• Nem Talált Eredményt

nonpositively curved spaces Fundamental tones of clamped plates in Advances in Mathematics

N/A
N/A
Protected

Academic year: 2022

Ossza meg "nonpositively curved spaces Fundamental tones of clamped plates in Advances in Mathematics"

Copied!
39
0
0

Teljes szövegt

(1)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Fundamental tones of clamped plates in nonpositively curved spaces

Alexandru Kristálya,b,∗,1

aDepartmentofEconomics,Babeş-BolyaiUniversity,Cluj-Napoca,Romania

bInstituteofAppliedMathematics,ÓbudaUniversity,Budapest,Hungary

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received17September2019 Receivedinrevisedform18 February2020

Accepted13March2020 Availableonlinexxxx

CommunicatedbyC.Fefferman DedicatedtoProfessorBiagio Ricceriontheoccasionofhis65th anniversary.

MSC:

primary35P15,53C21,35J35,35J40

Keywords:

LordRayleigh’sisoperimetric problem

Fundamentaltone Clampedplate Nonpositivecurvature Hypergeometricfunction

We study Lord Rayleigh’s problem for clamped plates on an arbitrary n-dimensional (n 2) Cartan-Hadamard manifold (M,g) with sectional curvature K ≤ −κ2 for some κ 0. We first prove a McKean-type spectral gap estimate,i.e.thefundamental toneofanydomainin(M,g) is universally bounded from below by (n−1)16 4κ4 whenever the κ-Cartan-Hadamard conjecture holds on (M,g), e.g.

in 2- and 3-dimensions due to Bol (1941) and Kleiner (1992),respectively.In2- and3-dimensions weprovesharp isoperimetricinequalitiesforsufficientlysmallclampedplates, i.e.thefundamentaltoneofanydomainin(M,g) ofvolume v >0 isnotlessthanthecorrespondingfundamentaltoneof ageodesicballofthesamevolumevinthespaceofconstant curvatureκ2providedthatvcnnwithc221.031 and c3 1.721, respectively. In particular, Rayleigh’s problem in Euclidean spaces resolved by Nadirashvili (1992) and Ashbaugh and Benguria (1995) appears as a limiting case inoursetting(i.e.Kκ= 0).Sharpasymptoticestimatesof thefundamentaltoneofsmallandlargegeodesicballsoflow- dimensionalhyperbolicspacesarealso given.Thesharpness ofourresultsrequiresthevalidityoftheκ-Cartan-Hadamard conjecture(i.e.sharpisoperimetricinequalityon(M,g))and peculiarpropertiesoftheGaussianhypergeometricfunction, both valid only in dimensions 2 and 3; nevertheless, some

* Correspondenceto:DepartmentofEconomics,Babeş-BolyaiUniversity,Cluj-Napoca,Romania.

E-mailaddresses:alex.kristaly@econ.ubbcluj.ro,kristaly.alexandru@nik.uni-obuda.hu.

1 ResearchsupportedbytheNationalResearch,DevelopmentandInnovationFundofHungary,financed undertheK_18fundingscheme,ProjectNo.127926.

https://doi.org/10.1016/j.aim.2020.107113 0001-8708/©2020ElsevierInc. Allrightsreserved.

(2)

nonoptimal estimates of the fundamental tone of arbitrary clamped plates are also provided in high-dimensions. As an application, by using the sharp isoperimetric inequality for small clamped hyperbolic discs,wegive necessarily and sufficientconditionsfortheexistenceofanontrivialsolution toanellipticPDEinvolvingthebiharmonicLaplace-Beltrami operator.

©2020ElsevierInc.Allrightsreserved.

1. Introductionandmainresults

LetΩRn beaboundeddomain(n2),andconsidertheeigenvalueproblem

Δ2u= Γu in Ω,

u=|∇u|= 0 on ∂Ω, (1.1)

associated with the vibration of a clamped plate. The lowest/principal eigenvalue for (1.1) –thefundamentaltoneoftheclampedplate–canbecharacterizedinavariational way by

Γ0(Ω) = inf

u∈W02,2(Ω)\{0}

Ω

(Δu)2dx

Ω

u2dx

. (1.2)

Theminimizerof(1.2) intheplanedescribesthevibrationofahomogeneousthinplate ΩR2 whoseboundaryis clamped,while thefrequency ofvibrationof theplateΩ is proportionaltoΓ0(Ω)12.ThefamousconjectureofLordRayleigh[36,p.382] –formulated initially forplanardomainsin1894–statesthat

Γ0(Ω)Γ0) =h4ν ωn

|Ω| 4/n

, (1.3)

where Ω Rn isaball with thesamemeasure as Ω,with equality ifandonly ifΩ is aball. Hereafter,ν= n2 1,ωn=πn/2/Γ(1+n/2) isthevolumeoftheunitEuclidean ball, while hν is the first positive critical point of JIν

ν, where Jν and Iν stand for the Besseland modifiedBesselfunctionsof firstkind,respectively.

