• Nem Talált Eredményt

Some algebraic properties of linear recurrences

N/A
N/A
Protected

Academic year: 2022

Ossza meg "Some algebraic properties of linear recurrences"

Copied!
11
0
0

Teljes szövegt

(1)

BOGDAN T R O F A K C Z I E L O N A GORA, P O L A N D )

S O M E A L G E B R A I C P R O P E R T I E S OF L I N E A R R E C U R R E N C E S

A b s t r a c t : In the p a p e r a d e f i n i t i o n o f a form a s s o c i a t e d to a linear r e c u r r e n c e i s given without t h e r e s t r i c t i o n t h a t the r o o t s of i t s c h a r a c t e r i s t i c p o l y n o m i a l are d i f f e r e n t and m o r e o v e r s o m e p r o p e r t i e s of t h i s form a r e studied. T h i s is an e x t e n s i o n of s o m e r e s u l t s of P . K i s s C 1 9 8 3 . 5

I n t r o d u c t i o n .

A linear r e c u r r e n c e G = <G V „ of order k ( > l ) i s

^ njn = 0

defined fay r a t i o n a l i n t e g e r s A4, A2, . . . , A and by r e c u r s i o n G^ = Aiör,_ 1+ * • • + AkGn - k ' n ^ k > w h e r e the initial v a l u e s

°o>Gi>-•'>Gk-i a r e f i x e d r a t i o n a l i n t e g e r s n o t all z e r o , Akf*«0. To the r e c u r r e n c e G we o r d e r a c h a r a c t e r i s t i c p o l y n o m i a l g ^ C x ) a s f o l l o w s

Cl> gG( x ) = xk- A1xk"1- . . . - Ak_lx - Ak

If ai fa2, . . . , ak are t h e r o o t s of g . J x ) s a t i s f y i n g t h e c o n d i t i o n t h a t a. & a. for i^j t h e n we define a form f

>- J g of k v a r i a b l e s X0, X „ , . . . , Xk_4 by the f o r m u l a

k

C 2 ) f fx . ...,X. 1=CdetD> z~k FI detM. , 0 L o' k ~ l j i = i t >

(2)

- 70 -

where

D =

1 2

M =

Xo 1 . 1

Xk - t « i

k -1 k — 1 ' k - 1 " k — 1 .a ~a. * . . . af 1

v - 1 x. + 4 k

From C 2 ) it- follows t h a t Tor k > 2 the r e s t r i c t i o n on the roots of gGC x ) is essential.

P. K i s s C1983) h a s studied the form f and from it. he has derived some p r o p e r t i e s of linear recurrences.

In t h i s paper we define f o r arbitrary linear r e c u r r e n c e G a form F such t h a t if the r o o t s of g C x ) are d i f f e r e n t

9

then F — f .Further we show t h a t some r e s u l t s of P . K i s s g g remain valid in t h i s general case. Finally we prove a

connection between t h e f a c t o r i s a t i o n of g C x ) and of F

2. D e f i n i t i o n and p r o p e r t i e s o f F .

£L

Let G be a l i n e a r r e c u r r e n c e of order k and let g C x ) = xk- A1xk~1- . . . - Ak lx - Ak , Ak * 0 ,

be its c h a r a c t e r i s t i c polynomial. Define for 1 = 1 , 2 , . . . , k k

C 3 ) gLC x > = - I Ak -m k mxT O _ 1 with A0= - l m = l

and for the v a r i a b l e s XQ, X ^ , . . . , Xk _±

k

C 4 ) «a = 2 e . C a ^ ^ l=i

where a is a root o f g < x ) .

(3)

Let a ,a ,...,ctk be r o o t s of g C x ) Cobviously a root of multiplicity r is taken r t i m e s ) and XQ, X±, . . . , _t

be variables. The form

k

i -1 i

will be called a form associated to g C x ) CS) F

9

Lemma 1.

If g C x ) is a polynomial having distinct, r o o t « then F = f .

Proof:

Assume that the degree of g C x ) is k and er , 1 i k are its roots. Consider the following system of e q u a t i o n s

C 6 )

+ y2 + .

