• Nem Talált Eredményt

column using polar organic mode tris(3-chloro-4-methylphenylcarbamate)chiral a cellulose on Simultaneous determination chiral and achiral of impurities ofivabradine Journal of Pharmaceutical and Biomedical Analysis

N/A
N/A
Protected

Academic year: 2022

Ossza meg "column using polar organic mode tris(3-chloro-4-methylphenylcarbamate)chiral a cellulose on Simultaneous determination chiral and achiral of impurities ofivabradine Journal of Pharmaceutical and Biomedical Analysis"

Copied!
7
0
0

Teljes szövegt

(1)

ContentslistsavailableatScienceDirect

Journal of Pharmaceutical and Biomedical Analysis

jou rn al h om e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / j p b a

Simultaneous determination of chiral and achiral impurities of ivabradine on a cellulose tris(3-chloro-4-methylphenylcarbamate) chiral column using polar organic mode

Elek Ferencz

a,b

, Béla Kovács

a,b

, Francisc Boda

a

,

Mohammadhassan Foroughbakhshfasaei

c

, Éva Katalin Kelemen

b

, Gerg ˝o Tóth

c,∗

, Zoltán-István Szabó

a,b,∗∗

aFacultyofPharmacy,UniversityofMedicine,Pharmacy,SciencesandTechnologyofTarguMures,Gh.Marinescu38,RO-540139,TîrguMures¸,Romania

bGedeonRichterRomaniaS.A.,RO-540306,TîrguMures¸,Romania

cDepartmentofPharmaceuticalChemistry,SemmelweisUniversity,H ˝ogyesE.u.9,Budapest,Hungary

a r t i c l e i n f o

Articlehistory:

Received14June2019

Receivedinrevisedform29August2019 Accepted30August2019

Availableonline30August2019

Keywords:

Chemoselectivity Polarorganicmode Chiralseparation Relatedsubstance HPLC

a b s t r a c t

A high performance liquid chromatographic method was developed for the simultaneous deter- mination of the related substances (R-ivabradine, dehydro-S-ivabradine, N-demethyl-S-ivabradine, ((S)-3,4-dimethoxy-bicyclo[4.2.0]octa-1,3,5-triene-7-yl-methyl)-methyl-amine)and1-(7,8-dimethoxy- 1,3,4,5-tetrahydro-2H-3-benzazepine-2-on-3-yl)-3-chloro-propane) ofthe heart-rate lowering drug, ivabradine. The separation capability of seven different polysaccharide-type chiral columns (Lux Amylose-1,Luxi-Amylose-1,LuxAmylose-2,LuxCellulose-1,LuxCellulose-2,LuxCellulose-3andLux Cellulose-4)wasinvestigatedwithamobilephaseconsistingof0.1%diethylamineinmethanol,2- propanolandacetonitrile.DuringthescrenningexperimentsthebestresultswereobtainedonLux Cellulose-2(basedoncellulosetris(3-chloro-4-methylphenylcarbamate)columnwithmethanolwith anidealcase,wherealltheimpuritieselutedbeforetheS-ivabradinepeak.Chromatographicparameters (flowrate, temperatureandmobilephase constituents)wereoptimized byafull factorialscreen- ingdesign. Using optimizedparameters(LuxCellulose-2columnwith 0.06%(v/v)diethylaminein methanol/acetonitrile98/2(v/v)with0.45mL/minflowrateat12C)baselineseparationswereachieved betweenallcompounds.TheoptimizedmethodwasvalidatedaccordingtotheInternationalCouncilon HarmonizationQ2(R1)guidelineandprovedtobereliable,linear,preciseandaccuratefordetermination ofatleast0.05%forallimpuritiesinS-ivabradinesamples.Methodapplicationwastestedonacommer- cialtabletformulationandprovedtobesuitableforroutinequalitycontrolofbothchiralandachiral relatedsubstancesofS-ivabradine.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ivabradine 3-{3-[((S)-3,4-dimethoxy-bicyclo[4.2.0]octa-1,3,5- triene-7-ylmethyl)-methyl-amino]-propyl}-7,8-dimethoxy- 1,3,4,5-tetrahydro-2H-3-benzazepine-2-one; IVA) is an orally bioavailable,hyperpolarization-activated,cyclicnucleotide-gated

Correspondingauthorat:DepartmentofPharmaceuticalChemistry,Semmel- weisUniversity,H-1092Budapest,H ˝ogyesE.u.9,Hungary.

∗∗ Correspondingauthorat:FacultyofPharmacy,UniversityofMedicine,Phar- macy,SciencesandTechnologyofTarguMures,Gh.Marinescu38,GedeonRichter RomaniaS.A.,RO-540306,TîrguMures¸,Romania.

E-mail addresses: toth.gergo@pharma.semmelweis-univ.hu (G. Tóth), zoltan.szabo@gedeon-richter.ro,zoltan.szabo@umfst.ro(Z.-I.Szabó).

channel inhibitor. It is used for chronic heart failure not fully managedby␤-blockers[1,2].IVAhasasingleasymmetriccarbon atom,resultingin twoopticalisomers.Thedrugismarketedas a single enantiomeric agent; the pharmaceutical formulations containonlytheS-enantiomer,becauseofitsimprovedelectro- physiological selectivity [3,4]. Nevertheless, to date, only one applicationnotefromDaicel Chiraltechnologiesisavailablefor chiral separation of IVA using Chiralpak IG(based on amylose tris(3-chloro-5-methylphenylcarbamate) column [5]. Moreover, thenumberofthedescribedmethodfordeterminationofachiral relatedsubstancesinIVAisalsolimited[6–9].Highperformance liquid chromatography (HPLC) using a chiral stationary phase (CSP)isthegoldenstandardinanalyticalenantioseparationdueto theseveraladvantagesitoffers,suchaseaseofuse,robustnessand

https://doi.org/10.1016/j.jpba.2019.112851

0731-7085/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.