Assuming that the eigenfunction corresponding to Γ0(Ω) is sign-preserving over a simply connected domain Ω R2, Szegő [38] proved (1.3) in the early fifties.As one candeducefrom hispaper’stext, hisbeliefontheconstant-signfirsteigenfunction cor- responding to Γ0(Ω) hasbeen basedonthesecond-ordermembrane problem(called as the Faber-Krahn problem). It turned out shortlythat his expectation perishes due to

(3)

the construction of Duffin [19] on strip-likedomains and Coffman, Duffin and Shaffer [16] onring-shaped clampedplate,localizing nodal lines ofvibratingplates. Whilethe membraneproblem involvesonlytheLaplacian,theclampedplateproblemrequiresthe presence of the fourthorder bilaplacian operator; as we know nowadays, fourth order equations are lacking general maximum/comparison principles which is unrevealed in Szegő’spioneeringapproach.Infact,stimulatedbythepapers[19] and[16],severalsce- narios aredescribed for nodaldomains of clampedplates,seee.g.Bauer and Reiss[3], Coffman [15], Grunau and Robert [21], from which the main edification is thateigen- functionscorrespondingto(1.2) may changetheirsign.

In order to handle the presence of possible nodal domains, Talenti [40] developed aSchwarz-typerearrangement methodondomains where thefirst eigenfunctioncorre- sponding to (1.2) has both positive and negative parts. In this way, a decomposition of(1.2) into atwo-ballminimizationproblem arises whichprovided anonoptimalesti- matein(1.3);infact,insteadof(1.3),TalentiprovedthatΓ0(Ω)≥dnΓ0) wherethe dimension-depending constantdn has the properties 12 ≤dn < 1 for every n 2 and

n→∞lim dn =1 2.

By a careful improvement of Talenti’s two-ball minimization argument, Rayleigh’s conjecture hasbeen provedinits fullgenerality forn = 2 byNadirashvili [31,32]. Fur- thermodificationsofsomeargumentsfromthepapers[32] and[40] allowedtoAshbaugh and Benguria [1] to prove Rayleigh’s conjecture for n = 3 (and n = 2) by explor- ing fine properties of Bessel functions. Roughly speaking, for n ∈ {2,3}, the two-ball minimization problem reduces to only one ball (the other ball disappearing), while in higherdimensionsthe‘optimal’ situationappearsfortwoidentical ballswhichprovides anonoptimalestimateforΓ0(Ω).Althoughasymptoticallysharpestimatesareprovided by Ashbaugh and Laugesen [2] for Γ0(Ω) in high-dimensions, i.e. Γ0(Ω) DnΓ0) where0.89< Dn <1 foreveryn≥4 with lim

n→∞Dn= 1,theconjecture isstillopen for n≥4.Veryrecently,ChasmanandLangford[6,7] providedcertainAshbaugh-Laugesen- typeresultsinEuclideanspacesendowedwithalog-convex/Gaussiandensity,byproving thatΓw(Ω)≥CΓ˜ w),wheretheconstantC˜(0,1) dependsonthevolumeofΩ and dimensionn≥2,whileΓw(Ω) andΓw) denotethefundamentaltonesoftheclamped platewithrespect tothecorresponding densityfunctionw.

Interestinthe clampedplateproblemon curvedspaces wasalso increasedinrecent years.One ofthe mostcentral problems isto establishPayne-Pólya-Weinberger-Yang- typeinequalitiesfortheeigenvaluesoftheproblem

Δ2gu= Γu in Ω,

u= ∂u∂n = 0 on ∂Ω, (1.4)

where Ω is a bounded domain in an n-dimensional Riemannian manifold (M,g), Δ2g standsfor the biharmonic Laplace-Beltramioperator on(M,g) and ∂n is theoutward normalderivativeon∂Ω,respectively;seee.g.Chen,ZhengandLu[9],Cheng,Ichikawa

(4)

and Mametsuka[10], ChengandYang[11–13],WangandXia[42].Insteadof(1.2),one naturallyconsiders thefundamental tone of Ω⊂M by

Γg(Ω) := Γg,n(Ω) = inf

uW02,2(Ω)\{0}

Ω

gu)2dvg

Ω

u2dvg

, (1.5)

where dvg denotesthe canonicalmeasure on (M,g), andW02,2(Ω) isthe usual Sobolev space on (M,g), see Hebey [22]; in fact, it turns out that Γg(Ω) is the first eigen- valueto(1.4).DuetotheBochner-Lichnerowicz-Weitzenböckformula,theSobolevspace H02(Ω)=W02,2(Ω) isaproperchoicefor(1.4),seeProposition3.1fordetails.

