• Nem Talált Eredményt

development approach Analysis of recombinant monoclonal antibodies by RPLC: Toward a genericmethod Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "development approach Analysis of recombinant monoclonal antibodies by RPLC: Toward a genericmethod Journal of Pharmaceutical and Biomedical Analysis"

Copied!
11
0
0

Teljes szövegt

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jo u r n al h om epag e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Analysis of recombinant monoclonal antibodies by RPLC: Toward a generic method development approach

Szabolcs Fekete

a,∗

, Serge Rudaz

a

, Jen ˝o Fekete

b

, Davy Guillarme

a

aSchoolofPharmaceuticalSciences,UniversityofGeneva,UniversityofLausanne,Boulevardd’Yvoy20,1211Geneva4,Switzerland

bBudapestUniversityofTechnologyandEconomics,DepartmentofInorganicandAnalyticalChemistry,Szt.Gellérttér4,Budapest1111,Hungary

a r t i c l e i n f o

Articlehistory:

Received24April2012

Receivedinrevisedform29May2012 Accepted15June2012

Available online 23 June 2012

Keywords:

Monoclonalantibodies Core–shell

UHPLC DryLab

Methoddevelopment Optimizationsoftware

a b s t r a c t

Monoclonalantibodies(mAbs)areanemergingclassoftherapeuticagentsthathaverecentlygained importance.ToattainacceptablekineticperformancewithmAbsinreversedphaseliquidchromatogra- phy,thereisaneedtoworkwiththelastgenerationofwide-poresub-2␮mfullyporousorcore–shell particlesstationaryphases.Inaddition,temperatureintherange60–90Cwasfoundtobemandatoryto limitadsorptionphenomenonofmAbsandtheirfragments.Agenericmethoddevelopmentstrategywas proposedtoaccountfortheselectivity,efficiency,recovery,andthepossiblethermaldegradation.This studyalsodemonstratedthatthegradientsteepnessandtemperaturecannotbeoptimizedusingvan’t Hofftypelinearmodels.Similarly,thecommonlinearsolventstrengthmodelalsogeneratedsomeerror inpredictingtheretentiontimes.Incontrast,whenquadraticmodelswereemployed,theprediction accuracyofretentiontimeswasfoundtobeexcellent(relativeerrorbetween0.5and1%)usingarea- sonablenumberofexperiments(9or6experimentsforoptimizationofgradienttimeandtemperature, whichrequiresbetween6and8h).TwoseparationsofmAbsfragmentswereperformedtodemonstrate thereliabilityofthequadraticapproach.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Ithasbeendemonstratedthatreverse-phaseliquidchromatog- raphy(RPLC)isoneofthemostpromisinganalyticaltechniques inthefield of peptideand proteinanalysis[1,2].Theefficiency obtainedwithRPLCisgenerallysuperiortothatofion-exchange (IEX)orsize-exclusion(SEC)chromatography[1].Furthermore,the separationtime canbeconsiderablyshortenedwithRPLC com- pared toIEX or SEC. Anotheradvantage is the straightforward couplingofthistechniquetovariousionizationmethodsformass spectrometry(MS)detection.

Inlaboratoryapplications(e.g.,biopharmaceuticalqualitycon- trol,industrial issues),separationsofproteinswithverysimilar molecularweightsandnearlyidenticalstructures(conformations) areoftenperformed.Veryoften,thedifferenceinphysicochemical propertiesisrelativelysmallandthereforesimilarretentionbehav- iorsareexpectedforthedifferentforms.Inmanycases,selectivity cannotbeimproved,soefficiencymustbeincreasedtoenhance theresolution.Therefore,thestationaryphase andtemperature becomethetwomostrelevantparametersinmethoddevelopment.

Byusingthemostadvancedstationaryphases,suchascore–shell

Correspondingauthor.Tel.:+41223796334;fax:+41223796808.

E-mailaddresses:szfekete@mail.bme.hu,szabolcs.fekete@unige.ch(S.Fekete).

typematerials,sub-2␮mporousparticlesorwide-poremonolithic columns,theseparationpowercanbeincreasedconsiderably[3–7].

Arecentsystematicstudydemonstratedtheeffectofcolumnlength onpeakcapacityofintactproteinseparations[8].

The number ofapproved monoclonalantibodies (mAbs)has beengrowingcontinuouslyinthepharmaceuticalfield.Antibod- iesarelargetetramericglycoproteinsofapproximately150kDa, composedoffourpolypeptidechains:twoidenticalheavychains (≈50kDa)andtwoidenticallightchains(≈25kDa)thatarecon- nected through several inter- and intra-chain disulfide bonds at the hinge region. The resulting tetramer has two similar halvesthat form a Y-likeshape [9]. Functionally,mAbs consist of tworegions:thecrystallizable fraction(Fc) and theantigen- bindingfraction(Fab)[10].Becausethisstructureismadeoffour polypeptidechains,monoclonalantibodiescandisplayconsider- ablemicro-heterogeneity.Thereareseveralcommonmodifications that produce charge variants (or isoforms) (e.g., deamidation, C-terminallysinetruncation,N-terminalpyroglutamation,methi- onineoxidation, andglycosylationvariants)andsizevariantsof thepeptidechains(e.g.,aggregationorincompleteformationof disulfidebridges).Duetotheincreasingimportanceofthisclass oftherapeuticcompounds,thedevelopmentofanalyticalmeth- odsfortheirdetailedcharacterizationisanactiveareaofstudy.

