• Nem Talált Eredményt

A SIMULTANEOUS SYSTEM OF FUNCTIONAL INEQUALITIES AND MAPPINGS WHICH ARE WEAKLY OF A CONSTANT SIGN

N/A
N/A
Protected

Academic year: 2022

Ossza meg "A SIMULTANEOUS SYSTEM OF FUNCTIONAL INEQUALITIES AND MAPPINGS WHICH ARE WEAKLY OF A CONSTANT SIGN"

Copied!
19
0
0

Teljes szövegt

(1)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page

Contents

JJ II

J I

Page1of 19 Go Back Full Screen

Close

A SIMULTANEOUS SYSTEM OF FUNCTIONAL INEQUALITIES AND MAPPINGS WHICH ARE

WEAKLY OF A CONSTANT SIGN

DOROTA KRASSOWSKA JANUSZ MATKOWSKI

Fac. of Math., Computer Science and Econometrics Institute of Mathematics

University of Zielona Góra Silesian University

Podgórna 50, PL-65-246 Zielona Góra, Poland Bankowa 14, PL-40-007 Katowice, Poland EMail:D.krassowska@wmie.uz.zgora.pl EMail:j.matkowski@wmie.uz.zgora.pl

Received: 17 October, 2006

Accepted: 07 June, 2007

Communicated by: Zs. Pales

2000 AMS Sub. Class.: Primary 39B72; Secondary 26D05.

Key words: Linear functional inequalities, Kronecker’s theorem, Mappings of weakly con- stant sign.

Abstract: It is shown that, under some algebraic conditions on fixed realsα1, α2, . . . , αn+1

and vectorsa1,a2, . . . ,an+1 Rn, every continuous at a point functionf : RnRsatisfying the simultaneous system of inequalities

f(x+ai)αi+f(x), xRn, i= 1,2, . . . , n+ 1,

has to be of the formf(x) =p·x+f(0),xRn, with uniquely determined p Rn. For mappings with values in a Banach space which are weakly of a constant sign, a counterpart of this result is given.

(2)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page2of 19 Go Back Full Screen

Close

Contents

1 Introduction 3

2 Kronecker’s Theorem and a Lemma 4

3 Main Result 7

4 Application for Mappings Which are Weakly of a Constant Sign 16

(3)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page3of 19 Go Back Full Screen

Close

1. Introduction

In this paper we consider the simultaneous system of functional inequalities (1.1) f(x+ai)≤αi+f(x), x∈Rn, i= 1,2, . . . , n+ 1,

wheren ∈N, α1, α2, . . . , αn+1 ∈R,a1,a2, . . . ,an+1 ∈Rnare fixed andf :Rn → Ris an unknown function.

In Section3, assuming Kronecker’s type conditions on the vectorsa1,a2, . . . ,an+1 and a inequality involving some determinants depending on these vectors and scalars α1, α2, . . . , αn+1, we show (Theorem 3.1) that for every continuous at least at one point functionf satisfying (1.1) there exists a unique vectorp∈Rnsuch that

f(x) = p·x+f(0), x∈Rn.

This result seems to be a little surprising in the context of an obvious fact that, in general, the accompanying simultaneous system of functional equations has a lot of very regular but nonlinear solutions, even “depending on an arbitrary function” (cf.

M. Kuczma [4], [2] or [3], where the full construction of the solution in a special one dimensional case is given). Theorem3.1 generalizes a suitable result of [2], where the one dimensional case

f(x+a)≤α+f(x), f(x+b)≤β+f(x), x∈R,

is considered. Let us mention that in the case whenα =β = 0,Montel [5] consid- ered the accompanying simultaneous system of equations.

In Section 4 we define a mapping to be weakly of a constant sign. Using this notion and a total system of linear functionals, we present a counterpart of Theorem 3.1for functions with values in a Banach space.