To the best of our knowledge, no results – comparable to (1.3) – are available in the literature concerning LordRayleigh’s problem for clampedplates on curved struc- tures.Accordingly,themainpurposeofthepresentpaperistoidentifythosegeometric and analytic propertieswhichresideinLord Rayleigh’sproblem for clampedplates on nonpositively curved spaces. To develop our results, the geometric context is provided by ann-dimensional(n2) Cartan-Hadamardmanifold(M,g) (i.e.simplyconnected, completeRiemannianmanifoldwithnonpositivesectionalcurvature).Havingthisframe- work, werecallMcKean’sspectral gap estimateformembranes whichiscloselyrelated to (1.5);namely,inann-dimensionalCartan-Hadamardmanifold(M,g) with sectional curvature K≤ −κ2 forsome κ>0, theprincipalfrequency of any membraneΩ⊂M canbeestimated as

γg(Ω) := inf

uW01,2(Ω)\{0}

Ω

|∇gu|2dvg

Ω

u2dvg

(n1)2

4 κ2; (1.6)

inaddition,(1.6) issharponthen-dimensionalhyperbolicspace(Hn−κ2,gκ) ofconstant curvature −κ2 in the sense that γgκ(Ω) (n−1)4 2κ2 whenever Ω tends to Hn−κ2, see McKean[30].

Beforetostateourresults,wefixsomenotations.Ifκ≥0,letNκnbethen-dimensional space-formwithconstantsectionalcurvature−κ2,i.e.Nκn iseitherthehyperbolicspace Hnκ2 when k >0, or theEuclidean space Rn when κ= 0.LetBκ(L) bethe geodesic ball of radius L > 0 in Nκn and if Ω Nκn, we denote by Γκ(Ω) the corresponding valuefrom(1.5).Byconvention,weconsider1/0= +andasusual,Vg(S) denotesthe RiemannianvolumeofS⊂M.

OurfirstresultprovidesafourthordercounterpartofMcKean’sspectralgapestimate, whichrequiresthevalidityoftheκ-Cartan-Hadamardconjectureon(M,g);thelatteris nothingbutthesharpisoperimetricinequalityon(M,g),whichisvalide.g.onhyperbolic

(5)

spaces of any dimension as well as on generic 2- and 3-dimensional Cartan-Hadamard manifoldswithsectionalcurvatureK≤ −κ2forsomeκ≥0,see §2.2.

Theorem1.1. Let(M,g)beann-dimensionalCartan-Hadamardmanifoldwithsectional curvature K≤ −κ2 forsome κ≥0, whichverifies theκ-Cartan-Hadamard conjecture.

If Ω⊂M isaboundeddomain with smoothboundarythen Γg(Ω) (n1)4

16 κ4. (1.7)

Moreover,forn∈ {2,3},relation (1.7)issharp in thesensethat Γκ(Nκn) := lim

L→∞Γκ(Bκ(L)) = (n1)4

16 κ4. (1.8)

Clearly,Theorem 1.1is relevantonly for κ>0 (as (1.7) and(1.8) trivially hold for κ = 0). Moreover, if n ∈ {2,3} and κ > 0, and Γlκ(Ω) denotes the lth eigenvalue of (1.4) onΩHn−κ2,thenmakinguseof(1.8) and aPayne-Pólya-Weinberger-Yang-type universalinequalityonHn−κ2,itturnsoutthat

Γlκ(Hnκ2) := lim

L→∞Γlκ(Bκ(L)) = (n1)4

16 κ4 for all l∈N. (1.9) Inparticular,(1.9) confirmsaclaimofChengandYang[12,Theorem1.4] forn∈ {2,3}, where theauthors assumed (1.8) itselfinorder to derive (1.9).In fact,onecanexpect the validityof (1.9) forany n 2 but some technical difficultiesprevent the proof in high-dimensions;fordetails,see§5.3.

Actually,Theorem1.1isjustabyproductofageneralargumentneededtoprovethe mainresultofourpaper(foritsstatement,werecallthathν isthefirstpositive critical pointof JIν

ν andν =n2 1):

Theorem1.2. Letn∈ {2,3}and(M,g)beann-dimensionalCartan-Hadamardmanifold with sectional curvature K≤ −κ2 for some κ≥0, Ω⊂M be a bounded domain with smoothboundary andvolumeVg(Ω) κcnn withc221.031andc31.721.If Ω⊂Nκn isageodesic ballverifyingVg(Ω)=Vκ)then

Γg(Ω)Γκ), (1.10)

withequalityin (1.10)if andonlyif Ωisisometric toΩ.Moreover, Γκ(Bκ(L))

(n1)2

4 κ2+h2ν L2

2

as L→0. (1.11)

Somecommentsareinorder.

(6)

TheproofofTheorems1.1and1.2isbasedonadecompositionargumentsimilartothe onecarriedoutbyTalenti[40] and AshbaughandBenguria[1] intheEuclideanframe- work. Infact,we transpose theoriginal variationalproblem fromgeneric nonpositively curvedspacestothespace-formNκnbyassumingthevalidityoftheκ-Cartan-Hadamard conjecture on (M,g). By a fourth order ODE it turns out that Γκ) is the small- est positivesolutiontothecross-productofsuitableGaussian hypergeometricfunctions (resp., Bessel functions) whenever κ > 0 (resp., κ = 0). The aforementioned decom- position argument combined with certain oscillatory and asymptotic properties of the hypergeometricfunctionprovidestheproofofTheorem 1.1.