Complete proteolyticdigestionof mAbs (peptide mapping) fol- lowedbygradientRPLC/MSanalysisisthemethodofchoicefor 0731-7085/$seefrontmatter© 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jpba.2012.06.021

(2)

Fig.1. Schematicviewofthelimitedproteolyticdigestionandreductionofmonoclonalantibodies.

theidentificationandquantificationofchemicalmodificationsof mAbs[11,12].However,peptidemappingistimeconsumingand caninduceputativemodifications duringthelengthyandcom- plexsamplepreparation[12].Alternatively,theanalysisoflarge mAbfragments,suchasFab,Fc,F(ab)2,HCandLC,requiresvery littlesamplepreparationandcanprovideahigh-throughputalter- nativetopeptidemapping(thesamplepreparationprocedureof mAbfragmentsissummarized inFig.1).For thesereasonsand duetoadvancesinRPLCcolumnsandinstrumentation,thesec- ondapproachiscurrentlypreferredoverthetraditionalpeptide mapping.

InthedevelopmentofRPLCmethodsforsmallmoleculecharac- terization,computermodelingprogramsareemployedtoimprove theanalyticalthroughputandobtaindetailedinformationabout methodspecificity.Themostsuccessfulandwidespreadmodel- ingprogram(DryLab,Molnar-Institute,Berlin,Germany)optimizes theDesignSpacebymeasuringandvisualizingtheeffectofdiffer- entparametersincludingmobilephasecomposition,gradienttime andshape,pH,ionicstrength,ternaryeluent,additiveconcentra- tionsortemperature[13].Forthispurpose,theprogramsuggests arelativelywell-definednumberofexperimentsforaparticular stationaryphase.Furthermore,itcanpredicttheseparationinside theDesignSpacebasedonchangesinthemobilephasecomposi- tion,modeofelution(eitherisocraticorgradient),temperature, and pH,as wellas column parameters such ascolumn length, internaldiameter,particlesizeandflowrate[14].Inthecaseof largebiomolecules,suchasmAbs,conformationalchangesinpro- teinsthatoccurinresponsetovaryingchromatographicconditions couldbeverycomplex,leadingtounpredictablebehaviorbasedon thechemical-chromatographicrelationship(e.g.,LSStheory).Thus, thereisaneedtoevaluatethevalidityofthemodelsemployedby thesoftware.

Thisstudytookadvantageoftherecentlycommercializedand veryefficientcolumnspackedwitheither wide-poresub-2␮m, fully porousstationary phase or the last generation core–shell particles.TheretentionpropertiesoflargemAbfragmentswere investigated. Selectivity, efficiency and possible thermal degra- dationswereallconsideredanda genericmethoddevelopment approachwasproposed.Thecommonlyusedlinearretentionmod- els(linearsolventstrengthorvan’tHoffmodels)weremodified intoquadraticmodels,resultinginveryaccuratepredictionofthe retentiontimes.Moreover,thegoalofthisstudywastheevaluation ofmethodoptimizationsoftwaresuchasDryLabforthesepara- tionofantibodyfragmentsbyusingcustomizedmodelsduringthe optimizationprocess.Thisnewapproachallowsa veryfastand

accuratesystematicmethoddevelopmentfortheefficientsepara- tionofmAbsfragments.

2. Experimental

2.1. Chemicalsandcolumns

Acetonitrile (gradient grade) was purchased from Sigma–Aldrich(Buchs,Switzerland).Waterwasobtainedwitha Milli-QPurificationSystemfromMillipore(Bedford,MA,USA).

IgG monoclonal antibodies, including rituximab (MabThera) andbevacizumab (Avastin),werepurchasedfromRoche(Roche Pharma,Switzerland),andpanitumumab(Vectibix)waspurchased fromAmgen(Switzerland).Forthefragmentationofmonoclonal antibodies,dithiothreitol(DTT)andpapain(fromCaricapapaya) wereobtainedfromSigma–Aldrich (Buchs,Switzerland).Triflu- oroaceticacid(TFA)waspurchased fromSigma–Aldrich(Buchs, Switzerland).

AcquityBEH300 C18and C4columnswitha particlesizeof 1.7␮m(150mm×2.1mm,300 ˚A) were purchased fromWaters (Milford,MA,USA).AnAerisWidepore(WP)C18columnpacked with3.6␮mcore–shellparticles(150mm×2.1mm)wasagener- ousgiftfromPhenomenexInc.(Torrance,CA,USA).

2.2. Equipmentandsoftware

All measurements were performed using a Waters Acquity UPLCTM systemequippedwitha binarysolventdeliverypump, anautosamplerand aUVand/orfluorescence(FL)detector.The WatersAcquitysystemincludesa5␮lsampleloopanda0.5␮lUV flow-cellanda2␮lFLflow-cell.Theloopisdirectlyconnectedto theinjectionswitchingvalve(noneedleseatcapillary).Thecon- nectiontubebetweentheinjectorandcolumninletwas0.13mm I.D.and250mmlong(passivepreheatingincluded),andthecap- illarylocatedbetweenthecolumnanddetectorwas0.10mmI.D.

and150mmlong.Theoverallextra-columnvolumes(Vext)were approximately13␮land 15␮l,as measuredfromthe injection seatoftheauto-samplertotheUVandFLdetectorcells,respec- tively. The measured dwell volume wasapproximately 100␮l.

Dataacquisitionandinstrumentcontrolwasperformedusingthe EmpowerPro2Software(Waters).Calculationanddatatransfer wereachievedusingExceltemplates.

Method optimization was performed using DryLab® 2010 Pluschromatographicmodelingsoftware(Molnar-Institute,Berlin, Germany).

(3)

Fig.2.Theeffectoftemperature(andstationaryphase)ontheapparentgradientretentionfactorofrituximabheavychain(A)andlightchain(B)fragments.Columns:Aeris WPC18,AcquityBEH300C18andC4(150mm×2.1mm),injectedvolume:0.5␮l,detection:fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%

TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:from30%to37%BontheAerisWPC18andBEH300C4columns,andfrom32%to39%ontheBEH300C18 columnin6min,flowrate:0.3ml/min.Temperaturewasvariedfrom40to80ContheBEH300columnsandfrom40to90ContheAerisWPC18column.