0/).

(2)

CSPsavailableonthemarket,polysaccharide-type CSPsarethe most frequently applied, due to their high enantiorecognition capability for most of the compounds and multimodal nature [10–12].Thesecolumnscanbeoperatedinnormalphase,reversed phase and polar organicmobile phase modes. In polarorganic modeonlypolarorganicsolvents,neatalcohols(methanol,ethanol and2-propanol),neatacetonitrile(ACN)ortheircombinationsare usedasmobilephase.Polarorganicmodehasseveraladvantages, suchasshorterruntimes,highefficiency,andusuallyhighersolu- bilityoftheanalytesinthemobilephase[12–15].Apartfromtheir abilitytodiscriminatebetweenenantiomers,polysaccharide-type CSPsmayalsopresentexcellentchemoselectivityforstructurally relatedcompounds,thereforetheycanbeusedforsimultaneous determinationofchiralandchemicalimpurities[14,16,17].

Allspecifiedimpurities, includingR-enantiomerareofinter- estin the analysis of S-IVA. Therefore, the aim of the present studywastodevelopamethodforthesimultaneousdetermination ofR-IVA,dehydro-S-ivabradine(DHIVA),N-demethyl-S-ivabradine (DMIVA),((S)-3,4-dimethoxy-bicyclo[4.2.0]octa-1,3,5-triene-7-yl- methyl)-methyl-amine (IMP-1) and 1-(7,8-dimethoxy-1,3,4,5- tetrahydro-2H-3-benzazepine-2-on-3-yl)-3-chloro-propane(IMP- 2)(Fig.1)inS-IVAsampleswithalimitofquantificationofatleast 0.05%orbelow.

2. Materialsandmethods

2.1. Materials

S-IVA (as a hydrobromide salt), racemic IVA, N-demethyl-S-ivabradine (DMIVA, 3-{3-[((S)-3,4-dimethoxy- bicyclo[4.2.0]octa-1,3,5-triene-7-yl)-methyl-amino]-propyl}- 7,8-dimethoxy-1,3,4,5-tetrahydro-2H-3-benzazepine-2-one), dehydro-S-ivabradine (DHIVA, 3-{3-[((S)-3,4-dimethoxy- bicyclo[4.2.0]octa-1,3,5-triene-7-ylmethyl)-methyl-amino]- propyl}-7,8-dimethoxy-1,3-dihydro-2H-3-benzazepine-2-one), ((S)-3,4-dimethoxy-bicyclo[4.2.0]octa-1,3,5-

triene-7-yl-methyl)-methyl-amine (IMP-1) and 1-(7,8-dimethoxy-1,3,4,5-tetrahydro-2H-3-benzazepine-2-on- 3-yl)-3-chloro-propane (IMP-2) (Fig. 1) were obtained from a pharmaceutical company in Târgu Mures¸. Diethylamine (DEA)

≥99.5%waspurchasedfromSigma-Aldrich(Budapest,Hungary).

Gradientgrademethanol(MeOH),2-propanol(IPA)andacetoni- trile(ACN)werepurchased fromThomaskerFinechemicals Ltd.

(Budapest,Hungary).

Ultrapure,deionizedwater waspreparedbyaMilli-QDirect 8 Millipore system (Milford, MA, USA). S-IVA 5mgfilm-coated tabletswereobtainedfromCentralPharmacyofSemmelweisUni- versity (Budapest, Hungary). All chiral columns with identical dimensions(4.6x150mm,5␮mparticles)wereorderedfromPhe- nomenex(Torrance,CA,USA):LuxCellulose-1[cellulosetris(3,5- dimethylphenylcarbamate)], Lux Cellulose-2 [cellulose tris(3- chloro-4-methylphenylcarbamate)], Lux Cellulose-3 [cellulose tris(4-methylbenzoate)],LuxCellulose-4[cellulosetris(4-chloro- 3-methylphenylcarbamate)], Lux Amylose-1 [amylose tris(3,5- dimethylphenylcarbamate)],Lux i-Amylose-1 [amylose tris(3,5- dimethylphenylcarbamate)], immobilized and Lux Amylose-2 [amylosetris(5-chloro-2-methylphenylcarbamate)] (Supplemen- taryInformationFigureS1).

2.2. LC-UVanalysis

LC-UVexperimentswascarriedoutonaJASCOHPLCsystem (JASCOPU-2089Plusbinarygradientpump,AS-4050autosampler, MD-2010PlusdiodearraydetectorandCO2065Pluscolumnoven).

wasChromNAV.UVdetectionwasperformedat286nm.MeOHwas usedasasamplesolventforthepreparationofsolutionsthrough- outthestudy.Forthepreliminaryexperiments,stocksolutionsof 200␮g/mLS-IVAwerepreparedinMeOHandwerespikedwith impuritiesataround2%(around4␮g/mL).Thefinaltestsolution ofS-IVAusedforvalidationandmethodapplicabilitytestingwas about8000␮g/ml.Allimpuritylevelpercentagesarereportedrel- ativetothisconcentration.Aninjectionvolumeof5␮Lwasused andthreeparallelmeasurementswereperformedinallcases.