Thedimensionalityrestrictionn∈ {2,3}inTheorem1.2(andrelation(1.8))isneeded not onlyforthevalidity oftheκ-Cartan-Hadamardconjecture butalso forsomepecu- liar propertiesof the Gaussian hypergeometricfunction; similar phenomenonhasbeen pointed out also by Ashbaugh and Benguria [1] in the Euclidean setting for Bessel functions. In addition, the arguments in Theorem 1.2 work only for sets with suffi- ciently small measure; unlike the usual Lebesgue measure in Rn (where the scaling Γ0(B0(L))= L4Γ0(B0(1)) holds for everyL > 0),the inhomogeneity of the canoni- cal measure on hyperbolic spaces requires the aforementioned volume-restriction. The intuitive feeling we get that eigenfunctions corresponding to Γg(Ω) on alarge domain Ω⊂M with strictlynegative curvaturemayhavelargenodal domainswhose symmet- ricrearrangementsinHnκ2 produce largegeodesicballs andtheir‘joined’fundamental tonecanbedefinitelylowerthantheexpectedΓκ).Infact,ourargumentsshowthat Theorem 1.2cannotbeimprovedevenifwerestrictthesettingtothemodelspace-form H−κn 2. It remainsan open question whetheror not(1.10) remainsvalid for arbitrarily large domains in any dimension n 4; we notice however that some nonoptimal es- timates of Γg(Ω) are also provided for any domain in high-dimensions (see §5.4). The asymptotic property (1.11) for κ> 0 followsby an elegant asymptotic connection be- tween hypergeometricand Bessel functions,which is crucial inthe proofof (1.10) and its accuracy isshowninTable 1(see §5.2) forsomevalues ofL 1.Clearly,(1.11) is trivialforκ= 0 sinceΓ0(B0(L))=h4ν/L4foreveryL>0.

A naturalquestionarises concerningthe sharpestimate ofthe fundamentaltone on completen-dimensionalRiemannianmanifoldswithRiccicurvatureRic(M,g)≥k(n−1) for some k 0. Some arguments based on the spherical Laplacian show that Bessel functions (whenk= 0)and Gaussian hypergeometricfunctions(whenk >0) will play again crucial roles. Since the parameter range of the aforementioned special functions inthenonnegativelycurved caseisdifferentfromthepresent setting,furthertechnical- itiesappearwhichrequireadeepanalysis.Accordingly,weintend tocome backtothis problem inaforthcomingpaper.

As anapplicationofTheorem1.2,weconsidertheellipticproblem Δ2κu−μΔκu+γu=|u|p−2u in Bκ(L),

u≥0, u∈W02,2(Bκ(L)), (P)

(7)

where Bκ(L)H2κ2 is ahyperbolic discand therange ofparameters μ,γ,p,κand L isspecifiedbelow.Byusingvariationalarguments, onecanprovethefollowingresult.

Theorem 1.3.Let μ 0, γ R, p > 2, κ > 0 and 0 < L < 2.1492κ . The following statements hold:

(i) if μ= 0 andproblem(P)admits anonzerosolution thenγ >−Γκ(Bk(L));

(ii) ifμ>0andγ >−Γκ(Bk(L))then problem(P)admits anonzerosolution.

Thepaperisorganizedas follows. InSection2werecall/provethose notions/results whichareindispensableinourstudy(space-forms,κ-Cartan-Hadamardconjecture,oscil- latorypropertiesofspecificGaussianhypergeometricfunctions).InSection3wedevelop anAshbaugh-Benguria-Talenti-typedecompositionfromcurvedspacestospace-forms.In Sections4and5weprovideaMcKean-typespectralgapestimate(proofofTheorem1.1) and comparison principles (proof of Theorem 1.2) for fundamental tones, respectively.

InSection6weproveTheorem 1.3.

2. Preliminaries

2.1. Space-forms

Letκ≥0 andNκn bethen-dimensionalspace-formwithconstantsectionalcurvature

−κ2. Whenκ= 0, Nκn =Rn isthe usual Euclidean space, while for κ>0,Nκn is the n-dimensionalhyperbolic space representedby thePoincaréball modelNκn =Hn−κ2 = {x∈Rn:|x|<1}endowedwiththeRiemannianmetric

gκ(x) = (gij(x))i,j=1,...,n=p2κ(x)δij,

wherepκ(x)= κ(1−|x|2 2).(Hn−κ2,gκ) isaCartan-Hadamardmanifoldwith constantsec- tionalcurvature−κ2.IfanddivdenotetheEuclideangradientanddivergenceoperator inRn,thecanonicalvolumeform,gradientandLaplacianoperatoronNκn are

dvκ(x) =

dx if κ= 0,

pnκ(x)dx if κ >0, κu=

∇u if κ= 0,

u

p2κ if κ >0, and

Δκu=

Δu if κ= 0, p−nκ div(pn−2κ ∇u) if κ >0,

respectively. Thedistance function on Nκn is denoted by dκ; the distance between the originand x∈Nκn isgiven by

(8)

dκ(x) :=dκ(0, x) =

|x| if κ= 0,

1 κln

1+|x|

1−|x|

if κ >0.