2.3. Apparatusandmethodology

2.3.1. Mobilephasecompositionandsamplepreparation

For the gradient separation of mAbs and its fragments, the mobile phase “A” consistedof 0.1%TFA in water, whereas the mobilephase“B”was0.1%TFAinacetonitrile.

TheintramoleculardisulfidebondsofIgGmonoclonalantibod- ieswerereducedusingDTT.Forthispurpose,0.05mgofDTTwas addedto100␮lofaconcentratedmAbsolutionandincubatedat 30Cfor60min.Proteinswerecompletelyconvertedintothelight andheavychaincomponents.

Thedigestionofrituximabandbevacizumabwasinitiatedbythe additionofpapain(dilutedto100␮g/mlinwater)toreachafinal protein:enzymeratioof100:1(m/m%).Thedigestionwascarried outat37Cfor3h.Thefinaldigestionvolumeof200␮lwasdirectly injectedusinglowvolumeinsertvials.

2.3.2. Investigationofretentionpropertiesofantibodyfragments Heavychain,light chain,FabandFc fragmentsof rituximab, bevacizumabandpanitumumabwereelutedinthegradientmode.

Toinvestigatetheeffectoftemperature(Fig.2),shortgradient runs(6min)wereperformedonthethreecolumnsatdifferenttem- peraturesfrom40Ctotheuppertemperaturelimitofthecolumn (in10Csteps).TheBEH300C4andC18materialsarestableup to80C,whereastheAerisWPC18isstableupto90C(accord- ingtothevendors).AlthoughtherecoveryofmAbfragmentsisnot acceptableat40and50C,ourpurposewastoillustratetheeffectof temperatureontheretentiontimesusingarelativelybroadrange oftemperatures.Settingthemobilephasetemperaturetolessthan 60Cisnoteffectivefortheseparationoftheselargefragments.

Fortherituximabsamples,alineargradientfrom30to37%B wasemployedwiththeAerisWPC18andBEH300C4columns, whereaswiththeBEH300 C18column,thegradient wasvaried from32to39%Btomaintainasimilarapparentgradientretention factor.Becausepanitumumab isslightlymorehydrophobicthan rituximab,thegradientprogramswereadjustedtoachievecompa- rableapparentretentionproperties.Forthepanitumumabsamples, alineargradientfrom31to39%BwasemployedwiththeAerisWP C18andBEH300C4columns,whereasagradientof33to41%B wasusedwiththeBEH300C18column.Forthebevacizumabsam- ples,agenericgradientof31to40%Bprovidedsuitableretention timesforallthreecolumns.Inthisstudy,shortgradientsepara- tions(6minon15-cmlongcolumns)wereutilizedtoavoidany possiblethermaldegradationofthesamplesatelevatedtempera- tures.Theflowratewassetto0.3ml/min.Thechromatogramswere

recordedinbothUV(215nm)andfluorescencemode(excitationat 280nm,emissionat360nm).Theretentionpropertiesonthedif- ferentstationaryphaseswereevaluatedbyplottingthelogarithm oftheapparentgradientretentionfactors(logkapp)asafunctionof 1/T(reciprocatetemperature).

Toevaluatetheeffectofgradientsteepnessontheretention properties(Fig.3),differentgradienttimesweretestedatagiven temperature.Agenericlineargradient,startingfrom30%to40%

B,wasemployedataflowrateof0.35ml/minforallsamples.The gradienttimewasvariedfrom4,to8,12and16min(at70and 90C).BothUVandfluorescencedetectionmodeswereused.The observedlog(kapp)valueswereplottedasafunctionoftheloga- rithmofgradienttime.

2.3.3. Systematicmethodoptimization

Snyderandco-workersdemonstratedtheutilityofinitialbasic runsformultifactorialexperimentaldesignsin1990s[15].Thegen- eralapproachistosimultaneouslymodeltheeffectoftemperature andgradientsteepnessontheselectivityofapreviouslyselected RPcolumn[16,17].Forconventionalstandardborecolumns(I.D.of 4.6mm)withalengthof15and25cm,at1–2ml/minflowratewith a5–100%ACN-watergradient,twogradientsoftg1=20–30minand tg2=60–90minshouldbeemployedtoobtainaccuratepredictions fromthelinearsolventstrength(LSS)model.Themodelingsoft- wareisthenusedtogenerateresolutionmapsthatshowthecritical resolutionoftheseparatedpeaks[18].Inthismanner,thegradi- entprogramandcolumntemperaturecanberapidlyandefficiently optimized.

Recent studieshave showedthat mAb fragments (IgG1 and IgG2)generallyeluteusinga30–40%ACN(containing0.1%TFA)gra- dientatelevatedtemperatures[4,19].Inultrahigh-pressureliquid chromatography(UHPLC),narrowborecolumns(2.1mmI.D.)are generallyusedtoincreasethesensitivity,reducefrictionalheating effectsanddecreasethesolventandsampleconsumption.Bytak- ingintoaccountthefactthat(i)onlya10%changeinBproducesan adequategradientforelutingallthedifferentmAbfragmentvari- antsand(ii)that2.1-mmcolumnsareused;thenapplyingtherules ofgeometricalmethodtransfer[13,20],thefollowingconclusions canbedrawn.For150mm×2.1mmcolumns,gradienttimesinthe rangeoftg1=4mintotg2=12min(ataflowrateof0.35ml/min, startingfrom30to40%B)shouldprovideappropriateinitialdata forconstructingresolutionmapsandpredictingretentiontimes.