. +

yk = Xo

+ a 2y2 + .

. +

x 1

+ < y2 + .

. +

= x 2

Í_ 1y i + + .

. +

= Xk - x

with y ' s as unknowns.

By the a s s u m p t i o n of lemma, C 6 ) is C r a m e r ' s s y s t e m hence C 7 ) y = C d e t D )_ 1d e t M . C - 1 ) Lf o r i=l,2,...,k where D and M. are as in C2)

i

On the other hand it is easy to verify that for a. . = -J

t » J £

g;Ca. )

I r z r j ' i ^ ^ k we have D ~1 = [a. . J T h e r e f o r e from C 6 ) we obtain that

k C 8 )

1 K a.

= 2 ai . iXi - i = g^TcTT 2 glCa.)Xl_i = p x - T •

1=1 1 I =1 1

(4)

- 7 2 -

Since

k k C k - O n g'[a.j = C — 1 ) 2 . C d e t D )2

then from C2), C7), C S ) and C5!> we get k

fg (Xo " •• 'Xk - l ] 'C d e t D > 2"k " [C-1 > i _ 1y i d e t D) "

k C k - l ) k k

= C d e t D >zC — 1 ) 2 n y . n . - F [xo > . . . , xk_t) . 1=1 V = 1 I.

T h i s e n d s the proof.

Theorem 1. Ccomp. T h m . 1 in Kiss, 1083),

The form (^o'" * * 'Xk - 1 J h a s rational integer c o e f f i c i e n t s and the c o e f f i c i e n t of x k_ i i s one.

Furthermore

for all integer n^O, where FQ= Fg ( gq, G±, . . . , Gk_4J . Proof:

By C 3 ) and C4> w e can write k k -1

2 g, Ccc. > X. = 2ö I i l-l m l u

I =1

where u = u X^, . . . ,X, , a r e linear f o r m s with m m ^ O k-lj

rational integer c o e f f i c i e n t s and then k

F 9 (xo > - - 'xk - J - n L = 1

k -1

2 u oT

TO V

TO — O

and the c o e f f i c i e n t s of u . . u. k1 are rational a s O k - 1

s y m m e t r i c a l p o l y n o m i a l s in . Since a. 's are a l g e b r a i c i n t e g e r s then t h e s e c o e f f i c i e n t s and in particulary

(5)

t h e c o e f f i c i e n t s of (^o** * * *^k-1J a r s rational integers.

M o r e o v e r gkC x ) - 1 hence the c o e f f i c i e n t of lv is e q u a l to

k

n gk ( a ) = 1 .

i = 1

For the proof of second part of the theorem put g0C x D = g C x 3 and remark that

g (x)+A

g ( x ) = -i—i k 1 + 1 for 1=1, 2,..., k . x

Now for a. = a. , l ^ j ^ k and for any n£G we have

k k

« 2 Gn + 1 - 1 = I k ^ c o + A ^ J Gn + l_t = 1=1 1=1

k k

= fg CcO+A, + 5 g, CcOG , + 5 A, , G ,

k j n I - 1 r> +1 - 1 k - l + 1 n + l - 1

I =2 1=2

k - 1 k - 1 k - 1

= A, G + 5 A. . G Jtl + 2 g, CcOG . = ^ A . Q +

k n k - L r > + L n + l k - l n - t - L

1=1 I = 1

k-l

I = O

k - l k - l k

+ 2 g lC o 5 Gn + l = Gn + k - 2g l( « ) Gn + l = 2S lC a > Gn + l

1=1 1=1 L =1 b e c a u s e G , = G , g, Ca) .

n + k n + k k

From the a b o v e c a l c u l a t i o n s we obtain

2 SLC a . ) Gn + l

l=i

= 0 i. 5 g , ( a . )G

x. bl t n +1 - 1

1=1

X

— F Íg ,...,G . 1 Í] ex. = g ^ n ' * n + k - i j ** t

= F fű ,G . ] c- l >k _ iAu

g ^ n* r> +1 * n + k-1 J k and the proof easily f o l l o w s by the induction.