ThevolumeofthegeodesicballBκ(r)={x∈Nκn:dκ(x)< r}is

Vκ(r) :=Vκ(Bκ(r)) =n

r 0

sκ(ρ)n−1dρ, (2.1)

where

sκ(ρ) =

ρ if κ= 0,

sinh(κρ)

κ if κ >0.

A simplechangeofvariablesgivesthefollowingusefultransformation.

Proposition 2.1. Letκ≥0.Forevery integrable functiong: [0,L]→R with L≥0one has

L 0

g(s)ds=

Bκ(rL)

g(Vκ(dκ(x)))dvκ(x),

where rL0is theuniquerealnumber verifyingVk(rL)=L.

2.2. κ-Cartan-Hadamard conjecture

Let(M,g) beann-dimensionalCartan-Hadamardmanifoldwith sectionalcurvature bounded above by−κ2 forsome κ≥0.Theκ-Cartan-Hadamard conjecture on (M,g) (called also as the generalized Cartan-Hadamard conjecture) states that the κ-sharp isoperimetricinequalityholdson(M,g),i.e. foreveryopenbounded Ω⊂M onehas

Ag(∂Ω)≥Aκ(∂Bκ(r)), (2.2)

whenever Vg(Ω)=Vκ(r);moreover, equalityholds in(2.2) ifand onlyifΩ is isometric to Bκ(r).Hereafter,Ag andAκstandfortheareaon(M,g) andNκn,respectively.

The κ-Cartan-Hadamard conjecture holds for every κ 0 on space-forms with constantsectional curvature−κ2 (of anydimension), seeDinghas [18], andon Cartan- Hadamardmanifoldswithsectionalcurvatureboundedaboveby−κ2ofdimension2,see Bol [5],and ofdimension3,seeKleiner[26]. Inaddition,averyrecentresultofGhomi and Spruck[20] statesthatthe0-Cartan-Hadamardconjectureholdsinanydimension;

indimension 4,thevalidityofthe 0-Cartan-Hadamardconjecture isdue toCroke [14].

Inhigherdimensionsandforκ>0,theconjectureisstillopen;foradetaileddiscussion, see KloecknerandKuperberg [28].

(9)

2.3. Gaussian hypergeometricfunction

Fora,b,c∈C (c= 0,1,2,...)theGaussianhypergeometricfunctionisdefinedby F(a, b;c;z) =2F1(a, b;c;z) =

k0

(a)k(b)k

(c)k

zk

k! (2.3)

on the disc |z| < 1 and extended by analytic continuation elsewhere, where (a)k =

Γ(a+k)

Γ(a) denotesthePochhammersymbol.Thecorrespondingdifferentialequationtoz→ F(a,b;c;z) is

z(1−z)w(z) + (c(a+b+ 1)z)w(z)−abw(z) = 0. (2.4) Wealsorecallthedifferentiationformula

d

dzF(a, b;c;z) = ab

c F(a+ 1, b+ 1;c+ 1;z). (2.5) Letn≥2 beaninteger,K >0 befixed,and considerthefunction

wK±(t) =F

⎝1

(n1)2±4 K

2 ,1 +

(n1)2±4 K

2 ;n

2;−t

, t >0.

Thefollowingresultwillbe indispensableinourstudy.

Proposition2.2. LetK >0be fixed.The followingpropertieshold:

(i) w+K(t)>0forevery t≥0;

(ii) ifK≤ (n161)4,then wK+(t)≥wK(t)>0forevery t≥0;

(iii) wK isoscillatoryon (0,)ifandonly if K >(n161)4. Proof. Forsimplicityof notation,leta± =1

(n1)2±4 K

2 andb±=1+

(n1)2±4 K

2 .

(i)Theconnectionformula (15.10.11)ofOlveretal.[33] impliesthat wK+(t) = (1 +t)−b+F

n

2 −a+, b+;n 2; t

1 +t

, t≥0.

Dueto n2 −a+>0,b+>0 and(2.3),wehavethatwK+(t)>0 foreveryt≥0.

(ii)Fix0< K≤ (n−1)16 4.First,since n2 −a >0 andb>0,theconnectionformula (15.10.11)of[33] togetherwith (2.3) impliesagainthat

wK(t) = (1 +t)bF n

2−a, b;n 2; t

1 +t

>0, t >0.