It was recently demonstrated [19] that the useof elevated temperatures(upto80–90C)isnecessaryfortheRPLCseparation of mAb fragments due to the adsorption phenomena on both

(4)

Fig.3.Theeffectofgradienttime(atagiventemperature)ontheapparentgradientretentionfactorofrituximabheavychainandlightchainfragments(A),andofbevacizumab FcandFabfragments(B)andthedeviationbetweenlinearandquadraticfittingincaseoftherituximablightchain(C).Column:AerisWPC18(150mm×2.1mm),injected volume:0.5␮l,detection:fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:

from30%to40%B,flowrate:0.35ml/min.Thegradienttime(steepness)wasvariedas4,8,12and16min(at70and90C).

silica-basedand hybridstationaryphases.Atelevatedtempera- tures,thermaldegradationispossibleandbecomes relevantfor gradienttimeslongerthan20min[19].Acompromise mustbe foundbetweentheresidencetime andseparation temperature.

Therefore,theuseoftg1=4minandtg2=12mingradientswere employed to avoid issues with stability. Finally, the effect of temperatureonselectivityandresolutionshouldbeinvestigated onlyinalimitedtemperaturerange(e.g.,T=20C).Themobile phasetemperatureshouldthusbesettoT1=70CandT2=90C (orT1=60CandT2=80Cdependingonthethermalstabilityof thestationaryphase).

Asdiscussed in Section 3, becauselinear models cannot be usedtodescribethebehavioroflargebiomolecules(25–50kDa), quadraticmodelswereappliedfortheoptimization.A32factorial designwaschosentosimultaneouslyoptimizethegradientsteep- nessandmobilephasetemperature.Theeffectofthetwofactors wasinvestigatedat3levels.Gradienttimewasequidistantlyset totg1=4min,tg2=8minandtg3=12minwhiletemperaturewas settoT1=70C,T2=80C andT3=90C. Twoexamplesdemon- stratethereliabilityofthesecond-degreepolynomialmodel.The firstexampleshowstheoptimizationprocessfortheRPLCsepara- tionofbevacizumabFcandFabfragments(Section3.3.1),whereas thesecondexampleconfirmstheaccuracyofthisapproachwhen appliedtotheseparationofthelightchainandheavychainvariants ofrituximab(Section3.3.2).

3. Resultsanddiscussion

Whendealingwithlowmolecularweightanalytes,themost commonstrategyinmethoddevelopmentconsistsofselectinga suitablestationaryphasechemistry,organicmodifierandmobile phasepH.Thegradientprogramandmobilephasetemperature aresubsequentlytunedascomplementaryparametersforasecond leveloptimization.

InthecaseoflargebiomoleculessuchasmAbfragments,the methoddevelopmentrulesaredifferentandsomeadditionalcon- straintsshouldbeconsidered.First,ahighlyefficientwide-pore stationaryphasemustbeused,butthechemistryofsuchcolumns isverylimitedandonlyasmallnumberofC4,C8orC18materials arecurrentlyavailable.Toattainsuitablepeakshapeswithmaxi- mumefficiency,themobilephasecontaining0.1%TFAistypically recommended.Finally,acetonitrileshouldbeselectedasthesol- ventbecauseitprovidesalowerbackpressurewhenusingcolumns packedwithsub-2␮mparticles,incomparisonwithmethanolor isopropanol,andisparticularlyfavorableintermsofkineticper- formance.

Based on these considerations, this study was conducted usingrecentlydevelopedstationaryphases,namely,theAcquity BEH300 and Aeris Widepore C4 or C18, and a mobile phase consisting of water with 0.1% TFA and acetonitrile with 0.1%

TFA. The mobile phase temperature and gradient steepness

(5)

wereoptimizedtoachievetheoptimum separationofthemAb fragments.

3.1. Retentionbehaviorofantibodyfragments 3.1.1. Effectoftemperatureontheretentionproperties

InRPLC,theeffectoftemperatureontheretentionfactor(k)can generallybeexpressedbythevan’tHoffequation:

logk=−H RT +S

R +logˇ (1)

where H is the enthalpychangeassociated with thetransfer ofthesolute betweenphases, S isthecorrespondingentropy change,Ris themolargasconstant,T istheabsolutetempera- tureandˇisthephaseratioofthecolumn.Whenlog(k)isplotted against1/T,theenthalpyiscalculatedfromtheslopeofthecurve.

Withneutralcompounds,thevan’tHoffplotsexhibitalinearrela- tionship.However,a quadratic dependence oflog(k)versus1/T wasobservedoverawiderangeoftemperaturesinanotherstudy [21],whichemployedsilicaandnon-silicabasedstationaryphases (thisphenomenonhasnotbeenfullyexplainedyet).Theeffectof temperatureontheretentionofpartiallyionizedcompoundsthat existintwoformscanalsobedescribedbyEq.(1).However,both enthalpyandentropyareexpectedtobedifferentforthetwoforms (i.e.,molecularandionizedforms);asaresult,bothHandScan varywithtemperaturewhenbothformsarepresentinsignificant quantities[21].Melanderetal.[22]andCastellsetal.[23]have developedcomplexrelationshipstodescribetheretentionbehav- iorofapartiallyionizedsolutewithauniqueacid–baseequilibrium, basedontheassumptionthat theretentionfactorisconsidered astheweightedaverageoftheretentionfactorsoftheindividual forms.