Forpreparationofsamplesolutions,tentabletswereweighted, thengroundand mixedina mortar.In a5mLvolumetric flask, MeOH was added to an accurately weighted portion of the tablet powder corresponding to about 40mg S-IVA. Then the suspensionwas sonicatedfor 30min and centrifugedfor 2min applying4000rpm(Sartorius2–16Pbenchtopcentrifuge,Goettin- gen,Germany).Theclearsupernatantwasfilteredthrough0.22␮m poresizesyringecontainingPVDFfilter(FilterBiomembraneCo., LTD,NantongCity,China).

Theexperimentaldesign andmultivariatemethodoptimiza- tionwasperformedwiththeaidofModde11software(Umetrics, Sweden).

3. Resultsanddiscussion

3.1. Methodscoutingphase

Inroutinequalitycontrolofsingleenantiomericpharmaceutical substances,the“classicalapproach”wouldbetodevelopseparate methodsforthequantificationofachiralandchiralrelatedsub- stances.Methodsthatenablesimultaneousquantificationofboth chiral and achiral impurities arethus highly welcome,because theycansignificantlyshortentheanalysistime.However,inthese cases,thedevelopedmethodsneedtodisplaybothenantioselec- tivity(chiralseparation)andchemoselectivity(achiralseparation) towardstheanalytes.Althoughthiscanalsobeachievedbytandem couplingofchiralandachiralcolumns,usingasinglechiralcolumn ismoredesirable.Thus,forthepresentmethod,basedonregula- toryconsiderations,theanalyticaltargetprofilewasdefinedasa methodthatwouldallowthepreciseandaccuratedetermination ofallselectedimpurities(chiralandchemical)atalevelofatleast 0.05%orbelow,inshortanalysistime(t≤30min).

Recently, wehave successfully appliedpolysaccharide-based CSPsinpolarorganicmodeforthechiralseparationofalargevari- etyofanalytes[18–21],howeverpolysaccharide-typeCSPshave alsoprovedtheircapabilityforsimultaneouschiral-achiralanaly- ses[14,16,17].

Polysaccharide-basedCSPscomeinawidevarietyofcommer- cially available columns and usually display a great variety of enantio-andchemoselectivity.Inthepresentstudy,sevendifferent polysaccharide-basedCSPs,includingamylose-basedLuxAmylose- 1,Luxi-Amylose-1andLuxAmylose-2,aswellascellulose-based LuxCellulose-1,LuxCellulose-2,LuxCellulose-3andLuxCellulose- 4weretestedinpolarorganicmodeusingamobilephaseconsisting of0.1%DEAinMeOH,IPAorACN,with0.5mL/minflow rateat 25.Inourscreeningthecombinationofpolarorganicsolvents wasnotused,howeveritshouldbenotedthatsolventmixturecan changetheenantiorecognitionmechanismandalsocanimprove theresolution.

Duringthescreeningstepinallcases,IMP-1andIMP-2were wellresolvedfromeachotherandthemainpeak,however,dif- ficultieswereobservedduringtheseparationofthestructurally verysimilarDHIVA,DMIVA,R-IVAfromthemainpeakforwhich co-elutionswereoftenobserved.Particularlychallengingwasthe resolutionofIVAenantiomers,whichwasidentifiedasthecritical

(3)

Fig.1.Name,chemicalstructureandabbreviationsofthecompoundsusedinthisstudy.

Table1

Summaryofthechromatographicdataobtainedduringthepreliminaryscreeningphase.

Column Mobilephase* Rs Enantiomerelution

order

tr,min Lastelutedcompound

LuxAmylose-1

MeOH 0.25 R<S 23.1 S-IVA

IPA 1.34 R<S 16.1 S-IVA

ACN 0.24 S<R 19.0 DMIVA

Luxi-Amylose-1

MeOH 11.2 IVA

IPA 0.86 R<S 20.3 S-IVA

ACN 10.8 IVA

LuxAmylose-2

MeOH 1.06 S<R 18.2 R-IVA

IPA 49.3 DMIVA

ACN 1.80 S<R 49.9 DMIVA

LuxCellulose-1

MeOH 2.15 S<R 10.6 R-IVA

IPA 1.64 S<R 19.6 DMIVA

ACN 2.60 S<R 8.9 DMIVA

LuxCellulose-2

MeOH 1.78 R<S 19.9 S-IVA

IPA 40.9 DMIVA

ACN 0.20 R<S 39.3 DMIVA

LuxCellulose-3

MeOH 2.73 S<R 9.3 R-IVA

IPA 11.7 DMIVA

ACN 5.0 DMIVA

LuxCellulose-4

MeOH 0.25 R<S 14.1 S-IVA

IPA 35.8 DMIVA

ACN 1.11 R<S 26.4 DMIVA

Rs,resolutionbetweenR-andS-IVA.

tr,retentiontimeofthelastelutedpeak.

*allmobilephasescontained0.1%DEAasbasicmodifier.

-noenantiorecognitioncouldbeobserved.

parameter.Thus,thescreeningwasfocusedmainlyonselectingthe adequatecolumnforbaselineseparationoftheenantiomerswith thedesiredelutionorder(chiralimpurityandR-IVAelutingbefore

theeutomer).Someofthechromatogramsobtainedaredepicted inFig.2,whiletherelevantchromatographicdataarepresentedin Table1.Asitcanbeobserved,baselinechiralseparationbetween

(4)

Fig.2.Representativechromatogramsobtainedduringthepreliminarystudy.Chromatographicconditions:(A)LuxCellulose-2with0.1%DEAinMeOH;(B)LuxCellulose-3 with0.1%DEAinMeOH;(C)LuxCellulose-2with0.1%DEAinACN;(D)LuxCellulose-4with0.1%DEAinMeOH(flowrate:0.5mL/min,temperature25C,detectionat 286nm.)1.IMP-1,2.IMP-2,3.DHIVA,4.DMIVA,5.R-IVA,6.S-IVA.

enantiomerswasachieved ontheLuxCellulose-1 columnwith highresolutionvaluesforallthreemobilephases,buttheelution orderoftheenantiomerswasunfavorable.Distomer-firstelution orderwasobservedonLux-i-Amylose-1,LuxCellulose-2andLux Cellulose-4,butthebaselineseparationwasachievedonlyinthe caseofLuxCellulose-2using0.1%DEAinMeOHasmobilephase.