(6)

- 7 4 -

Theorem 2. (see Thm. 2 in Kiss, 1 9 8 3 . ) If

= a + a„ a. + • . . . + a. „ ak _ 1, n^O t , n O, n 1, r> i k — 1, r» i

where

k -t -i

a. = Q .. , . - 5 A . G . . , OStSk-1 t , ri ri + k - t - 1 j n + k - t - j - 1 * j = 1

and if

k U a

n

j*.

then

u = U - i ^ - ' A S U .

n

l

kJ o

Proof:

For 1 S i 5 k we have

k k k k -rn

z = I X 5 Í—A , aa m- i ^ k-I l J m-1 k -1 -in v 1 ~m) = - 2 X « 2 . a1 •»

m=l I =m m =1 I =0

k - l k - l k-l f k - l - 1 ^

= - 2 K , x «, = I . I K , x « al

t k-l-roro-l O k - l - 1 k-l -m m-l I x.

I =0 m = 1 1 = 0 ^ rn= 1 k-l r k - l - 1

2 a1 X. , - 2 A X . ,

t | k - l - l m k - l - m - l j I =0 ^ m= 1 ^ putting X^ = Qn + r, r = 0 , 1 , . . . , k — 1 we obtain

and

k-l f k - l - 1 ^ z = 5 a1 G _ , „ - 2 A G _ . =

a. I n + k ~1 -1 *- j n + k-l - j -1 I , n

I =0 ^ j =1 J

and now by d e f i n i t i o n of F^ and by T h e o r e m 1 we get the proof.

(7)

3. A connection between g C x ) and F . g

Lemma 2. Let

g C x ) = xk - A xk ~ 1 - ... - A, x - A, , i k -1 k * u ( x ) = x° - B x'3"1 - B x — B ,

1 a - 1 a '

v ( x ) = xr - G xr ~1 - ... - G X — C

1 r - 1 r

and let

g C x ) = u ( x ) v(x).

Fg [Xo ' ' * * *Xk ~ i } i s t h e a s s o c i a t-e d form to g C x ) then F

9

where F^ and F^ are f o r m s associated to u ( x ) and vCx), respectively and

r

Zj = - I Cr.tXj + l, j=0,l,. . . ,s~l with C0= - l , t = o

e

= - 2 Ba.nX . + n, i=0,l,...,r-l with B0= - l .

n = 0

Proof: For the brevity put

al = ~ Ak-l > 1 * 1 * k >

bn - " B s- n > 1 ^ n ^ s , c = - C , 1 £ m <1 r

ín r - m *

and let a = <x be a root of uCx). By C35 and C 4 ) we h a v e k k k

za = 2 St<«>Xt_t = 2 Xt_l 2 a , «1"1 = t =i t =i I=t

k k

= 2 X. , 2 2 c b am + n"1 =

<6- t -l m n t =1 I =t m + n = t

O^rn^r O^n^B

(8)

- 7 6 -

n - C t - m J _ y Xt 4 2 C b a

t -1 m n t =1 m+n^l

O^m^r

t=l m = 0 n=0 n^t -m

k o

.n-Ct -rrO 1 c 2 x, « 1 b a

m t -- 1 n m = 0 l = m + 1 n = t -rn

The last, equality f o l l o w s from the fact that for t£m we have a o

7 b ar , - t "m = am _ t 2 b an = aw - t u ( a ) = 0.

n n n = I - rn n = 0

Now, c h a n g i n g the o r d e r of s u m m a t i o n and u n d e r s t a n d i n g u ^ x ) similarly a s g ( x ) in C 3 ) we o b t a i n

e s r r

z = 5 an~p J c I X, =

a n rn •*- t -1 p = l n = p m = 0 t =rn + 1

t -m=p

2 u Ca) J c X ^ = p m p -1 p = 1 m = 0

2 2 ( ^r -m^p-1 +mj ^ U

p = i in — O p = 1

C a ) Z „ p p-i

Analogously for ß b e i n g a root of v C x ) we obtain

''ft = I vtC / » Y l=i

(9)

Without, loos of the generality we can a s s u m e that the r o o t s

of g C x ) are » ct , . . . , cta , f3 , . . . , and that cx^ are the r o o t s of u C x ) and ß. of v(x).