Theeffectoftemperatureontheretentionbehaviorbecomes morecomplex forlargebiomolecules.Depending onthestabil- ityofthesecondarystructure,themoleculesunfoldtoadifferent extentandinteractwiththestationaryphasewithvariedstrength [24].Duetothedifferentconformation-dependentresponseofpro- teinsatelevatedtemperatures,thechangeintheretentiontimes canbevery different[25,26].Therefore, temperatureoffersthe abilitytoadjust theselectivityoftheseparation. Ifa proteinis completelydenaturedintoarandomcoilconformation,itwillbe elutedasasinglesharppeak.However,undercertainconditions, thenativeconformationand/orotherintermediateconformations mayalsobepresentduringtheanalysis.Eachofthesewillinter- act differently with the stationary phase, resulting in varying retentiontimesandmultiplepeaksinthechromatogram[27–33].

Insomecases,irreversibleconformationalchangescanoccurby changingthetemperature.Irreversibletemperature-inducedcon- formationaltransitionsmayhavebeenresponsiblefortheobserved peaksplittingofproteinsunderRPLCconditions[34].

Herein,shortgradientrunswereperformedonthreedifferent columntypesatdifferenttemperatures.Thechangeintheappar- entgradientretentionfactorsofantibodyfragmentsusingdifferent stationaryphases(C18 and C4,core–shelltype silicabased and fullyporoushybrid)wasinvestigated.Thelogarithmofapparent gradientretentionfactorslog(kapp)wasplottedasa functionof 1/T.AllfragmentsofthethreedifferentmAbsexhibitedsignificant deviationfromtheconventionallinearleast-squaredmodel.More surprisingly,therelationshipbetweenretentionandtemperature dependedonthestationaryphaseemployed.Fig2providesarep- resentativeexampleofthechangeinretentionbehaviorofheavy andlightchainofrituximabfragments.Experimentaldatashows anobviousconcavecurvaturewhenlog(kapp)isplottedasafunc- tionof1/T,andthedatacanbereadilyfitwithpolynomialfunctions (e.g.,quadraticmodel).Thechangeintheretentionbehaviorisalso verysimilarfortheheavychainfragmentonallstationaryphases,

whereas thelight chainshows differentbehavior dependingon thenatureof thecolumn.WhenusingtheBEH300 C4material, thechangeintheretentionasfunctionof1/Tappearstobemore linearthanwhenusingtheBEH300C18andAerisC18columns.

Thus,theintrinsicpropertiesofthestationaryphase(e.g.,surface physicochemicalproperties)canplayanimportantroleatelevated temperatures.Anon-linearrelationshiponsilica-basedcolumnsis oftenexplainedbytheso-called“phasetransition”phenomenon [21],which isdue toa conformationalchangein thestationary phase fromasolid-like (lowtemperature)toa liquid-like(high temperature)state.Inmanycases,thistransitioncanbediffuse andoccuroveralargetemperaturerange.

Avarietyofphenomenamayberesponsibleforthenon-linear relationshipbetweenlog(k)and1/Tofpoly-chargedanalytes(mAb fragments),including:(i)possibleconformationalchangesinthe protein,(ii)changesinthedissociationrateofthefunctionalgroups withtemperatureand(iii)thephasetransitionofthestationary phase.Withinthetemperaturerangeinvestigated(40–90C),the changeinapparentretentionfactor(log(kapp))ofmAbfragments asafunctionof1/Tcanbedescribedbythequadraticmodels.Chro- matographicoptimizationsoftwarecommonlyuseslinearmodels forthelog(k)−1/Tdependencebasedontwoinitialruns.Asdis- cussedearlier,thisapproachcannotbeappliedfortheantibody fragments.

3.1.2. Theeffectofgradienttime(gradientsteepness)onthe retention

InRPLC,theinteractionbetweenthestationaryphaseandthe analyte is mediated predominantly through hydrophobic inter- actionsbetweenthenonpolaraminoacidresiduesofmAbsand theimmobilizedn-alkylligands.DuringRPLCanalysis,thegradi- entelutionmodeispreferred,whereinthesolutesareelutedin orderofincreasingmolecularhydrophobicity.Becausethereten- tionofmAbsisstronglydependentonsmallchangesinthesolvent strength,verysmallchanges(<1%)intheorganicmodifiercontent couldleadtoasignificantshiftintheretention.Thus,isocraticcon- ditionsareimpractical,andgradientelutionisarequirementfor theseparationofrealmAbsamples.

InRPLC,theLSSmodelisthewidelyacceptedfordescribingthe retentionofanalytesasafunctionofthevolumefraction(˚)of theBsolvent.Forthegradientelutionmode,thefollowinggeneral equationcanbewritten:

logk∗=logkw−S∗ (2)

wherek*isthemedianvalueofkduringgradientelutionwhen thebandhasreachedthecolumnmid-point,kwisthevalueofk inpurewater,Sisaconstantforagivencompound(slopeofthe curve)and˚*isthecorrespondingvalueof˚.Thedependenceof k*onthegradienttime(tg)isalsotypicallypresented,whichcan bedescribedusingthefollowingequation[35,36]:

k∗= tg

1.15t0S (3)

wheret0isthecolumndeadtime.Forpracticalreasons,modeling softwaresuchasDryLabtransformsthevariablesofkork*into log(k)orlog(k*)whenbuildingamathematicalmodel.According toEqs.(2)and(3),log(k*)shouldexhibitalineardependencewhen plottedagainstthelogarithmofgradienttime(whichisrelatedto thegradientsteepness)inthecaseof“regular”samples.

TheLSSmodel generallyprovidesagood descriptionfor the retentionbehaviorofnumeroustypesofanalytes.Insomecases, deviationfromalinearmodelcanbeobserved.Becausetheconfor- mationofproteinscanvaryduringtheelution,linearrelationships cannotbeused.Theeffectofgradientsteepness(gradienttime)on theretentionofheavyandlightchainfragments,aswellastheFab andFcfragments,ofthethreemAbswasinvestigated.Thegradient

(6)

whencreatingalinearmodel.Forthequadraticfit,alltheexperi- mentalpointsweretakenintoaccount.Then,retentiontimeswere modeledonthebasisoftwomodelsfordifferentgradienttimes (i.e.,3,10and20min).Fig.3Cdemonstratesthata1.8%difference betweenthepredictedandobservedretentiontimeswascalcu- latedforthe3mingradient,whereasthedifferencebetweenthe twomodelswas2.3and2.1%forthe10-and20-mingradients, respectively.