Mobilephasedependentenantiomerelutionorderwasrecorded onLuxAmylose-1column,whenchangingthemaincomponentof themobilephasefromalcoholstoACN.

Sincethe final goalwasto develop a singlemethodfor the separation of all related substances, not only enantioselectiv- ity, but chemoselectivity wasalso important. Thus, for further methodoptimizationthefollowingstarting-point wasselected:

LuxCellulose-2column,with0.1%DEAinMeOHwith0.5mL/min flowrateat25C.Byapplyingthismethod,allinvestigatedrelated substancescouldberesolved.Moreover,notonlytheenantiomeric impurity R-IVA, but allinvestigated impurities eluted beforeS- IVA(Fig.2A).InanattempttogainhigherresolutionMeOHwas changedtoEtOH,howeverusingtheethanolicmobilephaseDMIVA andS-IVAco-eluted,thereforeitwasnotsuitable(Supplementary InformationFigureS2).AdditionofsmallamountsofACNtoMEOH asasecondarysolvent,however,leadtoreducedretentiontimes withoutmodifyingtheresolutions significantly (Supplementary InformationFigureS3).Thus,thisoptionwasalsoevaluatedduring furthermethodoptimization.

3.2. Methodoptimizationbyexperimentaldesign

Conventionalmethodoptimizationisusuallyperformedbythe so-called OFATapproach (one factorat a time),which leadsto amultitudeofexperiments,whilstgainingonlylittleknowledge

abouttheprocessitself.Duetotheseshortcomings,experimental design-based,multivariateoptimizationofanalyticaltechniques havebecomewidespreadinrecentyears.Themainadvantageof thisapproachisthatitoffersmaximumprocessunderstandingwith aminimalnumberofexperiments[22,23].

Thus,amultivariatemethodologywasundertakenforarapid optimizationofnumerousparametersaffectingthesimultaneous separationoftheanalytes.Basedonthepreliminaryexperimental runs,fourcriticalqualityattributeswereselectedandmonitored asresponsesintheexperimentalruns.Theseincluded:Rsbetween DHIVAandDMIVA(abbreviatedRs1),Rs betweenDMIVAandR- IVA (Rs2), Rs betweenR-IVA and S-IVA (Rs3)and total analysis time(measuredasretentiontimeofS-IVA,tr,S-IVA).Criticalprocess parameterswereidentifiedbasedonourpreviousexperiencewith polarorganicmodeonpolysaccharide-typeCSPsandariskassess- mentofdifferentfactorsthatcouldinfluencetheperformanceof themethod.Thecriticalprocessparametersselectedasexperimen- talvariablesduringtheDoErunsweredefinedasDEAvolumeratio addedtothemobilephase(DEA%,range0.05%–0.15%),ACN/MeOH volumeratioofthemobilephase(ACN%,0–10%),flowrate(0.3– 0.7mL/min)and columntemperature(T,10–40C).Inourwork DEAwasusedasmodifierhoweverthenatureofthebasicand/or acidicmodifiermaydeeplyinfluencetheseparation[15].

Inordertoobtainthoroughinformationabouttheinfluenceof definedfactorsonselectedresponsesandtherebytoachievethe optimalchromatographicconditions,aimingtofulfilallresponse targetsettings,afullfactorialexperimentaldesignwiththreecen- terpointswasselected.

Thedesignreturnedatotalof19experimentalruns,including threereplicatecenterpointedexperiments.Thesampleconsisted of 8000␮g/mL S-IVA and 80␮g/mL of each impurity (impurity

(5)

Table2

Optimizedmethodconditionswithpredictedandexperimentallyobtainedresponsevalues.

Optimizedmethodconditions Rs1 Rs2 Rs3 tr,S-IVA

DEA% ACN% Flowrate

(ml/min)

T(oC) Predicted values

2.02 (1.852.19)

1.58 (1.541.62)

2.00 (1.952.05)

23.71 (21.9825.57)

0.06 2 0.45 12 Experimental

obtainedvalues

2.13 1.55 1.98 23.20

levelsat1.0%relative toS-IVA)inMeOH. Allexperimentalruns wereperformedintriplicateandtheaveragevalueswereintro- ducedintheworksheet.Thedesignmatrixandtherecordedvalues forallresponsesaresummarizedinSupplementaryInformation TableS1.Theobtaineddatawasfittedbypartialleastsquares(PLS) regressionandthemodelpassedthereplicativeplotanalysisforall responses(SupplementaryInformationFigureS4),meaningthat replicate errors didnot interferewithdata analysis.Histogram plotsofresponsesindicatednormaldistributionforreponsesRs1, Rs3,butnotforRs2andtr,S-IVA.Forthelattertwo,thehistograms showedstrongpositiveskewness,implyingthatthefrequencyof lowervaluesinthedatasetwasmuchhigher.Inordertoachieve approximatelynormal distribution,logarithmic transformations wereemployed,whichresultedinasubstantialincreaseinmodel predictability (Q2) for both responses. The model was further adjustedbydeletingnon-significantfactorsandaddingdetected squarevaluestoincreasetheQ2values.Thefinalcoefficientplots obtained,withthesignificantfactorsaffectingeachresponseare presentedinSupplementaryInformationFigureS4.Forallofmon- itoredresponses,theexperimentalvariablesACN%,flowrateand Tpresentedanegativecorrelation,indicatingthatanincreasein anyofthesefactorsresultedinadecreaseinallRsvalues,butalso adecreaseintr,S-IVA.DEA%inmostcaseshadnosignificanteffect upontheresponses,apartfromRs2where,incomparisontoACN%, flowrateandTalsopresentsasignificantinverseproportionality withtheselectedresponse,althoughbeingtheleastinfluentialof thedefinedfactors.

