj+1)−g(xj+2) ·

fα[xj+1, xj+2]

=kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π) +

n−2

X

j=1

|f(xj)−f(xj+1)|

|α(xj)−α(xj+1)| · |g(xj+1)−g(xj+2)|

|α(xj+1)−α(xj+2)||α(xj)−α(xj+1)|

+

n−2

X

j=1

|g(xj+1)−g(xj+2)|

|α(xj+1)−α(xj+2)| · |f(xj+1)−f(xj+2)|

|α(xj+1)−α(xj+2)||α(xj+1)−α(xj+2)|.

By Definition2.1and Lemma2.2we obtain

|f(xj)−f(xj+1)|

|α(xj)−α(xj+1)| ≤Lipα(f) j = 1,2,· · · , n−1 and |g(xj)−g(xj+1)|

|α(xj)−α(xj+1)| ≤Lipα(g) j = 1,2,· · · , n−1.

(10)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page10of 13 Go Back Full Screen

Close

Thus

σ(2,α)(f ·g,Π)≤ kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π) + (Lipα(f))(Lipα(g))

n−2

X

j=1

(α(xj+1)−α(xj) +α(xj+2)−α(xj+1)).

By Lemma2.3we haveLipα(f)<+∞andLipα(g)<+∞. Moreover

n−2

X

j=1

(α(xj+2)−α(xj)) =α(b) +

n−2

X

j=2

(α(xj+1)−α(xj))−α(a)

≤2(α(b)−α(a)).

Then

σ(2,α)(f ·g,Π)≤ kfk·σ(2,α)(g,Π) +kgk·σ(2,α)(f,Π)

+ 2(α(b)−α(a))(Lipα(f))(Lipα(g)) for all partitionsΠof[a, b].

Hence

V(2,α)(f ·g)≤ kfkV(2,α)(g) +kgkV(2,α)(f)

+ 2(α(b)−α(a))(Lipα(f))(Lipα(g))<+∞.

Thereforef ·g ∈BV(2,α)([a, b]).

This completes the proof of Theorem4.1.

Corollary 4.2. Iff, g ∈BV(2,α)([a, b]),then

kf·gkBV(2,α)([a,b]) ≤ kfkkgkBV(2,α)([a,b])+kgkkfkBV(2,α)([a,b]) + 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]).

(11)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page11of 13 Go Back Full Screen

Close

Proof. Note that

Lipα(f)≤ kfkα-Lip([a,b]) ≤ kfkBV(2,α)([a,b]) and

Lipα(g)≤ kgkα-Lip([a,b]) ≤ kgkBV(2,α)([a,b]) by Lemma2.3.

From Theorem4.1we have

V(2,α)(f ·g)≤ kfkV(2,α)(g) +kgkV(2,α)(f)

+ 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]). On the other hand,

|(f g)(a)| ≤2|f(a)| · |g(a)| ≤ kfk|g(a)|+kgk|f(a)|

|(f g)0α(a)| ≤ |f(a)| · |gα0(a)|+|g(a)| · |fα0(a)|

≤ kfk|gα0(a)|+kgk|fα0(a)|.

Adding we obtain

|(f g)(a)|+|(f g)0α(a)|+V(2,α)(f·g)

≤ kfk(|g(a)|+|g0α(a)|+V(2,α)(g)) +kgk(|f(a)|+|fα0(a)|+V(2,α)(f)) + 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]). Therefore

kf·gkBV(2,α)([a,b]) ≤ kfkkgkBV(2,α)([a,b])+kgkkfkBV(2,α)([a,b])

+ 2(α(b)−α(a))kfkBV(2,α)([a,b])kgkBV(2,α)([a,b]). This completes the proof of Corollary4.2.

(12)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page12of 13 Go Back Full Screen

Close

5. Main Result

Theorem 5.1. BV(2,α)([a, b])equipped with the norm kfk1BV

(2,α)([a,b]) =kfk+ 2(α(b)−α(a))kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]) is a Banach algebra and the normsk·kBV(2,α)([a,b])andk·k1BV

(2,α)([a,b])are equivalent.

Proof. First of all, we need to check the hypotheses from Theorem3.1. Sinceα- Lip[a, b] ,→ B[a, b],by Lemma 2.3 we have BV(2,α)([a, b]) ⊂ B[a, b]. Next, from Theorem4.1we see that BV(2,α)([a, b])is closed under pointwise multiplication of functions. Now observe that if we takeK = 2(α(b)−α(a)),the inequality given in Corollary4.2coincides with the one given in Theorem3.1. Also note that

BV(2,α)([a, b]),→α-Lip[a, b],→B[a, b]

and

kfk≤max{1,(α(b)−α(a))}kfkBV(2,α)([a,b]), f ∈BV(2,α)([a, b]).

Therefore, invoking Theorem3.1we have that(R, BV(2,α)([a, b]),+,·,k·k1BV

(2,α)([a,b])) is a Banach algebra and the normsk · kBV(2,α)([a,b])andk · k1BV

(2,α)([a,b])are equivalent.

This completes the proof of Theorem5.1.

(13)

Maligranda-Orlicz’s Lemma René Erlin Castillo and

Eduard Trousselot vol. 9, iss. 3, art. 84, 2008

Title Page Contents

JJ II

J I

Page13of 13 Go Back Full Screen

Close

References

[1] R. CASTILLO AND E. TROUSSELOT, A generalization of the Maligranda- Orlicz’s lemma, J. Ineq. Pure and Appli. Math., 8(4) (2007), Art. 115 [ONLINE:

http://jipam.vu.edu.au/article.php?sid=921].

[2] C. JORDAN, Sur la série de Fourier, C.R. Acad. Sci. Paris, 2 (1881), 228–230.

[3] A.M. RUSSEL, Functions of bounded second variation and Stieltjes type inte- grals, J. London Math. Soc. (2), 2 (1970), 193–208.

[4] Ch J. de la VALLÉE POUSSIN, Sur la convergence des formules d’ interpolation entre ordonées équidistantes, Bull. Acad. Sci. Belge, (1908), 314–410.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Jordan introduced the notion of a function of bounded variation and established the relation between these functions and monotonic ones when he was studying convergence of

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of

Keywords: space of continuous and bounded functions, variation of function, func- tion of bounded variation, Riemann–Stieltjes integral, criterion of relative compactness,

Is the most retrograde all it requires modernising principles and exclusive court in the world Mediaeval views and customs still prevailing Solemn obsequies at the late Emperor's

+&amp;VRNORYLQD5&amp;LRFORYLQD Paleolithic +DELWDWLRQOD\HU +2KiEDSRQRU52KDED3RQRU Paleolithic +DELWDWLRQOD\HU +,JULF5,JULĠD Paleolithic +DELWDWLRQOD\HU +.|U|VORUy5HPHWHOyUpY5 /RUăX

Key words and phrases: Functions of p−bounded variation, φ−bounded variation, p − Λ−bounded variation and of φ − Λ−bounded variation, Walsh Fourier coefficients,