Inconclusion,wecanconfirmthattheLSSmodelcandescribe the retention behavior of antibody fragments in the RPgradi- entelutionmodewithinapproximately1.0–2.5%error,whichis reasonable.However,whenmoreprecisepredictionisrequired, quadraticmodelshouldbeconsidered.

3.2. CreatingatwodimensionalquadraticDryLabmodel

Theoptimizationsoftwarepackagesgenerallyemployalinear modelforthesimultaneousoptimizationoftgandT.Thepolyno- mialrelationshipoftwovariablescanbewrittenas:

y=b0+b1x1+b2x2 (4) whereyistheresponse(retentiontimeoritstransformation),x1 andx2 arethemodelvariables,e.g.,tgandT,whereasb0,b1,b2 arethemodelcoefficients.Asobservedpreviouslywithantibody fragments,itispreferredtousethequadratic modeltoachieve maximumaccuracyinthepredictionofretentiontimes.Ageneral quadraticmodelfortwovariablescanbewrittenas:

y=b0+b1x1+b2x2+b11x21+b22x22+b12x1x2 (5) TheDryLabsoftwarewasusedforfurthermethodoptimization bycreatinganewtwodimensionalmode.Retentiontimeswere transformedintoretentionfactors,andthequadraticmodelwas chosenforbothvariables (temperatureandgradienttime).This modewasmodeled ona rectangularregionin the tg−T plane determinedby3temperatureand3 gradienttimes(steepness).

Inthiscase, themodelrequires themeasurement oftheeffects ofthevariablesat3levels.Hence,thisapproachislikea32fac- torialdesign,which needs9initialexperimentalrunstocreate amodel.Thegradienttimewassettotg1=4min,tg2=8minand tg3=12min,whereasthetemperaturewasvariedfromT1=70C, toT2=80CandT3=90C.Fig.4showstheschematicrepresen- tationoftheexperimentaldesignutilizedinthetwo-dimensional quadraticmodel.Afterperformingtheinputexperimentalruns,the data(retentiontimes,peakwidthsandpeaktailingvalues)were importedintoDryLabandpeaktrackingwasperformed.Subse- quently,anoptimizationwascarriedoutontheresolutionmaps, whereinthesmallestresolutionvalue(Rs)ofanytwocriticalpeaks inthechromatogramwasplottedasafunctionoftwosimultane- ouslyvariedexperimentalparameters.

Fig.4.Experimentaldesignofthetwo-dimensionalquadraticmodelfortheopti- mizationofmAb(IgG)fragmentRPLCseparation.

Theaccuracyofthis2dimensionalquadraticmodelwasver- ified by comparing the predicted and experimentally derived chromatograms(retention timesand resolution) under optimal conditions.

3.3. Accuracyofretentiontimeandresolutionpredictions 3.3.1. OptimizationoftheseparationofFabandFcfragments

PapainisathiolproteasethatcleavesIgGantibodiesattheheavy chainhingeregionintothreefragments:oneFcandtwoidenti- calFabfragments (Fig.1).Theseparation ofthesedomains has facilitatedtheinvestigationofthemicro-heterogeneityofhuman monoclonalantibodies,includingtheconfirmationofchemicaland post-translationalmodifications,suchastheN-terminalcycliza- tion, oxidation, deamidation, and C-terminal processed lysine residues[37,38].Thisstudydescribesafastandefficientmethodfor thedeterminationofvariantsanddegradationproductsofarecom- binantmAb(bevacizumab)fromacommercialsolution,usingthe separationpowerofnewwide-porecore–shelltypecolumns(Aeris Wideporeof 150mm long).ThenativemAb wasdigestedwith papainandtheaimofthemethoddevelopmentwastoseparate asmanyvariantsoftheFabandFcfragmentsaspossible,within theshortestachievableanalysistime.Threeinitialgradientswith differentslopeswerecarriedout atthreecolumn temperatures (asdescribedinSection2.3.3).Fig.5providesthechromatograms obtainedduringthe9initialruns.Notethatrelativelylargedevia- tionsinthepeakareas(andsumofpeakareas)areexpectedwhen trackingthepeaksbecauseofrecoveryissueswithlargeantibody fragmentsatlowtemperatures. Moreover,therecoveryofthese fragmentsdependsontheirmolecularweight(size).Incontrast,the reproducibilityofretentiontimes,derivedfromconsecutiveruns ataconstanttemperature,wasexcellent.Theresultispresented inFig.6asaresolutionmap.Asshown,the11-mingradientwas foundtoprovidethehighestresolutionwhenthecolumntemper- aturewaskeptat90C.RPLCanalysiswasthenperformedusing theoptimumpredictedconditions,andtheresultingexperimen- talchromatogramsareprovidedinFig.7,alongwiththepredicted data.

The accuracy of the quadratic approach (using 4-, 8- and 12-minbasicgradientrunswithB=10%)wasevaluatedusing the150mm×2.1mmcolumn.Thepredictedandexperimentally derivedchromatograms(retentiontimesandresolution)arecom- pared in Table 1, which reveals good agreement between the

(7)

Fig.5.Experimentalchromatogramsofthe9initialruns(BevacizumabFcandFabfragments).Column:AerisWPC18(150mm×2.1mm),injectedvolume:0.5␮l,detection:

fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:from30%to40%B,flowrate:

0.35ml/min.Gradienttimeandtemperatureweresetas4min,70C(A),8min,70C(B),12min,70C(C),4min,80C(D),8min,80C(E),12min,80C(F),4min,90C(G), 8min,90C(H)and12min,90C(I).Peaks:1–3:pre-Fcpeaks,4:Fc,5,6:post-Fcpeaks,7–9:pre-Fabpeaks,10:Fab,11–13:post-Fabpeaks.