(10)

By virtue of (2.4), an elementary transformation shows that w± := w±K verifies the ordinarydifferentialequation

t(t+ 1)w±(t) + 2t+n

2

w±(t) +1(n1)24 K

4 w±(t) = 0, t >0. (2.6) It turnsoutthat(2.6) isequivalentto

p(t)w±(t)

+q±(t)w±(t) = 0, t >0, (2.7) where p(t) =tn2(1+t)2−n2, q±(t)= ˜K±tn2−1(1+t)1−n2 andK˜± = 1−(n−1)2∓4

K

4 .For

any τ >0,relation(2.7) andaSturm-typeargumentgivesthat

0 = τ 0

w

pw+

+q+w+

−w+

pw

+qw

= τ 0

(q+−q)ww++ p

ww+−w+w τ

0.

Since q+< q,p(0)= 0,andw± >0,we necessarilyhavethatww+ −w+w 0 on (0,).Inparticular, ww+

is non-decreasingon(0,) andsincew+(0)=w(0)= 1,we havethatw+≥w on[0,).

(iii) By(ii)we havewK(t)>0 for everyt>0 whenever0< K (n161)4, i.e.wK is notoscillatoryon(0,) fornumbersKbelongingto thisrange.

AssumenowthatK >(n161)4.Since α

1

p(t)dt<∞foreveryα >0,onecanapplythe result ofSugie, Kita and Yamaoka [39,Theorem 3.1] (see alsoHille [23]),which states thatif

p(t)q(t)

t

1 p(τ)

2

1

4 for t1, (2.8)

then thefunctionwK in(2.7) isoscillatory.Due tothefactthat

p(t)q(t)

t

1 p(τ)

2

∼K˜ as t→ ∞,

and K˜ = 1(n1)2+4

K

4 > 14, inequality (2.8) trivially holds, which concludes the proof.

(11)

Remark2.1.DmitriiKarpkindlypointedoutthatforeveryβ 12andt>0,thefunction x→F(12−x,12+x;β;−t) isstrictlyincreasingon[0,) fromwhichProposition2.2/(ii) follows; his proof is based on fine propertiesof the hypergeometric functions 2F1 and

3F2,cf. Karp[24].

3. Ashbaugh-Benguria-Talenti-typedecomposition: fromcurvedspacesto space-forms Withoutsayingexplicitlythroughoutthissection,weputourselvesintothecontextof Theorem1.1,i.e.wefixann-dimensional(n2) CartanHadamardmanifold(M,g) with sectionalcurvatureK≤ −κ20 (κ0),verifyingtheκ-Cartan-Hadamardconjecture (see§2.2).

LetΩ⊂M be abounded domain.Inspired byTalenti[40] and Ashbaughand Ben- guria[1],weprovideinthissectionadecompositionargumentbyestimatingfrombelow thefundamental tone Γg(Ω) given in(1.5) by avalue comingfrom atwo-geodesic-ball minimizationproblemonthespace-formNκn.Wefirststate:

Proposition3.1. The infimumin (1.5)isachieved.

Proof. Due to Hopf-Rinow’s theorem, the set Ω is relatively compact. Consequently, the Ricci curvature is bounded from below on Ω, see e.g. Bishop and Critenden [4, p.166], and the injectivity radius is positive on Ω, see Klingenberg [27, Proposition 2.1.10].Byasimilarargument asinHebey[22, Proposition3.3],basedontheBochner- Lichnerowicz-Weitzenböck formula, the norm of theSobolev space H02(Ω) = W02,2(Ω), i.e. u

Ω

(|∇2gu|2+|∇gu|2+u2)dvg

1/2

, is equivalent to the norm given by u

Ω

gu)2+|∇gu|2+u2 dvg

1/2

. Accordingly, (1.5) is well-defined. The proof of theclaim,i.e.putting minimumin (1.5),followsbyasimilarvariationalargumentasin AshbaughandBenguria[1,Appendix2].

Weare going to use certain symmetrization arguments àlaSchwarz; namely, ifU : Ω [0,) is a measurable function, we introduce its equimeasurable rearrangement functionU :Nκn[0,) suchthatforeveryt>0 wehave

Vκ({x∈Nκn:U(x)> t}) =Vg({x∈Ω :U(x)> t}). (3.1) If S ⊂M is ameasurable set, thenS denotes the geodesicball inNκn with centerin theoriginsuchthatVg(S)=Vκ(S).

Letu∈W02,2(Ω) be aminimizer in(1.5);sinceuis notnecessarilyof constantsign, letu+= max(u,0) andu =min(u,0) bethepositive andnegativeparts ofu, and

(12)

Ω+={x∈Ω :u+(x)>0} and Ω={x∈Ω :u(x)>0}, respectively.Forfurtheruse,leta,b≥0 such that

Vκ(a) =Vg+) and Vκ(b) =Vg). (3.2) In particular, Vκ(a)+Vκ(b)=Vg(Ω) =Vκ(L) for someL>0.We definethe functions u+,u :Nκn[0,) suchthatforeveryt>0,

Vκ({x∈Nκn:u+(x)> t}) =Vg({x∈Ω :u+(x)> t}) =:α(t), (3.3) Vκ({x∈Nκn:u(x)> t}) =Vg({x∈Ω :u(x)> t}) =:β(t). (3.4) Thefunctionsu+anduarewell-definedandradiallysymmetric,verifyingtheproperty thatforsomert>0 andρt>0 onehas

{x∈Nκn:u+(x)> t}=Bκ(rt) and {x∈Nκn:u(x)> t}=Bκt), (3.5) with Vκ(rt)=α(t) andVκt)=β(t),respectively.