(4)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page4of 19 Go Back Full Screen

Close

2. Kronecker’s Theorem and a Lemma

The symbols N,Z,Q,R are reserved, respectively, for the set of natural, integer, rational and real numbers.

We begin this section by recalling the following:

Theorem 2.1 (Kronecker (cf. [1, p. 382])). If the realsυ1, υ2, . . . , υn,1are linearly independent over the fieldQ, the numbersα1, α2, . . . , αn ∈ Rare arbitrary, andN andare positive, then there are the integersp1, p2, . . . , pn, andm > N,such that

|mυi−pi−αi|< for eachi= 1,2, . . . , n.

As an immediate consequence of this theorem we obtain the following

Corollary 2.2. Lete1,e2, . . . ,enbe the standard base of the real linear spaceRn. If realsυ1, υ2, . . . , υn,1are linearly independent over the fieldQ, andv: = (υ1, υ2, . . . , υn), then the set

{mv+p1e1+p2e2+· · ·+pnen:m∈N, p1, p2, . . . , pn ∈Z} is dense inRn.

In sequel we need a more special result which guarantees that the set of all lin- ear combinations of the elements of the set B = {a1,a2, . . . ,an+1} with natural coefficients is dense inRn.

Lemma 2.3. Let{a1,a2, . . . ,an}be an arbitrary base of linear spaceRn overR. Suppose thatυ1, υ2, . . . , υn ∈Rare negative and the system of numbersυ1, υ2, . . . , υn,1 is linearly independent over the fieldQ. If

an+11a12a2+· · ·+υnan,

(5)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page5of 19 Go Back Full Screen

Close

then the set

A:=

(n+1 X

i=1

m(i)ai :m(i) ∈N,i= 1,2, . . . , n+ 1 )

is dense inRn.

Proof. Let N > 0 be fixed. Take x ∈ Rn. Then there exists a unique system of numbersx1, x2, . . . , xn ∈Rsuch that

x=x1a1+x2a2+· · ·+xnan.

By Kronecker’s theorem, for everyk ∈Nthere existmk>N andpik ∈Zsuch that

|mkυi+pik−xi|=|mkυi−(−pik)−xi|< 1

k, i= 1,2, . . . , n, whence

k→∞lim (mkυi+pik) =xi, i= 1,2, . . . , n.

Sincemk∈ N, υi <0fori= 1,2, . . . , n,it follows thatpik ∈Nfork large enough (in the opposite case we would havelimk→∞(mkυi+pik) = −∞). It follows that, forklarge enough, settingm(n+1)k :=mkandm(i)k :=pik,we get

m(i)k ∈N, i= 1,2, . . . , n+ 1.

Put

tk :=

n

X

i=1

m(n+1)k υi+m(i)k

ai, k∈N. By the definition ofan+1we hence get

tk=

n+1

X

i=1

m(i)k ai, k ∈N,

(6)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page6of 19 Go Back Full Screen

Close

whencetk ∈Aforksufficiently large. Moreover

k→∞lim tk = lim

k→∞

n

X

i=1

m(n+1)k υi+m(i)k ai

=

n

X

i=1 k→∞lim

m(n+1)k υi+m(i)k ai

=

n

X

i=1

xiai =x.

This completes the proof of the density ofAinRn.

(7)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page7of 19 Go Back Full Screen

Close

3. Main Result

Theorem 3.1. Letn ∈ N,ai = (ai,1, ai,2, . . . , ai,n) ∈Rn, i= 1,2, . . . , n, negative realsυ1, υ2, . . . , υnandα1, α2, . . . , αn+1 ∈R be fixed and such that:

(i) a1,a2, . . . ,anform a base of the linear space RnoverR; (ii) υ1, υ2, . . . , υn,1are linearly independent overQ,

(iii) an+11a12a2+· · ·+υnan, (iv)

(−1)n sgnW(n)

α1 α2 · · · αn αn+1 a1,1 a2,1 · · · an,1 an+1,1

· · · · a1,n a2,n · · · an,n an+1,n

≤0,

where

W(n) :=

a1,1 a2,1 · · · an,1 a1,2 a2,2 · · · an,2

· · · · a1,n a2,n · · · an,n

.