Table1

Experimentalretentiontimesandresolutionsvs.predictedfromthetwo-dimensionalgradienttime–temperaturequadraticmodelofbevacizumabfragments(FcandFab).

Peaks Retentiontime Resolution

Experimental Predicted Differencea Abserror%b Experimental Predicted Differencea Abserror%b

Pre-Fc1 2.99 2.97 0.02 0.67 5.34 4.93 0.41 7.68

Pre-Fc2 3.45 3.41 0.04 1.16 1.11 1.27 −0.16 14.41

Pre-Fc3 3.60 3.54 0.06 1.61 0.84 0.96 −0.12 14.29

Fc 3.68 3.64 0.04 1.11 2.02 2.46 −0.44 21.78

Post-Fc1 3.89 3.85 0.04 0.95 0.58 0.65 −0.07 12.07

Post-Fc2 3.96 3.92 0.04 1.09 7.22 6.84 0.38 5.26

Pre-Fab1 4.78 4.75 0.03 0.54 2.89 2.42 0.47 16.26

Pre-Fab2 5.15 5.08 0.07 1.30 0.5 0.6 −0.10 20.00

Pre-Fab3 5.24 5.17 0.07 1.39 0.67 0.82 −0.15 22.39

Fab 5.35 5.3 0.05 0.92 1.36 1.25 0.11 8.09

Post-Fab1 5.49 5.45 0.04 0.75 1.01 0.57 0.44 43.56

Post-Fab2 5.60 5.54 0.06 1.00 1.02 0.95 0.07 6.86

Post-Fab3 5.70 5.69 0.01 0.18

Average 0.97 Average 16.05

aDifference=experimentalpredicted.

b%error=[(experimentalpredicted)/predicted]×100.

(8)

theretentiontimeswas∼1.0%,whichisconsideredanexcellent predictionusingsuchrapidgradientprofiles.Themeanerrorinthe predictedresolution(Rs)was16.1%.Theerrorintheresolutionval- uescontainstheretentiontimeerroraswellastheuncertaintyof peakwidthandpeaksymmetryprediction.Thus,thispredictionis consideredreliableandthesuggestedfastgradientruns(4,8and 12minfora150-mmlongnarrowborecolumn)canbeappliedin routinework,resultinginsignificanttimesavings.Inthiscase,the timespentformethoddevelopmentwasapproximately8h(3gra- dienttimes×3temperatures×3samples).Thepredictedmethod wasthenexperimentallyverifiedandthefinalseparationrequired onlyan11-minlineargradient,whereas aseparation ofsimilar qualityusingconventionalcolumnswouldrequireatleast60min.

Byusingthemostadvanced,highlyefficient150-mmlongnarrow

differentcolumntemperatures(asdescribedinSection2.3.3).

Fig.8providestheexperimentalchromatogramsofthe9basic inputruns.Theresultsarepresentedintheformofaresolution mapinFig.9,whichrevealsthattheseparationperformedat81C usinga14-mingradientprovidesthehighestresolution.Thepre- dictedoptimumconditionswerethenevaluatedexperimentally.

Theresultsdemonstratethatthepredictedretentiontimeswere practicallyidenticalwiththoseobtainedexperimentally,withan averageerrorintheretentiontimesof0.5%(seeTable2).Thereso- lutionwasalsopredictedwithsufficientaccuracy(averageerror of ∼20%).In this manner,computer-assisted simulation canbe appliedwithhighprecisionfor theseparation ofantibodyfrag- mentsbyusingtwodimensionalquadraticmodels.Fig.10provides acomparisonbetweenthepredictedandexperimentallyobtained

Fig.7.PredictedandexperimentalchromatogramsofBevacizumabFcandFabfragmentsoptimizedbyquadraticmodel.Column:AerisWPC18(150mm×2.1mm),injected volume:0.5␮l,detection:fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:

from30%to40%B,flowrate:0.35ml/min.Gradienttime:11min,T=90C.Peaks:1–3:pre-Fcpeaks,4:Fc,5,6:post-Fcpeaks,7–9:pre-Fabpeaks,10:Fab,11–13:post-Fab peaks.

(9)

Fig.8. Experimentalchromatogramsofthe9initialruns(RituximabLCandHCfragments).Column:AerisWPC18(150mm×2.1mm),injectedvolume:0.5␮l,detection:

fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:from30%to40%B,flowrate:

0.35ml/min.Gradienttimeandtemperatureweresetas4min,70C(A),8min,70C(B),12min,70C(C),4min,80C(D),8min,80C(E),12min,80C(F),4min,90C(G), 8min,90C(H)and12min,90C(I).Peaks:1:pre-LCpeak,2:LC,3–5:post-LCpeaks,6.7:pre-HCpeaks,8:HC,9–10:post-HCpeaks.

Fig.9. Two-dimensionalresolutionmapofthecolumntemperature(C)against gradienttime(tg,min)fortheseparationofRituximabLCandHCfragments.

chromatograms.Inthisexample,themethoddevelopmentprocess tookwaslessthan6h.