' J

Now by the d e f i n i t i o n of F we h a v e a r 9

pg

(

x

o"-"

x

k-J - n n *

ß

«

i=i tj = i j

=

F

u[

Z

0> - >

Z8

-J

F

v(

Y

0> - >

Y

r-J

what e n d s the proof.

Theorem 3.

If g C x ) = g4C x ) . . . g ^ C x ) is a d e c o m p o s i t i o n of g ( x ) on irreducible f a c t o r s then

<93 Fs( xo X ^ , ] »

1 1 r v r

w h e r e X.c j 3 are linear f o r m s in . . . , X. and F a r e t O* ' k - 1 g ^

f o r m s associated to g^ C x ) , irreducible over the rational field and c o n v e r s e l y if

Fg (X0 > - - -Xk . l ]= Fl [X0 > - -Xk - J - Fr [X0 ' - - 'X Ic - J

is a d e c o m p o s i t i o n of F^ on irreducible f a c t o r s then g C x ) is d e c o m p o s a b l e on r i r r e d u c i b l e f a c t o r s g ^ C x ) , . . . , g ^ C x ) , say and F h a s the form C9).

Proof:

By Lemma 2 it is e n o u g h to prove that if

Fg [Xo> • * ' >Xk - J =Fi [Xo> • • ' >Xk - i ] ' Fa [Xo> • ' ' >Xk - i ] with not constant F , F2 then g C x ) is reducible.

(10)

- 7 8 -

S u p p o s e that, b y above c o n d i t i o n gCx5 is irreducible.

Then g> CcO ß* 0 F o r any a. b e i n g a root- or gCx). Put.

K

:. = I (x - a j aj ,

where a^ are r o o t s of gCx). First- of all we see that X^

has a form a.x + b. w i t h rational a , b . T h u s we have

J J

C10> ( x )

with not constant u and u

l 2 On the other hand we h a v e

F, ( * o > - - "xi c - i ) - n J Si Ca )X, 4

t x. t - 1 But

2

« t ( < O H i > r - H i )

2 c . K » - ' - if

if i = j

= /\ g> Ca. ) ( x - a . ) 0

L I

k k hence

k

t = i r = 1

and from this it f o l l o w s that k

F g(xo > — >xk - J - n [ * - < \ K h ] - a

i=i

with a rational A NU w h a t common with C I O ) g i v e s a c o n t r a d i c t i o n to t h e a s s u m p t i o n on gCx>

T h i s c o n t r a d i c t i o n c o m p l e t e s the proof.

(11)

R E F E R E N C E

P . K i s s , On s o m e p r o p e r t i e s o f l i n e a r r e c u r r e n c e s , F u b l . M a t h . D e b r e c e n 1 9 8 3 p p . 2 7 3 - 2 8 1 .

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Column (1) of Table 1 shows the age groups, column (2) the mean ages at death in different age groups (calculated by using an appropriate weighting procedure), column (3) the

The process of the Exeter point from the centroid serves as a base for defining the Exeter transformation with respect to the triangle ABC, which maps all points of the plane.. We

We prove a theorem which investigates a similar property of the product of the terms of two different linear recurrences.. will denote effectively computable positive constants

KLSS, Some identities and congruences for a special family of second order recurrences, Acta Acad... Kiss, Some new identities and congruences for Lucas sequences, Discuss Math.,

where d,s,w,q,x, are positive integers satisfying some conditions, implies the inequality q&lt;qo with some effectively computable constant q 0 • This result generalizes some earlier

KLSS, A Diophantine approximative property of the second order linear recurrences, Period.. Kiss

* Research supported by the Hungarian National Scientific Research Foundation, Operat- ing Grant Number OTKA T 016975 and 020295... They proved that this distance tends to zero if

It is known that the diameter of a balanced tree having only one central vertex is even. Consequently, there are no balanced trees of diameter 3. Both of them are BPS