Furthermodelrefinementimpliedtheappraisalof quadratic termsinsidethemodel.Thepresenceofquadratictermsindicatesa non-linearrelationshipin-betweenfactorsandresponsesandsug- geststheexistenceofcurvatureinsidethemodel.Quadraticterms werenotidentifiedincaseofRs2andRs3.RegardingRs1andtr,S-IVA

significantquadratictermswereobservedandincludedintheanal- ysisofmodelperformanceindicators.Astherefinedmodelallows onlyonequadratictermtobeincludedintheregressionequation, thiswasfulfilledbyselectingtheoneforwhichthecorresponding singularfactorhasthegreatestimpactontheselectedresponse.

Hence,incaseofRs1 andtr,S-IVA,ACN%xACN%andFlowxFlow wereretained,respectively.

Inallcases,significantregressionmodelswereobtained(p<

0.05)andapartfromthecaseoftr,S-IVA,nolackoffitwasdetected (p> 0.05).In thelattercase,thelackof fitwasalsoevidentby thenegativemodelvalidityvalue.Incontrasttothis,modelrepro- ducibilityshowedextremelyhighvalues( ˜0.99),sincethereplicate runsresultedinalmostidenticalretentiontimesofthemainpeak (seeSupplementaryInformationTableS1).Althoughretentiontime reproducibility is desirable and mostly expected in chromato- graphictechniques,thisalsomeans,thatthepureerrorinsidethe modeltendstozeroandthus,thelowmodelvalidityincaseof tr,S-IVAcanbeexplainedbyhighreproducibility.Themethodwas subsequentlyoptimizedusingthepredictionspreadsheetfunction ofthesoftware,applyingthefollowingcriteria:allRsvaluesmaxi- mized,withacriticalminimalvalue≤1.5,andtr,S-IVAminimized.

Theoptimizersetpoint resultsobtainedaftertheperformed experimentsduring screeningis basedona Monte Carlosimu- lation,where parameter settingswere chosen accordingtothe

lowest log(D) value, with DEA=0.058%, ACN=1.68%, flow rate

=0.46mL/minandcolumntemperature=12.0C.Designspacewas evaluatedaroundtheaforementionedparametersettings.The4D designspaceexplorermap(SupplementaryInformationFigureS5) indicatesthatthechromatographicsystemreturnsoptimalresults onlyatlowcolumntemperatureandflowratesettings.Atthelow- estsetpointsofboththeflowrateandcolumntemperature,the proportionofACNisallowedtobeusedinawiderrange,showinga shifttowardstighterspecificationlimitsashighersettingsforboth flowrateandcolumntemperaturearerequired.Thesetpointanaly- sisfunctionofthesoftwarerevealedthatthefrequencyhistograms oftheselectedfactorsanddefinedresponsesfollowanormaldis- tribution(SupplementaryInformationFigureS6andS7),andthe individualprobabilityoffailureforthedefinedresponsesissitu- atedbelow1%,withanoverallprobabilityoffailureof1.7%.Forease ofuse,thefinalproposedmethodusesslightlydifferentparame- tersettings(mostparametersettingsarerounded),whichstilllie inside thedesign spaceand returnsatisfactory resultsin terms ofselectedresponserequirements.Table2showstheoptimized parametersofthechromatographicsystemandtheclosenessof thepredictedandexperimentallyobtainedvaluesforallresponses, usingtherecommendedsettings.Sincetheanalyticaltargetprofile ofthemethodwasfulfilled,furthermethodoptimizationwasnot undertaken.Theparametersofthefinalmethodwerethefollow- ingLuxCellulose-2columnwith0.06%(v/v)DEAinMeOH/ACN98/2 (v/v)with0.45mL/minflowrateat12C.

3.3. Methodvalidationandapplication

Validationoftheoptimizedmethodwasperformedaccording toInternationalCouncilforHarmonizationguidelineQ2(R1)forall relatedsubstancesandforR-IVAaschiralimpurity,withrespect ofsensitivity,linearity,accuracy,andprecision[24].Thelimitof detection(LOD) and thelimitof quantification(LOQ) werecal- culated based onsignal-to-noise ratiosof 3:1and 10:1 for the LOD and LOQ,respectively. (Baseline noise was measuredcon- sideringa peaktopeakwithin3minselectedinthree different partsofthechromatogramofthestandardsolution.)Theobtained valuesaresummarizedinTable3.Basedontheresults,thelin- earityofthemethodwasevaluatedateightconcentrationlevels forallimpuritiesandcalibrationplotswererepresentedbyplot- tingpeakareasagainstcorrespondingconcentrations(expressed in␮g/mL).Thecorrelationcoefficientwasdeterminedbylinear leastsquaresregressionanalysisanditishigherthan0.9972inall cases.Moreover,forallimpurities95%confidenceintervalsofthe y-interceptsincludedzeroandrandomdistributionoftheresiduals wasobserved.