3.3.3. Comparisonofquadraticandlinearmodels

Asshown in Section 3.1,the changein the retention factor (log(k)) oftheantibody fragmentscaused by temperature(1/T)

cannot be described accurately using linear functions,whereas the log(kapp) vs. gradient time log(tg) exhibits a nearly linear correlation. Accordingly, the accuracy of the two dimensional linear and the combined linear-quadratic model were com- pared to that of the quadratic model. In the linear model, 4 initial runs were considered, namely: tg1=4min, tg2=12min and at T1=70C, T2=90C. In the combined model, 6 initial runs were considered, and the effect of gradient time was investigatedat2levels(tg1=4min,tg2=12min),whereasthetem- perature wasevaluated at3 levels(T1=70C, T2=80C and T3

=90C).

ByusingthelinearmodelfortheexampledescribedinSection 3.3.1,theaverageerrorintheretentiontimepredictionwas4.1%, whereasthecombinedmodelproducedanaverageerrorof1.5%

(∼1%errorwasobservedwiththequadraticmodel).Forthesec- ondexample(seeinSection3.3.2),thelinearmodelproducedan averageerrorof3.8%,whereasthecombinedmodelproduceda1.7%

errorfortheretentiontimeprediction(∼0.5%errorwasobserved withthequadraticmodel).Inconclusion,thecombinedmodelcan alsoprovideacceptableaccuracy(∼1.5–2%error)andrequiresonly

(10)

Fig.10.ExperimentalandpredictedchromatogramsofRituximabLCandHCfragmentsoptimizedbyquadraticmodel.Column:AerisWPC18(150mm×2.1mm),injected volume:0.5␮l,detection:fluorescence(excitationat280nm,emissionat360nm).MobilephaseA:0.1%TFAinwater,mobilephaseB:0.1%TFAinacetonitrile.Gradient:

from30%to40%B,flowrate:0.35ml/min.Gradienttime:14min,T=81C.Peaks:1:pre-LCpeak,2:LC,3–5:post-LCpeaks,6.7:pre-HCpeaks,8:HC,9–10:post-HCpeaks.

Table2

Experimentalretentiontimesandresolutionsvs.predictedfromthetwo-dimensionalgradienttime–temperaturequadraticmodelofrituximabfragments(light-andheavy chain).

Peaks Retentiontime Resolution

Experimental Predicted Differencea Abserror%b Experimental Predicted Differencea Abserror%b

Pre-LC 2.38 2.41 −0.03 1.18 6.37 8.73 −2.36 37.05

LC 2.96 2.98 −0.02 0.57 4.95 5.35 −0.40 8.08

Post-LC1 3.49 3.5 −0.01 0.29 2.59 3.01 −0.42 16.22

Post-LC2 3.82 3.82 0.00 0.13 1.63 2.69 −1.06 65.03

Post-LC3 4.03 4.05 −0.02 0.45 15.21 17.04 −1.83 12.03

Pre-HC1 5.92 5.93 −0.01 0.12 0.89 0.87 0.02 2.25

Pre-HC2 6.06 6.04 0.01 0.25 0.75 0.87 −0.12 16.00

HC 6.15 6.14 0.01 0.18 1.79 1.41 0.38 21.23

Post-HC1 6.41 6.43 −0.02 0.27 7.3 7.19 0.11 1.51

Post-HC2 7.40 7.53 −0.14 1.83

Average 0.52 Average 19.93

aDifference=experimentalpredicted.

b %error=[(experimentalpredicted)/predicted]×100.

6initialruns.Thus,thetimerequiredfortheinitialrunscanbe shortenedbyafactorof1/3(6runsvs.9runs).

4. Conclusion

ThecurrenttrendsinRPLCanalysisofmAbsinvolvetheuseof limitedfragmentation(proteolysisandreduction),whichisbased ontheseparationoftheheavyandlightchainvariantsaswellasthe Fab–Fcfragments.Therecentadvancesinwide-porecolumns,such asthehighlyefficient,fullyporoussub-2␮mBEH300orcore–shell typeAerisWideporecolumns,offerhighresolutionpowerforthe separationoftheselargefragments.

Fortunately, these mAb (IgG) fragments elute in a relative narrowgradientrange(e.g.,30–40%acetonitrileatelevatedtem- perature),whichmeansthatthemethodoptimizationprocedure doesnot require a wide range of scouting gradients(e.g., 0to 100%B). In general,it wasfoundthatinitialgradientsof 30to 40%Bwereappropriate formodeling theretentionbehavior of thefragments.Inaddition,itwasshownpreviouslythattheuse of elevated temperatures (e.g., 60–90C) is necessary because of recovery issues due to column adsorption of the IgG frag- ments.Accordingly,theeffectoftemperatureonselectivitywas investigated usinga limited temperature range (e.g.,70–90C), eliminating the need to perform initial gradient runs at low temperatures.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

Major research areas of the Faculty include museums as new places for adult learning, development of the profession of adult educators, second chance schooling, guidance

The decision on which direction to take lies entirely on the researcher, though it may be strongly influenced by the other components of the research project, such as the

By examining the factors, features, and elements associated with effective teacher professional develop- ment, this paper seeks to enhance understanding the concepts of

shrimp and almost as many oysters and clams. Anchovies made up one seventh of the fish catch, over one eighth was hairtails and almost as many saury pike. The South Korean

The method discussed is for a standard diver, gas volume 0-5 μ,Ι, liquid charge 0· 6 μ,Ι. I t is easy to charge divers with less than 0· 6 μΐ of liquid, and indeed in most of

These exciting discoveries, which clearly indicate that certain plant viruses harm their vectors, should stimulate further studies on other arthropods infected with virus pathogens

Addition of fatty acids either eliminated a lag (6) or stimu-.. ENZYMES OF COMPLEX LIPID METABOLISM 381 lated the mitochondrial enzyme {22). In contrast, the lysosomal enzyme

Usually hormones that increase cyclic AMP levels in the cell interact with their receptor protein in the plasma membrane and activate adenyl cyclase.. Substantial amounts of