Forfurtheruse,weconsider thesets

Λt =∂({x∈Nκn:u+(x)> t}), Λt=∂({x∈Ω :u+(x)> t}), Πt =∂({x∈Nκn :u(x)> t}), Πt=∂({x∈Ω :−u(x)> t}).

Proposition 3.2. Letu∈W02,2(Ω) beaminimizer in (1.5).Thenfora.e.t>0wehave (i) Agt)2≤α(t)

{u(x)>t}

Δgudvg; (ii) Agt)2≤β(t)

{u(x)<−t}

Δgudvg.

Proof. Statements(i)and(ii)aresimilartothosebyTalenti[40,Appendix,p.278] inthe Euclideansetting;forcompleteness,wereproducetheproofinthecurvedframework.By densityreasons,itisenoughtoconsiderthecasewhenuissmooth.Forh>0,Cauchy’s inequalityimplies

⎜⎝1 h

t<u(x)≤t+h

|∇gu(x)|dvg

⎟⎠

2

α(t)−α(t+h) h

1 h

t<u(x)≤t+h

|∇gu(x)|2dvg.

When h 0, the latter relation and the co-area formula (see Chavel [8, p.86])imply that

(13)

Agt)2≤ −α(t)

Λt

|∇gu|dHn1,

whereHn1isthe(n1)-dimensionalHausdorffmeasure.Thedivergencetheoremgives that

Λt

|∇gu|dHn1=

{xΩ:u+(x)>t}

Δgudvg=

{xΩ:u(x)>t}

Δgudvg,

whichconcludestheproofof (i).Similarargumentshold intheproofof(ii).

Let

F(s) = (Δgu)#(s)gu)#+(Vg(Ω)−s) and G(s) =−F(Vg(Ω)−s), s∈[0, Vg(Ω)], where·# standsforthenotation

H#(s) =H(x) for s=Vκ(dκ(x)), xΩ.

Proposition3.3. Forevery t>0onehas that

(i)

α(t)

0

F(s)ds≥ −

{u(x)>t}

Δgu(x)dvg(x);

(ii)

β(t)

0

G(s)ds≥ −

{u(x)<−t}

Δgu(x)dvg(x).

Proof. We first recalla Hardy-Littlewood-Pólya-typeinequality,i.e. if U : Ω [0,) is an integrablefunction and U is defined by (3.1), onehas for every measurable set S⊆Ω that

S

Udvg

S

Udvk; (3.6)

moreover,ifS= Ω,theequalityholdsin(3.6) asUbeinganequimeasurablerearrange- mentofU.

(i)Lett>0 befixed.Inordertocomplete theproof,wearegoingtoshowfirstthat

α(t)

0

gu)#(s)ds

{u(x)>t}

gu)(x)dvg(x), (3.7)

and

(14)

{u(x)>t}

gu)+(x)dvg(x)

α(t)

0

gu)#+(Vg(Ω)−s)ds. (3.8)

To do this, letrt >0 betheunique real numberwith Vk(rt)=α(t), see (3.5). The estimate (3.7) followsbyProposition2.1and inequality(3.6) as

α(t)

0

gu)#(s)ds=

Bκ(rt)

gu)#(Vκ(dκ(x)))dvκ(x) =

Bκ(rt)

gu)(x)dvκ(x)

{u(x)>t}

gu)(x)dvg(x),

where weexploredthat{x∈Ω:u(x)> t}=Bκ(rt),following byVk(rt)=α(t).

The proof of (3.8) is similar; forcompleteness, we provide its proof. Byachangeof variable andProposition2.1itturnsoutthat

α(t)

0

gu)#+(Vg(Ω)−s)ds=

Vg(Ω) 0

gu)#+(s)ds

Vg(Ω)−α(t)

0

gu)#+(s)ds

=

Ω

gu)#+(Vκ(dκ(x)))dvκ(x)

Bκt)

gu)#+(Vκ(dκ(x)))dvκ(x)

=

Ω

gu)+(x)dvκ(x)

Bκt)

gu)+(x)dvκ(x),

where τt>0 istheuniquerealnumberverifyingVκt)=Vg(Ω)−α(t).Let At={x∈ Ω :u(x)≤t}; then Vg(At)=Vg(Ω)−α(t)=Vκt). In particular, byinequality (3.6) (together withtheequalityforthewholedomain)andthelatterrelationswehave

α(t)

0

gu)#+(Vg(Ω)−s)ds=

Ω

gu)+(x)dvκ(x)

Bκt)

gu)+(x)dvκ(x)

Ω

gu)+(x)dvg(x)

At

gu)+(x)dvg(x)

=

Ω\At

gu)+(x)dvg(x) =

{u(x)>t}

gu)+(x)dvg(x),

whichconcludestheproofof(3.8).