Theaccuracyandprecisionwereanalyzedbyperformingintra- (repeatability)andinter-dayevaluation(twoconsecutivedays)of threeconcentrationlevelsforallimpurities,coveringthelinear- ity range,each solutionbeing injectedfive times.Theaccuracy (expressedinmeanrecovery%)rangedfrom97.52%to104.32%.The repeatability(expressedasRSD%)determinedbyfiveparallelinjec- tionsofthesolutionsonthesamedaywasbetween0.41%and2.29%.

Intermediate precisionof themethod(expressed in RSD%) was investigatedontwoconsecutivedaysandwaslowerthan3.56%.

(6)

Assayvalidationdata.

Parameter Level IMP-1 IMP-2 DHIVA DMIVA R-IVA

Range(␮g/mL) Range(%)

280 0.025%-1%

280 0.025%-1%

2.764 0.034%-0.8%

2.764 0.034%-0.8%

480 0.05%-1%

r2 0.9992 0.9989 0.9980 0.9997 0.9972

LOD(␮g/mL) 0.12 0.12 0.81 0.60 1.20

LOQ(␮g/mL) 0.40 0.40 2.70 2.0 4.0

Accuracy(%)

I* 98.90±0.90 104.32±1.01 99.69±1.03 103.92±1.45 103.45±1.19

II** 97.52±1.12 99.55±2.21 102.65±0.99 97.91±0.75 98.94±0.67

III*** 98.29±0.22 101.81±0.88 103.51±0.75 99.81±0.19 98.62±0.34

Content repeatability(RSD)

I* 1.95 1.53 2.29 1.50 0.63

II** 0.68 0.55 1.19 1.02 0.97

III*** 0.41 0.56 0.55 0.49 0.66

Contentprecision (RSD)

I* 2.12 1.74 3.56 1.69 1.11

II** 0.69 0.38 1.26 1.09 1.01

III*** 0.82 0.49 0.81 1.52 2.27

* LevelI:IMP-1=4␮g/ml,IMP-2=4␮g/ml,DHIVA=4␮g/ml,DMIVA=5.4␮g/ml,R-IVA=8␮g/ml.

** LevelII:IMP-1=16␮g/ml,IMP-2=16␮g/ml,DHIVA=12␮g/ml,DMIVA=10.8␮g/ml,R-IVA=16␮g/ml.

***LevelIII:IMP-1=56␮g/ml,IMP-2=56␮g/ml,DHIVA=40␮g/ml,DMIVA=54␮g/ml,R-IVA=56␮g/ml.

Fig.3.Chromatogramsof(A)Solution ofIvabradine5mgtablet.(B) Solution ofIvabradine 5mgfilm-coated tabletspiked with all impuritiesat the0.05%

level.Experimentalconditions:LuxCellulose-2columnwith0.06%(v/v)DEAin MeOH/ACN98/2(v/v)with0.45mL/minflowrateat12C.1.IMP-1,2.IMP-2,3.

DHIVA,4.DMIVA,5.R-IVA,6.S-IVA.

Basedontheobtainedresultstheoptimizedmethodprovedto besensitive,linear,accurateandpreciseforthedeterminationof fivedifferentimpurities,includingR-IVAaschiralimpurity.

Theoptimizedandvalidatedmethodwasappliedtotheanalysis ofrealsamples,intheformoffilm-coatedtabletswithanomi- nalcontentof5mgS-IVAbase.Therepresentativechromatograms recordedforthesamplesolutionandthesamplesolutionspiked withimpuritiesareshowninFig.3AandB,respectively.OnlyR-IVA ofthemonitoredimpuritiescouldbequantifiedinthecommercial tablet,theotherimpuritieswerebelow(orclose)theLOD.Thecon- tentofR-IVAwas0.032±0.001%.Inadditiontotheknownrelated substances,minorunidentifiedpeakscouldalsobeobservedinthe samplechromatogram,whichcouldbeindicatingunknownimpu- ritiesormaybetheresultsofdifferentexicipientsusedinthetablet formulation.Usingpeaknormalizationat286nm,thesumofthe totalimpuritieswascalculatedas0.14±0.01%.

4. Concludingremarks

Anovel,singleHPLCmethodusingLuxCellulose-2columnin polarorganicmodewasdevelopedusingDoEforthesimultane- ousdeterminationofDHIVA,DMIVA,IMP-1andIMP-2asrelated substances aswellas R-IVA asenantiomeric impurity in S-IVA.

ThemethodwasvalidatedaccordingtotheInternationalCoun- cilforHarmonizationguidelineQ2(R1)andprovedtobeprecise andaccuratefordeterminationofatleast0.05%orbelowforall impuritiesinS-IVAsamples.Applicationofthemethodwastested ona commercialtablet and showedthatthetablet contains R- IVAimpurity,butbelow0.05%.Ourmethodcouldbeappliedinan industrialenvironmentforsimultaneousquantificationofchemi- calandchiralrelatedsubstancesofS-IVAinoneruntosavetime andmoney.Furthermore,thepresentmethodisanotherexample thatrelatedsubstancesandenantiomericimpuritiescanbedeter- minedbyasinglemethodusingpolysaccharide-typeCSPinpolar organicmode.

Acknowledgements

ThisworkwassupportedbytheJánosBolyaiResearchScholar- shipoftheHungarianAcademyofSciencesandbytheSemmelweis Innovation Found STIA-M-17 and STIA-18-KF (to G.Tóth). The financialsupportfromBolyai+NewNationalExcellenceProgram (grant number: UNKP-19-4-SE-28) of the Ministry of Human Capacitiesishighlyappreciated(G.Tóth).