If a continuous at least at one point functionf :Rn −→ Rsatisfies the simulta- neous system of functional inequalities

(3.1) f(x+ai)≤αi+f(x), x∈Rn, i= 1,2, . . . , n+ 1, then there exists a uniquep∈Rnsuch that

f(x) = p·x+f(0), x∈Rn.

(8)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page8of 19 Go Back Full Screen

Close

Moreover,

p= 1 W(n)

h

p(n)1 , p(n)2 , . . . , p(n)n i , where

p(n)i :=

a1,1 a2,1 · · · an,1

· · · · a1,i−1 a2,i−1 · · · an,i−1

α1 α2 · · · αn a1,i+1 a2,i+1 · · · an,i+1

· · · · a1,n a2,n · · · an,n

, i= 1,2, . . . , n.

Proof. Suppose that the functionf :Rn −→Rsatisfies system (3.1). Using an easy induction argument, one can show thatf satisfies the inequality

(3.2) f

n+1

X

i=1

m(i)ai +x

!

n+1

X

i=1

m(i)αi+f(x),

for allm(i) ∈N, i= 1,2, . . . , n+ 1and allx∈Rn.By Lemma2.3, the set A:=

(n+1 X

i=1

m(i)ai :m(i) ∈N, i= 1,2, . . . , n+ 1 )

is dense in Rn. Thus there exist the sequences of positive integers (m(i)k )k∈N for

(9)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page9of 19 Go Back Full Screen

Close

i= 1,2, . . . , n+ 1 such that

k→∞lim

n+1

X

i=1

m(i)k ai = lim

k→∞

n+1

X

i=1

m(i)k ai,1,

n+1

X

i=1

m(i)k ai,2, . . . ,

n+1

X

i=1

m(i)k ai,n

!

= (0,0, . . . ,0), and, obviously,

k→∞lim m(i)k =∞, i= 1,2, . . . , n+ 1.

It follows that, for eachi= 1,2, . . . , n,the limitlimk→∞ m(i)k

m(n+1)k exists, and

n+1

X

i=1

k→∞lim m(i)k m(n+1)k ai,j

!

= lim

k→∞

n+1

P

i=1

m(i)k ai,j

m(n+1)k = 0, j = 1,2, . . . , n.

Consequently,

(3.3) lim

k→∞

m(i)k

m(n+1)k = W(n)i

W(n), i= 1,2, . . . , n, where

W(n)i :=

a1,1 · · · ai−1,1 −an+1,1 ai+1,1 · · · an,1 a1,2 · · · ai−1,2 −an+1,2 ai+1,2 · · · an,2

· · · · a1,n · · · ai−1,n −an+1,n ai+1,n · · · an,n

, i= 1,2, . . . , n.

(10)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page10of 19 Go Back Full Screen

Close

Letx0be a point of the continuity off. From inequality (3.2), we get f

n+1 P

i=1

m(i)k ai+x0

m(n+1)k

n+1

X

i=1

m(i)k

m(n+1)k αi+ f(x0) m(n+1)k . Letting herek → ∞and applying (3.3), we obtain

(3.4) 0≤

n

X

i=1

W(n)i

W(n)αin+1. Setting

W(n)i :=−

a1,1 · · · ai−1,1 ai+1,1 · · · an,1 a1,2 · · · ai−1,2 ai+1,2 · · · an,2

· · · · a1,n · · · ai−1,n ai+1,n · · · an,n

an+1,1 an+1,2

· · · an+1,n

, i= 1,2, . . . , n,

we can write inequality (3.4) in the form 0≤sgnW(n)

n

X

i=1

(−1)n−i+1W(n)i αi+W(n)αn+1

! ,

whence, by the Laplace expansion of a determinant,

0≤(−1)nsgnW(n)

α1 α2 · · · αn αn+1

a1,1 a2,1 · · · an,1 an+1,1

· · · · a1,n a2,n · · · an,n an+1,n

.