(15)

By(3.7) and(3.8) one has

α(t)

0

F(s)ds=

α(t)

0

gu)#(s)ds

α(t)

0

gu)#+(Vg(Ω)−s)ds

{u(x)>t}

gu)(x)dvg(x)

{u(x)>t}

gu)+(x)dvg(x)

=

{u(x)>t}

Δgu(x)dvg(x),

whichispreciselyourclaim.Theproofof(ii)issimilar.

Weconsiderthefunctionv: Ω=Bκ(L)R definedby

v(x) = 1 n

a dκ(x)

sκ(ρ)1n

⎜⎝

Vκ(ρ) 0

F(s)ds

⎟⎠dρ. (3.9)

Adirectcomputationshowsthatv isasolutiontotheproblem Δκv(x) =F(Vκ(dκ(x))) in Bκ(a);

v= 0 on ∂Bκ(a). (3.10)

Inasimilarway, thefunctionw: Ω=Bκ(L)Rgiven by

w(x) = 1 n

b dκ(x)

sκ(ρ)1n

⎜⎝

Vκ(ρ) 0

G(s)ds

⎟⎠dρ (3.11)

isasolutionto

Δκw(x) =G(Vκ(dκ(x))) in Bκ(b);

w= 0 on ∂Bκ(b). (3.12)

Inparticular,bytheirdefinitions,itturnsoutthat

v≥0 in Bκ(a) and w≥0 in Bκ(b).

In fact, much precise comparisons can be said by combining the above preparatory results:

(16)

Theorem 3.1.Letv and wfrom (3.9) and (3.11),respectively.Then

u+≤v in Bκ(a); (3.13)

u≤w in Bκ(b), (3.14)

where aandb are from (3.2).Inparticular,one has

Ω

u2dvg

Bκ(a)

v2dvκ+

Bκ(b)

w2dvκ. (3.15)

In addition,

Ω

gu)2dvg =

Bκ(a)

κv)2dvκ+

Bκ(b)

κw)2dvκ. (3.16)

Proof. We first prove(3.13). Since (M,g) verifies the κ-Cartan-Hadamard conjecture, onaccount of(3.3) and(3.4),itfollowsthat

Aκt)≤Agt) for a.e. t >0, (3.17) Aκt)≤Agt) for a.e. t >0. (3.18) Byrelation(3.17) andPropositions3.2and 3.3,onehasfora.e.t>0 that

Aκt)2≤ −α(t)

α(t)

0

F(s)ds.

Due to(3.3),(3.5) and(2.1),itfollows thatfora.e.t>0, α(t) =Aκt)rt =nsκ(rt)n1rt. Combining theaboverelations,ityields

n ≤ −rtsκ(rt)1n

Vκ(rt) 0

F(s)ds.

After anintegration,weobtainforeveryτ [0,u+L(Ω)] that

nτ ≤ − τ 0

rtsκ(rt)1−n

Vκ(rt) 0

F(s)dsdt.

Ábra

Fig. 1. The first positive zero λ ν (α, β) of F ν ( · , α, β) is between the poles g ν,1 (β) and g ν,1 (α) of F ν ( · , α, β);
Fig. 2. For n ∈ {2, 3} the admissible range is 0 &lt; L &lt; l n with l 2 = 2.1492 κ and l 3 = 0.719 κ , respectively; for large values of L inequality (5.5) fails.
Fig. 3. Continuity reason (when α ∈ [α 0 , L ˜ 0 ]) and monotonicity argument for F ν (when α ∈ (0, α 0 )) imply that λ ν (α, β) &gt; λ ν (0, L).˜

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In paper [2], Yuan studied the existence of almost periodic solutions for second-order equations involving the argument 2[(t + 1)/2] in the unknown function.. In paper [3], Piao

Ledoux, M.: On manifolds with non-negative Ricci curvature and Sobolev inequalities. Li, P.: Large time behavior of the heat equation on complete manifolds with nonnegative

in [2], [3], Hardy inequalities (and also geometric mean inequalities in some cases) have been studied in the context of X p spaces.. Generalized Orlicz Spaces Pankaj Jain and

In the ‘infinite mean case’, when E κ log A = ∞, but F κ has regularly varying tail we prove an infinite mean key renewal theorem in the arithmetic case in Lemma 2, which is

The Composition Conjecture is that the composition condition in Theorem 1.1 (or The- orem 1.2) is not only the sufficient but also necessary condition for a center. This conjec-

ruptis indicis vocibus sufficienter elu cet, quid discrim inis intersit hodiernam inter in ­ dicant et hungaram nativam nobis

In this article, I discuss the need for curriculum changes in Finnish art education and how the new national cur- riculum for visual art education has tried to respond to

– Álmomban… nem tudom irányítani, hogy föl- ébredjek… ismered, amikor az ember egyszer csak kezdi álmában érezni, hogy hiszen ô most álmodik, rájön hogy álmodik, és