AppendixA. Supplementarydata

Supplementarymaterial relatedto this articlecanbe found, in theonline version, at doi:https://doi.org/10.1016/j.jpba.2019.

112851.

References

[1]K.Swedberg,M.Komajda,M.Böhm,J.S.Borer,I.Ford,A.Dubost-Brama,G.

Lerebours,L.Tavazzi,Ivabradineandoutcomesinchronicheartfailure (SHIFT):arandomisedplacebo-controlledstudy,Lancet376(2010)875–885, http://dx.doi.org/10.1016/S0140-6736(10)61198-1.

[2]C.W.Yancy,M.Jessup,B.Bozkurt,J.Butler,D.E.Casey,M.M.Colvin,M.H.

Drazner,G.Filippatos,G.C.Fonarow,M.M.Givertz,S.M.Hollenberg,J.

Lindenfeld,F.A.Masoudi,P.E.McBride,P.N.Peterson,L.W.Stevenson,C.

(7)

Westlake,C.Westlake,ACC/AHA/HFSAfocusedupdateonnew

pharmacologicaltherapyforheartfailure:anupdateofthe2013ACCF/AHA guidelineforthemanagementofheartfailure:areportoftheamerican collegeofCardiology/Americanheartassociationtaskforceonclinical practiceguidelinesandtheheartfailuresocietyofamerica,Circulation134 (2016)(2016),http://dx.doi.org/10.1161/CIR.0000000000000435.

[3]C.Thollon,J.P.Bidouard,C.Cambarrat,L.Lesage,H.Reure,I.Delescluse,J.

Vian,J.L.Peglion,J.P.Vilaine,Stereospecificinvitroandinvivoeffectsofthe newsinusnodeinhibitor(+)-S16257,Eur.J.Pharmacol.339(1997)43–51, http://dx.doi.org/10.1016/S0014-2999(97)01364-2.

[4]J.P.Vilaine,C.Thollon,N.Villeneuve,J.L.Peglion,Procoralan,anewselectiveI fcurrentinhibitor5(2003)G26–G36,http://dx.doi.org/10.1016/S1520- 765X(03)90005-8.

[5]chiraltech.com/wp-content/uploads/2017/04/Ivabradine-CHIRALPAK-IG.pdf (accessed08.29.2019).

[6]P.Pikul,M.Jamrógiewicz,J.Nowakowska,W.Hewelt-Belka,K.Ciura,Forced degradationstudiesofIvabradineandinsilicotoxicologypredictionsforits newdesignatedimpurities,Front.Pharmacol.7(2016),http://dx.doi.org/10.

3389/fphar.2016.00117.

[7]P.N.Patel,R.M.Borkar,P.D.Kalariya,R.P.Gangwal,A.T.Sangamwar,G.

Samanthula,S.Ragampeta,Characterizationofdegradationproductsof IvabradinebyLC-HR-MS/MS:atypicalcaseofexhibitionofdifferent degradationbehaviourinHClandH2SO4acidhydrolysis,J.MassSpectrom.50 (2015)344–353,http://dx.doi.org/10.1002/jms.3533.

[8]S.Maheshwari,A.Khandhar,A.J.-E.J.of,undefined,Quantitative determinationandvalidationofivabradineHClbystabilityindicating RP-HPLCmethodandspectrophotometricmethodinsoliddosageform, Eurasian,J.Anal.Chem.5(2010)(2010)53–62.

[9]N.P.Nadella,V.N.Ratnakaram,N.Srinivasu,Developmentandvalidationof UPLCmethodforsimultaneousquantificationofcarvedilolandivabradinein thepresenceofdegradationproductsusingDoEconcept,J.Liq.Chromatogr.

Relat.Technol.41(2018)143–153,http://dx.doi.org/10.1080/10826076.2018.

1427595.

[10]T.Ikai,Y.Okamoto,StructureControlofPolysaccharideDerivativesfor EfficientSeparationofEnantiomersbyChromatography,Chem.Rev.109 (2009)6077–6101,http://dx.doi.org/10.1021/cr8005558.

[11]B.Chankvetadze,Polysaccharide-BasedChiralStationaryPhasesfor EnantioseparationsbyHigh-PerformanceLiquidChromatography:An Overview,2019,pp.93–126,http://dx.doi.org/10.1007/978-1-4939-9438-06.

[12]H.Ates,A.A.Younes,D.Mangelings,Y.VanderHeyden,Enantioselectivityof polysaccharide-basedchiralselectorsinpolarorganicsolvents

chromatography:implementationofchlorinatedselectorsinaseparation strategy,J.Pharm.Biomed.Anal.74(2013)1–13,http://dx.doi.org/10.1016/j.

jpba.2012.09.025.

[13]E.P.Sousa,M.E.Tiritan,R.V.Oliveira,C.M.M.Afonso,Q.B.Cass,M.M.M.Pinto, EnantiomericresolutionofkielcorinderivativesbyHPLConpolysaccharide stationaryphasesusingmultimodalelution,Chirality16(2004)279–285, http://dx.doi.org/10.1002/chir.20031.

[14]S.Niedermeier,I.Matarashvili,B.Chankvetadze,G.K.E.Scriba,Simultaneous determinationofdextromepromazineandrelatedsubstances

2-methoxyphenothiazineandlevomepromazinesulfoxidein

levomepromazineonacellulosetris(4-methylbenzoate)chiralcolumn,J.

Pharm.Biomed.Anal.158(2018)294–299,http://dx.doi.org/10.1016/j.jpba.

2018.06.012.