(11)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page11of 19 Go Back Full Screen

Close

Hence, taking into account condition (iv), we infer that

α1 α2 · · · αn αn+1 a1,1 a2,1 · · · an,1 an+1,1

· · · · a1,n a2,n · · · an,n an+1,n

= 0.

Now, by Laplace’s expansion theorem,

αn+1 = (−1)n+1

n

P

i=1

(−1)1−iW(n)i αi W(n) , whence by (3.2),

f

n+1

X

i=1

m(i)ai+x

!

n

X

i=1

m(i)αi+m(n+1)(−1)n+1

n

P

i=1

(−1)1−iW(n)i αi

W(n) +f(x)

= 1

W(n)

" n X

i=1

m(i)W(n)αi+m(n+1)

n

X

i=1

(−1)n+2−iW(n)i αi

#

+f(x),

for allm(i) ∈N,andx∈Rn.

Applying Laplace’s theorem for theith columne ofW(n)and for the last columne

(12)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page12of 19 Go Back Full Screen

Close

ofW(n)i ,we have

n

X

i=1

m(i)W(n)αi+m(n+1)

n

X

i=1

(−1)n+2−iW(n)i αi

=

n

X

i=1

m(i)αi

n

X

j=1

(−1)i+jai,jW(n)ij

+m(n+1)

n

X

i=1

(−1)n−iai,jαi

n

X

j=1

(−1)n+jan+1,jW(n)ij

!!

,

where W(n)ij is obtained from Wi(n) by deleting the jth row and ith column, and W(n)ij is obtained fromW(n)i by deleting thejth row and the last column. Since

W(n)ij =W(n)ij , i, j = 1,2, . . . , n, applying Fubini’s theorem for sums, we have

n

X

i=1

m(i)W(n)αi+m(n+1)

n

X

i=1

(−1)n+2−iW(n)i αi

=

n

X

j=1 n

X

k=1

m(k)ak,j

(−1)k+jW(n)kj αk

+m(n+1)an+1,j

n

X

i=1

(−1)j−iW(n)ij αi.

(13)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page13of 19 Go Back Full Screen

Close

Adding and subtracting the termPn

i=1(−1)j−iW(n)ij αi in the sum overkgives

n

X

i=1

m(i)W(n)αi+m(n+1)

n

X

i=1

(−1)n+2−iW(n)i αi

=

n

X

j=1 n

X

k=1

m(k)ak,j+m(n+1)an+1,j

! n X

i=1

(−1)j−iW(n)ij αi

!

+

n

X

j=1 n

X

k=1

m(k)ak,j

n

X

i=1

(−1)j−i+1W(n)ij αi+ (−1)k+jW(n)kj αk

!!

.

Let us note that

n

X

j=1 n

X

k=1

m(k)ak,j

n

X

i=1

(−1)j−i+1Wij(n)αi+ (−1)k+jWkj(n)αk

!!

= 0.

Indeed, we have

n

X

j=1 n

X

k=1

m(k)ak,j

n

X

i=1

(−1)j−i+1W(n)ij αi+ (−1)k+jWkj(n)αk

!!

=

n

X

j=1 n

X

k=1

m(k)ak,j

X

i∈{1,2,...,n}−k

(−1)j−i+1W(n)ij αi

=

n

X

k=1

m(k)

X

i∈{1,2,...,n}−k

αi

n

X

j=1

(−1)j−i+1ak,jWij(n)

!

(14)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page14of 19 Go Back Full Screen

Close

and n

X

j=1

(−1)j−i+1ak,jW(n)ij

is a determinant with two equal columns. Thus we have shown thatf satisfies the inequality

f

n+1

X

i=1

m(i)ai+x

!

n

X

j=1

1 Wn

n

X

i=1

(−1)j−iWij(n)αi

! n+1 X

i=1

m(i)aij

!!

+f(x),

for allm(i) ∈N,andx∈Rn,which can be written in the form (3.5) f(t+x)≤p·t+f(x), t∈A,x∈Rn.

Now take an arbitraryx∈Rn.By the density ofAthere is a sequence(tn)such that tn ∈A(n ∈N), lim

n→∞tn=x0 −x.

From (3.5) we have

f(tn+x)≤p·tn+f(x), n ∈N.

Letting heren → ∞, and making use of the continuity off atx0, we obtain f(x0)≤p·(x0−x) +f(x), x∈Rn.

To prove the converse inequality, note that replacingxbyx−tin (3.5) we get f(x)≤p·t+f(x−t), t∈A,x∈Rn.

Taking a sequence(tn)such that

tn∈A(n∈N), lim

n→∞tn =x−x0,

(15)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page15of 19 Go Back Full Screen

Close

(which, by the density ofA,exists) we hence get

f(x)≤p·tn+f(x−tn), n∈N.

Letting heren → ∞,and again making use of the continuity of f atx0,we obtain the inequality

f(x)≤p·(x−x0) +f(x0), x∈Rn. Thus

f(x) =p·x+ (f(x0)−p·x0), x∈Rn. Sincef(0) =f(x0)−p·x0, the proof is completed.

(16)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page16of 19 Go Back Full Screen

Close

4. Application for Mappings Which are Weakly of a Constant Sign

We start this section with the following.

Definition 4.1. Let X be an arbitrary nonempty set, Y - an arbitrary real linear topological space,Y- the conjugate space ofY, andT ⊂Y.

(i) We say that a mappingG :X → Y isT-weakly of a constant sign if for each functionalφ ∈T eitherφ◦Gis nonpositive orφ◦Gis nonnegative.

(ii) The mappingsG1 : X → Y andG2 : X → Y are said to beT-weakly of the same sign if(φ◦G1)·(φ◦G2)≥0for every functionalφ∈T.

Now applying Theorem3.1we prove:

Theorem 4.1. Let Y be a real Banach space and {a1,a2, . . . ,an} ⊂ Rn, ai = (ai,1, ai,2, . . . , ai,n), i = 1,2, . . . , nbe a base of the real linear space Rn.Suppose that reals υ1, υ2, . . . , υn are negative andυ1, υ2, . . . , υn,1are linearly independent over the fieldQ.Letan+11a12a2+· · ·+υnan.

If a mappingF : Rn → Y is continuous at least at one point and there exist a total systemT ⊂Y and the vectorsy1,y2, . . . ,yn+1 ∈Y such that

(i) the mappings

(*) Rn 3x→F(x+ai)−F(x)−yi, i∈ {1,2, . . . , n+ 1}, areT-weakly of a constant and the same sign;

(17)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page17of 19 Go Back Full Screen

Close

(ii) for everyφ∈T,

(−1)n sgnW(n)

φ(y1) φ(y2) · · · φ(yn) φ(yn+1) a1,1 a2,1 · · · an,1 an+1,1

· · · · a1,n a2,n · · · an,n an+1,n

≤0,

then there exists a unique linear continuous mappingL:Rn →Y such that (4.1) F(x) = L(x) +F(0), x∈Rn.

Proof. Assume thatF : Rn → Y satisfies assumptions (i)and(ii). By Definition 4.1, we have either, for allφ ∈T andi= 1,2, . . . , n+ 1,

φ(F(x+ai)−F(x)−yi)≤0, x∈Rn, or, for allφ∈T andi= 1,2, . . . , n+ 1,

φ(F(x+ai)−F(x)−yi)≥0, x∈Rn.

Without any loss of generality we may confine the consideration to the first case.