[15]L.Mosiashvili,L.Chankvetadze,T.Farkas,B.Chankvetadze,Ontheeffectof basicandacidicadditivesontheseparationoftheenantiomersofsomebasic drugswithpolysaccharide-basedchiralselectorsandpolarorganicmobile phases,J.Chromatogr.A1317(2013)167–174,http://dx.doi.org/10.1016/j.

chroma.2013.08.029.

[16]A.C.Servais,B.Janicot,A.Takam,J.Crommen,M.Fillet,Liquid

chromatographyseparationofthechiralprodrugeslicarbazepineacetateand itsmainmetabolitesinpolarorganicmode.Applicationtotheiranalysisafter invitrometabolism,J.Chromatogr.A1467(2016)306–311,http://dx.doi.org/

10.1016/j.chroma.2016.07.022.

[17]R.Ferretti,L.Zanitti,A.Casulli,R.Cirilli,Unusualretentionbehaviorof omeprazoleanditschiralimpuritiesBandEontheamylosetris

(3-chloro-5-methylphenylcarbamate)chiralstationaryphaseinpolarorganic mode,J.Pharm.Anal.8(2018)234–239,http://dx.doi.org/10.1016/j.jpha.

2018.04.001.

[18]M.Foroughbakhshfasaei,Z.-I.Szabó,G.Tóth,ValidatedLCmethodfor determinationofenantiomericpurityofapremilastusingpolysaccharide-type stationaryphasesinpolarorganicmode,Chromatographia81(2018) 1613–1621,http://dx.doi.org/10.1007/s10337-018-3546-9.

[19]Z.-I.Szabó,M.Foroughbakhshfasaei,R.Gál,P.Horváth,B.Komjáti,B.Noszál, G.Tóth,Chiralseparationoflenalidomidebyliquidchromatographyon polysaccharide-typestationaryphasesandbycapillaryelectrophoresisusing cyclodextrinselectors,J.Sep.Sci.41(2018)1414–1423,http://dx.doi.org/10.

1002/jssc.201701211.

[20]Z.-I.Szabó,M.Foroughbakhshfasaei,B.Noszál,G.Tóth,Enantioseparationof racecadotrilusingpolysaccharide-typechiralstationaryphasesinpolar organicmode,Chirality30(2018)95–105,http://dx.doi.org/10.1002/chir.

22772.

[21]M.Foroughbakhshfasaei,Z.-I.Szabó,A.Mirzahosseini,P.Horváth,G.Tóth, EnantiomericqualitycontrolofR-TofisopambyHPLCusing

polysaccharide-typechiralstationaryphasesinpolarorganicmode, Electrophoresis39(2018)2566–2574,http://dx.doi.org/10.1002/elps.

201800220.

[22]S.Orlandini,S.Pinzauti,S.Furlanetto,Applicationofqualitybydesigntothe developmentofanalyticalseparationmethods,Anal.Bioanal.Chem.405 (2013)443–450,http://dx.doi.org/10.1007/s00216-012-6302-2.

[23]P.K.Sahu,N.R.Ramisetti,T.Cecchi,S.Swain,C.S.Patro,J.Panda,Anoverview ofexperimentaldesignsinHPLCmethoddevelopmentandvalidation,J.

Pharm.Biomed.Anal.147(2018)590–611,http://dx.doi.org/10.1016/J.JPBA.

2017.05.006.

[24]InternationalCouncilforHarmonizationGuidelineQ2(R1),Validationof AnalyticalProcedures:TextandMethodology,2005(Accessed08.29.2019) https://www.ich.org/fileadmin/PublicWebSite/ICHProducts/Guidelines/

Quality/Q2R1/Step4/Q2R1 Guideline.pdf.

Ábra

Fig. 1. Name, chemical structure and abbreviations of the compounds used in this study.
Fig. 2. Representative chromatograms obtained during the preliminary study. Chromatographic conditions: (A) Lux Cellulose-2 with 0.1% DEA in MeOH; (B) Lux Cellulose-3 with 0.1% DEA in MeOH; (C) Lux Cellulose-2 with 0.1% DEA in ACN; (D) Lux Cellulose-4 with
Fig. 3. Chromatograms of (A) Solution of Ivabradine 5 mg tablet. (B) Solution of Ivabradine 5 mg film-coated tablet spiked with all impurities at the 0.05%

Hivatkozások

KAPCSOLÓDÓ DOKUMENTUMOK

It can be observed not only on the pre- viously reported amylose tris(3,5-dimethylphenylcarbamate)-based column, but also on the Am2 column containing amylose tris(5-..

In CDCl 3 solution using (R)-4 and (2R,3S)-6 as chiral solvating agents the methyl hydrogens (ca.. Unfortunately, diastereomeric complexes of the carboxylic acids (1, 4, 5, 6)

(2010) Simultaneous determination of yohimbine, sildenafil, vardenafil and tadalafil in dietary supplements using high-performance liquid chromatography-tandem mass

A novel, single HPLC method using Lux Cellulose-2 column in polar organic mode was developed using DoE for the simultane- ous determination of DHIVA, DMIVA, IMP-1 and IMP-2 as

In summary, we have developed a sustainable and green method, using the biopolymer chitosan as a chiral ligand to in situ form a Ru complex in aqueous catalytic system,

Column (1) of Table 1 shows the age groups, column (2) the mean ages at death in different age groups (calculated by using an appropriate weighting procedure), column (3) the

Esplugas Characterization and determination of the odorous charge in the indoor air of a waste treatment facility through the evaluation of volatile organic compounds (VOCs)

• In model 1, steel plates with the width of 450 mm, the same width as the beam and column, were attached to the beam and column using 2 medial bolts that were pre- stressed equal