From the linearity ofφwe obtain the simultaneous system of inequalities

φ(F(x+ai))≤φ(F(x))+φ(yi), x∈Rn; yi ∈Y, i= 1,2, . . . , n+1; φ ∈T.

Let us fixφ∈T.Settingf :=φ◦F andαi :=φ(yi), we hence get f(x+ai)≤αi+f(x), x∈Rn, i= 1,2, . . . , n+ 1,

i.e. f satisfies system (3.1). Since all the required assumptions of Theorem3.1 are satisfied, there exists a vectorp,such that

f(x) = p·x+f(0), x∈Rn.

(18)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page18of 19 Go Back Full Screen

Close

Hence, by the definition off,

φ(F(x)−F(0)) = p·x, x∈Rn. It follows that for everyφ ∈T,there existsp: =pφ,such that

φ(F(x)−F(0)) =pφ·x, x∈Rn. SettingL:=F −F(0),we hence get

φ(L(x+y)) =φ(F(x+y)−F(0))

=pφ·(x+y)

=pφ·x+pφ·y

=φ(F(x)−F(0)) +φ(F(y)−F(0))

=φ(L(x)) +φ(L(y)), for allx,y∈Rn,whence

φ(L(x+y)−L(x)−L(y)) = 0, x,y∈Rn, for every functionalφ∈T.SinceT is total set of functionals (cf. [6]),

L(x+y)−L(x)−L(y) = 0, x,y∈Rn,

that is, L is an additive mapping. Now the continuity of F at least at one point implies that L := F −F(0) is continuous and, consequently, a linear map. The proof is completed.

(19)

Functional Inequalities Dorota Krassowska and Janusz Matkowski vol. 8, iss. 2, art. 35, 2007

Title Page Contents

JJ II

J I

Page19of 19 Go Back Full Screen

Close

References

[1] G.H. HARDYANDE.M. WRIGHT, An Introduction to the Theory of Numbers, Oxford, 1960.

[2] D. KRASSOWSKAANDJ. MATKOWSKI, A pair of functional inequalities and a characterization ofLp−norm, Ann. Polon. Math., 85 (2005), 1–11.

[3] D. KRASSOWSKAANDJ. MATKOWSKI, A pair of functional inequalities of iterative type related to a Cauchy functional equation, in Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht-Boston- London, 2003, 73–89.

[4] M. KUCZMA, An Introduction to the Theory of Functional Equations and In- equalities, Cauchy’s Equation and Jensen’s Inequality, PWN - Polish Sci. Publ.

and Silesian University, Warszawa-Kraków-Katowice, 1985.

[5] P. MONTEL, Sur les propriétés périodiques des fonctions, C. R. Acad. Sci. Paris, 251 (1960), 2111–2112.

[6] A. WILANSKY, Functional Analysis, Blaisdel Publishing Company, New York- Toronto-London, 1964.

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

In this paper, for a class of Volterra equations in a Banach space we establish explicit sufficient stability conditions which are also necessary stability conditions when the

STEGUN, Handbook of Mathematical Func- tions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55, Washington, 1964..

We present some sufficient conditions for which a Banach space X has normal structure in term of the modulus of U -convexity, modulus of W ∗ -convexity and the coefficient of

Abstract: We present bounds and approximations for the smallest positive zero of the Laguerre polynomial L (α) n (x) which are sharp as α → −1 +. We indicate the applicability of

In order to refine inequalities of (1.1), the author of this paper in [2] defined the following some notations, symbols and mappings... Wang [7] proved some results for

Abstract: For functions f (z) which are starlike of order α, convex of order α, and λ-spiral- like of order α in the open unit disk U , some interesting sufficient conditions

For functions f (z) which are starlike of order α, convex of order α, and λ-spiral- like of order α in the open unit disk U , some interesting sufficient conditions

In this paper, we consider univalent log-harmonic mappings of the form f = zhg defined on the unit disk U which are starlike of order α.. Representation theorems and distortion